首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Abstract— Uptake and release of glutamine were measured in primary cultures of astrocytes together with the activity of the phosphate activated glutaminase (EC 3.5.1.2). In contrast to previous findings of an effective, high affinity uptake of other amino acids (e.g. glutamate, GABA) no such uptake of glutamine was observed, though a saturable, concentrative uptake mechanism did exist (K m = 3.3 ± 0.5 m m ; V max= 50.2 ± 12.6 nmol ± min−1± mg−1). The phosphate activated glutaminase activity in the astrocytes (6.9 ± 0.9 nmol ± min−1± mg−1) was similar to the activity found in whole brain (5.4 ± 0.7 nmol ± min −l± mg−1), which may contrast with previous findings of a higher activity of the glutamine synthetase (EC 6.3.1.2) in astrocytes than in whole brain. The observations are compatible with the hypothesis of an in vivo flow of glutamate (and GABA) from neurons to astrocytes where it is taken up and metabolized, and a compensatory flow of glutamine towards neurons and away from astrocytes although the latter cell type may be more deeply involved in glutamine metabolism than envisaged in the hypothesis.  相似文献   

3.
The influence of neuroinflammation on glutamate uptake by glial cells was examined after exposing primary cultures of rat astrocytes to conditioned culture medium from lipopolysaccharide-activated microglia. While such treatment triggered an inflammatory response in astrocytes, as revealed by the induction of cytokine expression, a significant decrease in GLAST expression and activity was observed after 72 h. This regulation of glutamate transporter was not observed with medium from naive microglia, but was mimicked by direct addition of tumor necrosis factor-alpha (TNF-α), a major cytokine released from activated microglia. Hence, on its own, TNF-α also triggered inflammation in astrocyte cultures, highlighting complex cross-talk between astrocytes and microglia in inflammatory conditions. This putatively detrimental regulation of GLAST in response to inflammation was also studied in cells exposed to dibutyryl cAMP, recognized as a model of astrocytes exhibiting a typical differentiated or activated phenotype. In this model, the conditioned culture medium from activated microglia, as well as TNF-α, were found to increase glutamate uptake capacity. Consistently, both of these treatments caused only modest induction of an inflammatory response in dibutyryl cAMP-matured astrocytes as compared to undifferentiated astrocytes. Together, these results suggest that differentiated/activated astrocytes are endowed with the capacity to confront inflammatory insults and that drugs influencing the astrocytes phenotype would deserve further consideration in the treatment of neurological disorders.  相似文献   

4.
The neuropeptide vasoactive intestinal peptide (VIP) is anti-inflammatory and protective in the immune and nervous systems, respectively. This study demonstrated in corneal endothelial (CE) cells injured by severe oxidative stress (1.4 mM H2O2) in bovine corneal organ cultures that VIP pre-treatment (0, 10−10, 10−8, and 10−6 M; 15 min), in a VIP concentration-dependent manner, switched the inflammation-causing necrosis to inflammation-neutral apoptosis (showing annexin V-binding, chromatin condensation, and DNA fragmentation) and upheld ATP levels in a VIP antagonist (SN)VIPhyb-sensitive manner, while up-regulated mRNA levels of the anti-apoptotic Bcl-2 and the differentiation marker N-cadherin in a kinase A inhibitor-sensitive manner. As a result, VIP, in a concentration-dependent and VIP antagonist-sensitive manners, promoted long-term CE cell survival. ATP levels, a determining factor in the choice of apoptosis versus necrosis, measured after VIP pre-treatment and 0.5 min post-H2O2 were 39.6 ± 3.3, 50.8 ± 6.2, 60.1 ± 4.8, and 53.6 ± 5.3 pmoles/μg protein (mean ± SEM), respectively ( p  < 0.05, anova ). VIP treatment alone concentration-dependently increased levels of N-cadherin ( Koh et al. 2008 ), the phosphorylated cAMP-responsive-element binding protein and Bcl-2, while10−8 M VIP, in a VIP antagonist (SN)VIPhyb-sensitive manner, increased ATP level by 38% ( p  < 0.02) and decreased glycogen level by 32% ( p  < 0.02). VPAC1 (not VPAC2) receptor was expressed in CE cells. Thus, CE cell VIP/VPAC1 signaling is both anti-inflammatory and protective in the corneal endothelium.  相似文献   

