首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent work suggests that hypophysectomized (HYPOX) rats show low levels of atrial natriuretic factor (ANF) and an attenuated diuresis and natriuresis to blood volume expansion. The purpose of this was (i) to examine the effect of various hormone replacements on ANF and renal excretion in HYPOX rats and (ii) to compare the renal responses to exogenous ANF in intact and HYPOX rats. Groups of rats received subcutaneous pellet implant of either dexamethasone (DEX), thyroxine (T4), or a placebo. Approximately 1 week later, they were anesthetized and subjected to a 20% blood volume expansion. DEX rats had a higher mean arterial pressure than placebo-treated rats while both MAP and heart rate were higher in T4 rats. Only the DEX rat showed augmented renal responses to volume expansion while no group showed significant changes in plasma ANF concentration during volume expansion. In a second series, groups of HYPOX rats received renal capsular transplants of either six hemi-pituitaries or six pieces of muscle which markedly raised serum prolactin levels in the hemi-pituitary group. The hemi-pituitary rats showed a greater diuresis and natriuresis during volume expansion than the muscle group and also showed a transient increase in plasma ANF. In addition, groups of either intact or HYPOX rats were anesthetized and received intravenous bolus injections of ANF. Both intact and HYPOX rats showed a very similar diuresis and natriuresis to exogenous ANF. However, potassium excretion was markedly reduced in HYPOX rats. The results show that DEX augments the renal responses to volume expansion by some mechanism which does not involve changes in plasma ANF. Thyroxine increases mean arterial pressure and heart rate in HYPOX rats but does not augment the renal or ANF responses to volume expansion. Chronic elevations in prolactin increase the renal response to volume expansion. Finally, the kidneys of HYPOX rats are capable of increasing sodium and water output in response to large doses of exogenous ANF.  相似文献   

2.
Atrial natriuretic factor (ANF) increases sodium (Na+) and water excretion 8-10 fold on repeated administration to anesthetized rats. SCH-23390 (80 micrograms/kg i.v.) and R-sulpiride (80 micrograms/kg i.v.), selective antagonists of dopamine receptors in the renal vasculature, inhibited diuresis and natriuresis induced by AP III and dopamine. These findings suggest that ANF exerts its effects on renal Na+ and water handling via a dopaminergic mechanism; however, changes in intrarenal hemodynamics secondary to dopamine receptor blockade may attenuate the actions of ANF.  相似文献   

3.
Adrenalectomized, medullectomized and sham operated rats were treated with either a chronic infusion or a bolus injection of the synthetic atrial natriuretic factor (ANF). ANF did not enhance natriuresis and diuresis in sham operated conscious animals during chronic infusion, but it had a potent action when injected as a bolus into anesthetized rats. The absence of the whole adrenal glands, but not adrenal medulla profoundly modified the renal response to ANF: a) following chronic administration of ANF, the baseline natriuresis paradoxically decreased in adrenalectomized rats, and b) in response to a bolus injection of ANF the natriuretic and diuretic actions of the peptide were attenuated in these animals. The medullectomy-induced decreased natriuresis and dopamine excretion were corrected by ANF infusion. Furthermore, ANF suppressed the compensatory increase of norepinephrine excretion secondary to adrenalectomy. The data suggest that the presence of the adrenal cortex is necessary for the natriuretic and diuretic actions of ANF. The decrease in urinary DA excretion may reflect diminished dopaminergic activity and contribute to the post-medullectomy antinatriuresis, a phenomenon which can be corrected by ANF infusion. ANF may also have a depressing activity on the increased sympathetic tone.  相似文献   