5.
Abstract: Elevated extracellular potassium concentration ([K+]e) has been shown to induce reversal of glial Na+-dependent glutamate uptake in whole-cell patch clamp preparations. It is uncertain, however, whether elevated [K+]e similarly induces a net glutamate efflux from intact cells with a physiological intracellular milieu. To answer this question, astrocyte cultures prepared from rat and mouse cortices were incubated in medium with elevated [K+]e (by equimolar substitution of K+ for Na+), and glutamate accumulation was measured by HPLC. With [K+]e elevations to 60 m M , medium glutamate concentrations did not increase during incubation periods of 5–120 min. By contrast, 45 min of combined inhibition of glycolytic and oxidative ATP production increased medium glutamate concentrations 50–100-fold. Similar results were obtained in both rat and mouse cultures. Studies were also performed using astrocytes loaded with the nonmetabolized glutamate tracer d -aspartate, and parallel results were obtained; no increase in medium d -aspartate content resulted from [K+]e elevation up to 90 m M , whereas a large increase occurred during inhibition of energy metabolism. These results suggest that a net efflux of glutamate from intact astrocytes is not induced by any [K+]e attainable in brain.  相似文献   

6.
Na+-dependent uptake of excitatory neurotransmitter glutamate in astrocytes increases cell energy demands primarily due to the elevated ATP consumption by glutamine synthetase and Na+, K+-ATPase. The major pool of GLAST/EAAT1, the only glutamate transporter subtype expressed by human fetal astrocytes in undifferentiated cultures, was restricted to the cytoplasmic compartment. Elevated glutamate concentrations (up to 50 μM) stimulated both glutamate uptake and Na+, K+-ATPase activity and concomitantly increased cell surface expression of GLAST and FXYD2/γ subunit of Na+, K+-ATPase. Intracellular accumulation of glutamate or its metabolites per se was not responsible for these changes since metabolically inert transport substrate, d-aspartate, exerted the same effect. Nanomolar concentrations of TFB-TBOA, a novel nontransportable inhibitor of glutamate carriers, almost completely reversed the action of glutamate or d-aspartate. In the same conditions (i.e. block of glutamate transport) monensin, a potent Na+ ionophore, had no significant effect neither on the activation of Na+, K+-ATPase nor on the cell surface expression of γ subunit or GLAST. In order to elucidate the roles of γ subunit in the glutamate uptake-dependent trafficking events or the activation of the astroglial sodium pump, in some cultures γ subunit/FXYD2 was effectively knocked down using siRNA silencing. Unlike the blocking effect of TFB-TBOA, the down-regulation of γ subunit had no effect neither on the trafficking nor activity of GLAST. However, the loss of γ subunit effectively abolished the glutamate uptake-dependent activation of Na+, K+-ATPase. Following withdrawal of siRNA from cultures, the expression levels of γ subunit and the sensitivity of Na+, K+-ATPase to glutamate/aspartate uptake have been concurrently restored. Thus, the activity of GLAST directs FXYD2 protein/γ subunit to the cell surface, that, in turn, leads to the activation of the astroglial sodium pump, presumably due to the modulatory effect of γ subunit on the kinetic parameters of catalytic subunit(s) of Na+, K+-ATPase.  相似文献   

7.
At the glutamatergic synapse the neurotransmitter is removed from the synaptic cleft by high affinity amino acid transporters located on neurons (EAAC1) and astrocytes (GLAST and GLT1), and a coordinated action of these cells is necessary in order to regulate glutamate extracellular concentration. We show here that treatment of neuronal cultures with glial soluble factors (GCM) is associated with a redistribution of EAAC1 and GLAST to the cell membrane and we analysed the effect of membrane cholesterol depletion on this regulation.