4.
大鼠脑胆碱能系统对血量扩张引起利尿与尿钠排泄...   总被引:2,自引:2,他引:0  
韩桂春  林茂樟 《生理学报》1991,43(5):464-471
The role of brain cholinergic system on diuresis and natriuresis induced by volume expansion was studied in conscious rats. In a series of experiments, the diuretic, natriuretic and kaliuretic responses induced by volume expansion were compared in three groups of conscious rats pretreated respectively with intracerebroventricular (icv) injection of artificial cerebrospinal fluid (ACSF), atropine and hexamethonium. The natriuretic, kaliuretic and diuretic responses induced by volume expansion were much less in the animals with icv injection of atropine than in the control group with injection of ACSF (P less than 0.01). While the group pretreated with icv injection of hexamethonium showed no significant decrease in these responses of volume expansion than that of the control (P greater than 0.05). Volume expansion produced no change in insulin and PAH clearance in both the atropine and the ACSF group. Thus the atropine suppressed diuresis, natriuresis and kaliuresis are independent of changes in GFR and RPF. It is inferred from the results of the present investigation that volume expansion induced diuresis and natriuresis appear to be due to inhibition of water and sodium reabsorption in the renal tubules and regulated by certain brain cholinergic system.  相似文献   

5.
Experiments were performed to test the hypothesis that the renal interstitial hydrostatic pressure (RIHP) response to acute volume expansion is suppressed in diabetes mellitus. Sprague-Dawley rats received streptozotocin (STZ rats; 65 mg/kg ip) or vehicle (Sham rats). Two weeks later, RIHP and Na(+) excretion responses to acute graded volume expansion with isotonic saline were quantified under Inactin anesthesia (0.1 mg/kg ip). In Sham rats, acute graded volume expansion to 10% body wt produced increases in RIHP (Delta = 12.2 +/- 2.4 mmHg), urine flow (Delta = 54 +/- 8 microliter. min(-1). g(-1)), and Na(+) excretion (Delta = 11.5 +/- 1.9 mueq. min(-1). g(-1)). In STZ rats, these volume expansion-induced responses were significantly blunted (RIHP by 50%, urine flow by 81%, and Na(+) excretion by 76%). Renal decapsulation eliminated the differences between STZ and Sham rats with regard to volume expansion-induced increases in RIHP, urine flow, and Na(+) excretion. Renal denervation normalized the RIHP response to volume expansion and improved the diuretic and natriuretic responses in STZ rats. Moreover, diuretic and natriuretic responses to direct changes in RIHP (induced by renal interstitial volume expansion) were blunted in STZ rats. We conclude that diminished alterations in RIHP, as well as a reduced impact of RIHP on Na(+) excretion, contribute to the impaired diuretic and natriuretic responses to acute volume expansion during the early stage of diabetes.  相似文献   

6.
We studied the effects of synthetic atrial natriuretic factor (ANF, 28-amino acid peptide) on base-line perfusion pressures and pressor responses to hypoxia and angiotensin II (ANG II) in isolated rat lungs and on the following hemodynamic and renal parameters in awake, chronically instrumented rats: cardiac output (CO), systemic (Rsa) and pulmonary (Rpa) vascular resistances, ANG II- and hypoxia (10.5% O2)-induced changes in Rsa and Rpa, and urine output. Intra-arterial ANF injections lowered base-line perfusion pressures and blunted hypoxia- and ANG II-induced pressor responses in the isolated lungs. Bolus intravenous injection of ANF (10 micrograms/kg) into intact rats decreased CO and arterial blood pressures of both systemic and pulmonary circulations and increased Rsa. ANG II (0.4 micrograms/kg) increased both Rsa and Rpa, and hypoxia increased Rpa alone in the intact rats. ANF (10 micrograms/kg) inhibited both ANG II- and hypoxia-induced increases in Rpa but did not significantly affect the ANG II-induced increase in Rsa. The antagonistic effect of ANF on pulmonary vasoconstriction was reversible and dose-dependent. The threshold doses of ANF required to inhibit pulmonary vasoconstriction were in the same range as those required to elicit diuresis and natriuresis. The data demonstrate that ANF has a preferential relaxant effect on pulmonary vessels constricted by hypoxia or ANG II. Both the renal and the pulmonary vascular effects of ANF may represent fundamental physiological actions of ANF. These actions may serve as a negative feedback control system that protects the right ventricle from excessive mechanical loads.  相似文献   

7.
Effect of native and synthetic atrial natriuretic factor on cyclic GMP   总被引:24,自引:0,他引:24  
Mammalian atrial cardiocyte granules contain a potent natriuretic and diuretic peptide. Since cGMP appears to be involved in the modulation of cholinergic and toxin-induced sodium transport, we examined the effect of atrial natriuretic factor (ANF) on this nucleotide. Atrial but not ventricular extracts elicited approximately a 28-fold increase of urinary cGMP excretion parallel to the natriuresis and diuresis. The atrial extracts also elevated cGMP levels in kidney slices and primary cultures of renal tubular cells. The effect of ANF on cGMP appeared to be specific since antibodies which were capable of inhibiting the ANF-induced diuresis also suppressed cGMP excretion. Furthermore, during the course of ANF purification, the ANF-induced increase of cGMP production by kidney cells paralleled the heightened specific natriuretic activity of the atrial factor. A synthetic peptide (8-33)-ANF similarly increased urinary plasma and kidney tubular cGMP levels. The exact mechanism of action of ANF on cGMP remains to be elucidated, but indirect inhibition of cGMP phosphodiesterase appears to participate in its effect.  相似文献   

8.
Since renal prostaglandins may contribute to natriuresis induced by endogenous atrial natriuretic factor (ANF), acute volume expansion (AVL), a known stimulus of ANF and prostaglandins, was induced in 8 healthy women in order to test whether the consequent sodium and water diuresis is altered by prostaglandin inhibition. AVL (i.v. infusion of a 2 liter 5% glucose solution in 1 h) was infused after placebo and after inhibition of prostaglandins with diclofenac (200 mg/day orally for 4 days), in a double blind randomized cross-over fashion. Urinary eicosanoids (PGE2, PGF2 alpha, 6-ketoPGF1 alpha, TXB2--RIA), plasma ANF (RIA) and urinary electrolytes were determined before, during and after AVL under both placebo and diclofenac regimes. During placebo, AVL induced sustained increases in plasma ANF (174% at peak, p less than 0.001 ANOVA), excretion of the four eicosanoids (149%-1172%, p less than 0.005-0.001), urinary volume (UV, 815%, p less than 0.001), natriuresis (UNa, 98%, p less than 0.005) and in kaliuresis (UK, 90%, p less than 0.001). Cyclooxygenase inhibition resulted in a reduction of over 70% in both baseline values and AVL-induced increase of eicosanoids. It did not alter either baseline levels or AVL-stimulated ANF, UV, UNa and UK in relation to placebo. The present results suggest that the diuretic and natriuretic activity of ANF is not mediated by renal PGs in humans.  相似文献   

9.
Intracerebroventricular injection of kappa-opioid agonists produces diuresis, antinatriuresis, and a concurrent increase in renal sympathetic nerve activity (RSNA). The present study examined whether endogenous central kappa-opioid systems contribute to the renal excretory responses produced by the stress of an acute hypotonic saline volume expansion (HSVE). Cardiovascular, renal excretory, and RSNA responses were measured during control, acute HSVE (5% body weight, 0.45 M saline over 30 min), and recovery (70 min) in conscious rats pretreated intracerebroventricularly with vehicle or the kappa-opioid receptor antagonist nor-binaltorphimine (nor-BNI). In vehicle-pretreated rats, HSVE produced a marked increase in urine flow rate but only a low-magnitude and delayed natriuresis. RSNA was not significantly suppressed during the HSVE or recovery periods. In nor-BNI-treated rats, HSVE produced a pattern of diuresis similar to that observed in vehicle-treated rats. However, during the HSVE and recovery periods, RSNA was significantly decreased, and urinary sodium excretion increased in nor-BNI-treated animals. In other studies performed in chronic bilateral renal denervated rats, HSVE produced similar diuretic and blunted natriuretic responses in animals pretreated intracerebroventricularly with vehicle or nor-BNI. Thus removal of the renal nerves prevented nor-BNI from enhancing urinary sodium excretion during HSVE. These findings indicate that in conscious rats, endogenous central kappa-opioid systems are activated during hypotonic saline volume expansion to maximize urinary sodium retention by a renal sympathoexcitatory pathway that requires intact renal nerves.  相似文献   