In enriched neuronal culture (90% neurons and 10% astrocytes), GCM treatment for 10 days increases EAAC1 and GLAST cell surface expression with no change in total expression. In opposite, GLT1 surface expression is not modified by GCM but total expression is increased. When cholesterol is acutely depleted from the membrane by 10 mM methyl-beta-cyclodextrin (β5-MCD, 30 min), glutamate transport activity and cell surface expressions of EAAC1 and GLAST are decreased in the enriched neuronal culture treated by GCM. In pure neuronal culture addition of GCM also increases EAAC1 cell membrane expression but surprisingly acute treatment with β5-MCD decreases glutamate uptake activity but not EAAC1 cell membrane expression. By immunocytochemistry a modification in the distribution of EAAC1 within neurons was undetectable whatever the treatment but we show that EAAC1 was no more co localized with Thy-1 in the enriched neuronal culture treated by GCM suggesting that GCM have stimulated polarity formation in neurons, an index of maturation.

In conclusion we suggest that different regulatory mechanisms are involved after GCM treatment, glutamate transporter trafficking to and from the plasma membrane in enriched neuronal culture and modulation of EAAC1 intrinsic activity and/or association with regulatory proteins at the cell membrane in the pure neuronal culture. These different regulatory pathways of EAAC1 are associated with different neuronal maturation stages.  相似文献   


8.
Modulation of Human Glutamate Transporter Activity by Phorbol Ester   总被引:5,自引:4,他引:1  
Abstract: Termination of synaptic glutamate transmission depends on rapid removal of glutamate by neuronal and glial high-affinity transporters. Molecular biological and pharmacological studies have demonstrated that at least five subtypes of Na+-dependent mammalian glutamate transporters exist. Our study demonstrates that Y-79 human retinoblastoma cells express a single Na+-dependent glutamate uptake system with a K m of 1.7 ± 0.42 µ M that is inhibited by dihydrokainate and dl - threo -β-hydroxyaspartate (IC50 = 0.29 ± 0.17 µ M and 2.0 ± 0.43 µ M , respectively). The protein kinase C activator phorbol 12-myristate 13-acetate caused a concentration-dependent inhibition of glutamate uptake (IC50 = 0.56 ± 0.05 n M ), but did not affect Na+-dependent glycine uptake significantly. This inhibition of glutamate uptake resulted from a fivefold decrease in the transporter's affinity for glutamate, without significantly altering the V max. 4α-Phorbol 12,13-didecanoate, a phorbol ester that does not activate protein kinase C, did not alter glutamate uptake significantly. The phorbol 12-myristate 13-acetate-induced inhibition of glutamate uptake was reversed by preincubation with staurosporine. The biophysical and pharmacological profile of the human glutamate transporter expressed by the Y-79 cell line indicates that it belongs to the dihydrokainate-sensitive EAAT2/GLT-1 subtype. This conclusion was confirmed by western blot analysis. Protein kinase C modulation of glutamate transporter activity may represent a mechanism to modulate extracellular glutamate and shape postsynaptic responses.  相似文献   

9.
Glutamate is removed mainly by astrocytes from the extracellular fluid via high-affinity astroglial Na+-dependent excitatory amino acid transporters, glutamate/aspartate transporter (GLAST), and glutamate transporter-1 (GLT-1). Mercuric chloride (HgCl2) is a highly toxic compound that inhibits glutamate uptake in astrocytes, resulting in excessive extracellular glutamate accumulation, leading to excitotoxicity and neuronal cell death. The mechanisms associated with the inhibitory effects of HgCl2 on glutamate uptake are unknown. This study examines the effects of HgCl2 on the transport of 3H-d-aspartate, a nonmetabolizable glutamate analog, using Chinese hamster ovary cells (CHO) transfected with two glutamate transporter subtypes, GLAST (EAAT1) and GLT-1 (EAAT2), as a model system. Additionally, studies were undertaken to determine the effects of HgCl2 on mRNA and protein levels of these transporters. The results indicate that (1) HgCl2 leads to significant (p<0.001) inhibition of glutamate uptake via both transporters, but is a more potent inhibitor of glutamate transport via GLAST and (2) the effect of HgCl2 on inhibition of glutamate uptake in transfected CHO cells is not associated with changes in transporter protein levels despite a significant decrease in mRNA expression; thus, (3) HgCl2 inhibition is most likely related to its direct binding to the functional thiol groups of the transporters and interference with their uptake function.  相似文献   