10.
Conscious SHR and WKY rats were infused during 7 days with ANF (Arg 101-Tyr 126), 100 ng/hr/rat, by means of miniosmotic pumps and their basal blood pressure (BP), changes in sodium excretion and urinary catecholamines compared with those at the last day of the infusion. The SHR initial BP of 181 +/- 3 mmHg gradually declined to 137 +/- 5 mmHg. No significant change in blood pressure was observed in the ANF-infused WKY group. However, WKY rats exhibited an increased sodium excretion and urinary dopamine/norepinephrine ratio when compared to sham-infused rats. No such differences were observed in SHR. It is suggested that an ANF-induced withdrawal of the renal sympathetic tone permits the manifestation of its natriuretic action in WKY rats. When, however, a BP decrease predominates, as in SHR, this decrease results in a reflex sympathetic discharge with a renal sympathetic activity over-riding the ANF induced natriuresis seen in WKY rats. Secondary sympathetic responses to the ANF-induced BP decrease have to be thus taken into account when a dissociation between the hypotensive and natriuretic action of ANF is observed in vivo.  相似文献   

11.
Acute volume expansion (VE) produces a suppression of renal sympathetic nerve discharge (RSND) resulting in diuresis and natriuresis. Recently, we have demonstrated that the endogenous nitric oxide (NO) system within the paraventricular nucleus (PVN) produces a decrease in RSND. We hypothesized that endogenous NO in the PVN is involved in the suppression of RSND leading to diuretic and natriuretic responses to acute VE. To test this hypothesis, we first measured the VE-induced increase in renal sodium excretion and urine flow with and without blockade of NO, with microinjection of NG-monomethyl-L-arginine (L-NMMA; 200 pmol in 200 nl), within the PVN of Inactin-anesthetized male Sprague-Dawley rats. Acute VE produced significant increases in urine flow and sodium excretion, which were diminished in rats treated with L-NMMA within the PVN. This effect of NO blockade within the PVN on VE-induced diuresis and natriuresis was abolished by renal denervation. Consistent with these data, acute VE induced a decrease in RSND (52% of the baseline level), which was significantly blunted by prior administration of L-NMMA into the PVN (28% of the baseline level) induced by a comparable level of acute VE. Using the push-pull perfusion technique, we found that acute VE induced a significant increase in NOx concentration in the perfusate from the PVN region. Taken together, these results suggest that acute VE induces an increase in NO production within the PVN that leads to renal sympathoinhibition, resulting in diuresis and natriuresis. We conclude that NO within the PVN plays an important role in regulation of sodium and water excretions in the volume reflex via modulating renal sympathetic outflow.  相似文献   

12.
1. Intracerebroventricular (IVT) administration of rat atrial natriuretic factor (ANF) (99-126) to conscious male hydrated rats induces a dose-dependent increase in urine and sodium excretion. The possible involvement of brain dopaminergic system in the IVT-ANF-induced diuresis and natriuresis was evaluated. 2. Central sympathectomy (6-OHDA, 250 micrograms/5 microliters, IVT; 72 and 48 hr before IVT-ANF) inhibited both the diuretic and the natriuretic action of centrally administered ANF, suggesting that in the brain ANF requires the integrity of central noradrenergic and/or dopaminergic systems function for its actions. 3. Intracerebroventricular injection of haloperidol and intragastric administration of domperidone prevent the diuretic and natriuretic response to centrally administered ANF. 4. Our data suggest a neuromodulatory action of ANF within the brain and demonstrate an interaction of the peptide with brain dopaminergic systems.  相似文献   