10.
Abstract: The 27 amino acid peptide, pituitary adenylate cyclase-activating polypeptide (PACAP-27), and its 38 amino acid analogue, PACAP-38, stimulate serotonin- N -acetyltransferase (NAT) activity and N -acetylserotonin (NAS) and melatonin content of pineal glands from adult rats. Maximal stimulation of rat pineal NAT by PACAP-38 is not increased further significantly by concurrent stimulation with the two related peptides, vasoactive intestinal polypeptide (VIP) and/or peptide N-terminal histidine C-terminal isoleucine (PHI). Isoproterenol was a more potent inducer of NAT activity than any of these peptides alone or in combination. PACAP-38 also stimulates melatonin production by chicken pineal cells in culture as does VIP. Stimulation by both was not greater than after either alone. Prior stimulation of rat pineal NAT activity with VIP, PHI, or PACAP-38 reduces the magnitude of subsequent stimulation with PACAP-38 or forskolin. Concurrent stimulation of α-receptors or treatment with active phorbol ester augments rat pineal response to PACAP-38 stimulation just as it increases the response to VIP, PHI, and β-receptor stimulation. Pineals from newborn rats respond to PACAP-38 with an increase in NAT activity and the increase is augmented by concomitant α1-adrenergic stimulation. The putative PACAP inhibitor PACAP (6–38) and the putative VIP inhibitor (Ac-Tyr, d -Phe)-GRF 1–29 amide, in 100–1,000-fold excess, did not affect the stimulatory activity of any of the peptides. Pineal melatonin concentration parallels changes in pineal NAT activity.  相似文献   

11.
Endothelin Evokes Efflux of Glutamate in Cultures of Rat Astrocytes   总被引:7,自引:0,他引:7  
Abstract: Excessive release of glutamate, from glial cells as well as neurons, is thought to be a major cause of neuronal death in ischemia. To investigate glutamate release from glial cells, we measured glutamate efflux from cultures of rat astrocytes preloaded with l -[3H]-glutamate. Glutamate efflux was induced by either 60 m M KCl or Na+-free medium, suggesting that the efflux is due to the reversed operation of a Na+- and K+-coupled glutamate uptake machinery. While investigating various neuropeptides and neurotransmitters, we found that endothelin (ET) specifically induced efflux of glutamate. Northern blot analysis and binding study showed that the ET type B receptor (ETB-R) subtype was expressed two to three times more densely than the ET type A receptor (ETA-R) in astrocytes. The ETB-R antagonist IRL 2500 partially inhibited efflux of glutamate induced by 1 n M ET-1 in a concentration-dependent manner, causing a maximal inhibition of 60% at 1 µ M . However, the ETA-R antagonist BQ-123 did not cause significant inhibition even at 10 µ M . Combination of both antagonists completely inhibited the ET-1-induced efflux. These results indicate that both receptor subtypes are involved in efflux of glutamate with a major contribution from the ETB-R. Our findings suggest that ET, which is known to be released in ischemia, may exacerbate neurodegeneration by stimulating efflux of glutamate.  相似文献   

12.
13.
Alanine metabolism, transport, and cycling in the brain   总被引:2,自引:1,他引:1  
Brain glutamate/glutamine cycling is incomplete without return of ammonia to glial cells. Previous studies suggest that alanine is an important carrier for ammonia transfer. In this study, we investigated alanine transport and metabolism in Guinea pig brain cortical tissue slices and prisms, in primary cultures of neurons and astrocytes, and in synaptosomes. Alanine uptake into astrocytes was largely mediated by system L isoform LAT2, whereas alanine uptake into neurons was mediated by Na+-dependent transporters with properties similar to system B0 isoform B0AT2. To investigate the role of alanine transport in metabolism, its uptake was inhibited in cortical tissue slices under depolarizing conditions using the system L transport inhibitors 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid and cycloleucine (1-aminocyclopentanecarboxylic acid; cLeu). The results indicated that alanine cycling occurs subsequent to glutamate/glutamine cycling and that a significant proportion of cycling occurs via amino acid transport system L. Our results show that system L isoform LAT2 is critical for alanine uptake into astrocytes. However, alanine does not provide any significant carbon for energy or neurotransmitter metabolism under the conditions studied.  相似文献   