13.
大鼠脑胆碱能系统对血量扩张引起利尿与尿钠排泄的作用   总被引:2,自引:0,他引:2  
本工作在清醒大鼠侧脑室注射胆碱能药物,观察脑胆碱能系统对血量扩张引起利尿与尿钠排泄的作用。侧脑室注射人工脑脊液后进行血量扩张引起尿流量、排钠量和排钾量显著增加(P<0.01)。侧脑室注射胆碱能 M 受体阻断剂阿托品后,血量扩张引起尿流量、排钠量和排钾量增加的效应比注射人工脑脊液组的均显著减弱(P<0.01);而侧脑室注射胆碱能 N 受体阻断剂六烃季胺后,血量扩张引起尿流量、排钠量和排钾量增加的效应与注射人工脑脊液组的相比无显著差异(P>0.05)。侧脑室注射人工脑脊液或阿托品大鼠的肾小球滤过率(GFR)与肾血浆流量(RPF)在血量扩张后均无显著变化(P>0.05)。上述结果表明:大鼠脑胆碱能M 受体参与血量扩张引起利尿与尿钠排泄反应的调节。脑 M 受体的这种作用不是通过改变GFR 和 RPF,而可能是通过未明神经液递机制直接影响肾小管对水钠的重吸收。  相似文献   

14.
Diabetes mellitus (DM) is characterized by alterations in fluid balance and blood volume homeostasis. Renal interstitial hydrostatic pressure (RIHP) has been shown to play a critical role in mediating sodium and water excretion under various conditions. The objective of this study was to determine the effects of immediate and delayed initiation of insulin treatment on the restoration of the relationship between RIHP, natriuretic, and diuretic responses to acute saline volume expansion (VE) in diabetic rats. Diabetes was induced by an intraperitoneal injection of streptozotocin (STZ; 65 mg/kg body wt). Four groups of female Sprague-Dawley rats were studied: normal control group (C), untreated diabetic group (D), immediate insulin-treated diabetic group (DI; treatment with insulin for 2 wk was initiated immediately when diabetes was confirmed, which was 2 days after STZ injection), and delayed insulin-treated diabetic group (DDI; treatment with insulin for 2 wk was initiated 2 wk after STZ injection). RIHP and sodium and water excretions were measured before and during VE (5% body wt/30 min) in the four groups of anesthetized rats. VE significantly increased RIHP, fractional excretion of sodium (FE(Na)), and urine flow rate (V) in all groups of rats. Basal RIHP, RIHP response to VE (Delta RIHP), and FE(Na) and V responses to VE (Delta FE(Na) and Delta V) were significantly lower in the D group compared with the C group of rats. Delta RIHP was significantly higher in both DI and DDI groups compared with D group but was similar to that of the C group of rats. While in the DI group the Delta FE(Na) response to VE was restored, Delta FE(Na) was significantly increased in DDI compared with D group, but it remained lower than that of the C group. In conclusion, insulin treatment initiated immediately after the onset of diabetes restores basal RIHP and RIHP, natriuretic, and diuretic responses to VE; however, delayed insulin treatment restores the basal RIHP and RIHP response to VE but does not fully restore the natriuretic response to VE.  相似文献   

15.
C-ANF (4-23) and neutral metalloendopeptidase (NEP) inhibitors have been shown to prevent ANF metabolism and lower blood pressure presumably by the accumulation of ANF in the circulation. In the present study, we examined the interaction between C-ANF (4-23) and SCH 34826, an inhibitor of NEP, and ensuing effects on blood pressure, excretion of urine and sodium, and cGMP in the plasma and urine in conscious DOCA-salt hypertensive rats. C-ANF (100 micrograms/kg, iv bolus plus 10 micrograms/kg/min X 30) or SCH 34826 (90 mg/kg, sc) alone caused significant reductions in blood pressure and increases in plasma and urinary excretion of cGMP, a biochemical marker of endogenous ANF activity, at one hour post-drug. C-ANF (4-23) alone elicited a significant diuresis and natriuresis. SCH 34826 also enhanced sodium excretion and tended to increase urine volume. In comparison, the combination of C-ANF (4-23) and SCH 34826 produced a greater reduction in blood pressure and increases in plasma and urinary excretion of cGMP than either agent alone. The combination also caused significant diuresis and natriuresis. It is suggested that the greater blood pressure and renal responses to a combination of SCH 34826 and C-ANF than either agent alone reflect greater accumulation of endogenous ANF due to concomitant inhibition of both receptor-mediated clearance and NEP.  相似文献   