14.
The expression and activity of glutamate transporters (EAAC1, GLAST and GLT1) were examined during the development of cortical neuron-enriched cultures. Protein content and mitochondrial respiration both increased during the first 7 days, later stabilized and decreased from DIV14. Glutamate transport and extracellular concentration were relatively constant from DIV3 to 18. The kinetic parameters of glutamate transport were at DIV7:Km=19±3 μM and Vmax=1068±83 pmol/mg protein/min and at DIV14: Km=40.8±9.3 μM and Vmax=1060±235 pmol/mg protein/min. The shift in Km towards higher values suggest a more important participation of GLAST after DIV14. At DIV7 and 14, glutamate transport was poorly sensitive to dihydrokaïnate (DHK) suggesting a weak participation of GLT1 in glutamate transport. Western blot experiments and immunocytochemistry showed that EAAC1 was expressed by neurons whatever the stage of the culture. GLAST was found in astrocytes as soon as DIV3 and labeling increased during the development of the culture. There was little neuronal GLT1 immunoreactivity at DIV7, only detected by immunocytochemistry. From DIV10 to 18, an increasing astrocytic expression of GLT1 was observed, also detected by Western blotting. These results show that: (1) glutamate uptake remains stable all along the development of the cultures although the pattern of expression of the different transporters is changing, suggesting that glutamate transport is highly regulated; (2) neuronal EAAC1 may play a critical role during the early stages of the culture when it is expressed alone; and (3) the developmental expression pattern of glutamate transporters in cortical neuron-enriched cultures is quite similar to that observed in vivo during early postnatal development.  相似文献   

15.
Many neurotransmitter transporters, including the GLT-1 and EAAC1 subtypes of the glutamate transporter, are regulated by protein kinase C (PKC) and these effects are associated with changes in cell surface expression. In the present study, the effects of PKC activation on the glutamate aspartate transporter (GLAST) subtype of glutamate transporter were examined in primary astrocyte cultures. Acute (30 min) exposure to the phorbol 12-myristate 13-acetate (PMA) increased (approximately 20%) transport activity but had the opposite effect on both total and cell surface immunoreactivity. Chronic treatment (6 or 24 h) with PMA had no effect on transport activity but caused an even larger decrease in total and cell surface immunoreactivity. This loss of immunoreactivity was observed using antibodies directed against three different cytoplasmic epitopes, and was blocked by the PKC antagonist, bisindolylmaleimide II. We provide biochemical and pharmacological evidence that the activity observed after treatment with PMA is mediated by GLAST. Two different flag-tagged variants of the human homolog of GLAST were introduced into astrocytes using lentiviral vectors. Although treatment with PMA caused a loss of transporter immunoreactivity, flag immunoreactivity did not change in amount or size. Together, these studies suggest that activation of PKC acutely up-regulates GLAST activity, but also results in modification of several different intracellular epitopes so that they are no longer recognized by anti-GLAST antibodies. We found that exposure of primary cultures of neurons/astrocytes to transient hypoxia/glucose deprivation also caused a loss of GLAST immunoreactivity that was attenuated by the PKC antagonist, bisindolylmaleimide II, suggesting that some acute insults previously thought to cause a loss of GLAST protein may mimic the phenomenon observed in the present study.  相似文献   

16.
Abstract: Cytochemical analysis demonstrated that a high percentage of human Y-79 retinoblastoma cells displayed a specific labeling by the biotinyl derivative of pituitary adenylate cyclase-activating polypeptide (PACAP), a novel neuropeptide of the secretin-vasoactive intestinal peptide (VIP) family of peptides. In cell membranes, the two molecular forms of PACAP, the one with 38 (PACAP 38) and the other with 27 (PACAP 27) amino acids, displaced the binding of 125I-PACAP 27 with IC50 values in the picomolar range and increased adenylyl cyclase activity by 100-fold with EC50 values of 27 and 180 p M , respectively. VIP, human peptide histidine-isoleucine, glucagon, and secretin were much less effective and potent in both receptor assays. The PACAP receptor antagonists PACAP 6–27 and PACAP 6–38 and an antiserum directed against the stimulatory G protein Gs inhibited the PACAP stimulation of adenylyl cyclase. In intact cells, both PACAPs and VIP failed to stimulate the phosphoinositide hydrolysis, whereas in cell membranes PACAP 38, but not the other peptides, produced a modest increase (40%) of inositol phosphate formation with an EC50 value of 22 n M . However, this effect was not antagonized by either PACAP 6–38 or PACAP 6–27. These data demonstrate the presence in human Y-79 retinoblastoma cells of specific PACAP receptors and provide further evidence that PACAP may act as a neurotransmitter/neuromodulator in mammalian retina.  相似文献   

17.
18.
In Nostoc muscorum (Anabaena ATCC 27893) glutamate was not metabolised as a fixed nitrogen source, rather it functioned as an inhibitor of growth. The latter effect was nitrogen source specific and occurred in N2-fixing cultures but not in cultures assimilating nitrate or ammonium. NO3--grown cultures lacked heterocysts and nitrogenase activity and showed a nearly 50% reduction in glutamate uptake rates, as well as in the final extent of glutamate taken up, compared to N2-fixing or nitrogen-limited control cultures. NH4+-grown cultures showed a similar response, except that the reduction in glutamate uptake rates and the final exten of glutamate taken up was over 80%. The present results suggest a relation between nitrate/ammounium nitrogen-dependent inhibition of glutamate uptake, probably via repression of the glutamate transport system, and glutamate toxicity.  相似文献   

19.
Abstract: Cells dissociated from the postnatally developing rat cerebellum retain their high-affinity carrier-mediated transport systems for [3H]GABA ( K t=1.9 μM, V = 1.8 pmol/106 cells/min) and [3H]glutamate ( K t= 10 μM, V = 7.9 pmol/106 cells/min). Using a unit gravity sedimentation technique it was demonstrated that [3H]GABA was taken principally into fractions that were enriched in inhibitory neurons (Purkinje, stellate and basket cells). [3H]β-alanine (which is taken up specifically by the glial GABA transport system) and [3H]glutamate were concentrated by glial-enriched fractions. However [3H]glutamate uptake was minimal in fractions enriched in precursors of granule cells, which may utilise this amino acid as their neurotransmitter. These results are discussed in relation to reports of high-affinity [3H]glutamate uptake by glia. The role of glutamate transport in glutamatergic cells is also considered. The data suggest that high-affinity glutamate transport is a property of glial cells but not granule neurons.  相似文献   

20.
Abstract: The deleterious effect of the parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on dopaminergic neurons of the substantia nigra is well established. In addition, increased glutamatergic drive to basal ganglia output nuclei is considered a likely contributor to the pathogenesis of Parkinson's disease. One possibility for the increased excitatory tone may be related to an impairment in glutamate uptake. As astrocytes possess efficient transport mechanisms for both MPTP and glutamate, we have examined the effect of this agent on d -aspartate uptake into these cells. Treatment of cultures with 50 µ M MPTP for 24 h decreased uptake by 39%. Kinetic analysis revealed that this effect was due to a 35% decrease in V max with no change in the K m. Treatment with deprenyl, a monoamine oxidase B inhibitor, produced a complete reversal of MPTP-induced uptake inhibition, but was ineffective following exposure of cells to the MPTP metabolite, 1-methyl-4-phenylpyridinium (MPP+). Removal of MPTP from cultures resulted in a complete restoration of glutamate uptake after 24 h. These results show that MPTP reversibly compromises glutamate uptake in cultured astrocytes, which is dependent on the conversion of MPTP to MPP+. Such findings suggest that the glutamate transporter in astrocytes plays an important role in MPTP-induced neurotoxicity and possibly in parkinsonism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号