16.
Intracerebroventricular (i.v.t.) administration of rat atrial natriuretic peptide-(99-126) (rANP) increases urinary volume and sodium excretion, but the mechanism is undefined. A diminished mineralocorticoid effect on the kidneys may explain the natriuretic phenomenon. This hypothesis was tested by i.v.t. rANP injection (1.25 micrograms/5 microliters) in conscious, hydrated rats pretreated beforehand with d-aldosterone (20 micrograms/kg, i.p.). Although the absolute amount of sodium excreted was reduced, aldosterone did not affect rANP-induced sodium output at 1 and 3 h. Rats which were sham-operated or bilaterally adrenalectomized (ADX) after four days were pretreated with aldosterone and given an oral water load followed by i.v.t. rANP or saline. In ADX rats natriuresis and diuresis after rANP were still evident. Our results indicate that the natriuretic effect of i.v.t. rANP is unrelated to plasma levels of mineralocorticoids. Likewise, diuresis and natriuresis can occur in the absence of the adrenal glands.  相似文献   

17.
Effects of ANF(8-33) and Auriculin A on renal variables were investigated in conscious water-diuretic dogs. The two substances were injected intravenously (1.08 micrograms/kg in 3 min) or ANF(8-33) was infused (0.2 microgram/kg X min in 20 min). The effects were compared to those of an equinatriuretic dose of furosemide (1.0 microgram/kg X min). Injections caused increases in sodium excretion, diuresis, and osmolar clearance. No significant change in exogenous creatine clearance (CCREA) occurred. Infusion of ANF(8-33) decreased blood pressure by 14% (P less than 0.01) and increased sodium excretion by a factor of 10 (P less than 0.01). The natriuresis was a function of increases in diuresis and urinary sodium concentration, the latter by a factor of 6 (P less than 0.01). Diuresis and free-water clearance (CH2O) increased by 60% (P less than 0.01), but urine osmolality did not change significantly. After the infusion a significant decrease in PAH clearance (CPAH) (P less than 0.01) was observed. Filtration fraction (FF) did not change. The furosemide natriuresis appeared later than that of ANF without significant deviations in diuresis, CH2O, CCREA, CPAH, and FF; urine osmolality increased by 35% (P less than 0.01). The effects of ANF(8-33) differ from those of furosemide in several ways. First, the onset of natriuresis is faster, second, the natriuresis is associated by marked increases in diuresis and free-water clearance but not in urine osmolality; and third, natriuresis is followed by a reduction in renal blood flow. The rapid natriuresis of ANF can occur without changes in glomerular filtration rate.  相似文献   

18.
Plasma levels of atrial natriuretic peptide (ANP) and renal responses to ANP were examined in rats with chronic cardiac failure produced by coronary artery ligation and in sham-operated controls. Plasma ANP levels were elevated in the rats with severe cardiac failure as compared with the controls (P less than 0.001). ANP injections at the doses of 1, 5, 25 and 50 micrograms/kg increased water and sodium excretion significantly at all but the lowest dose in the controls; only the two largest doses caused clear diuresis and natriuresis in the heart failure group. The diuretic and natriuretic effects of ANP were significantly weaker at the doses of 5 and 25 micrograms/kg in the rats with heart failure as compared with the controls. We conclude, that natriuretic and diuretic effects of ANP are attenuated in this chronic heart failure mode.  相似文献   

19.
Atrial natriuretic factor (ANF) is a cardiac hormone exerting potent cardiovascular and renal effects but its poor intestinal absorption and rapid inactivation have prevented so far its therapeutic utilisation. However inhibition of endogenous ANF metabolism progressively emerges as a novel therapeutic approach in cardiovascular and renal disorders. The critical role played by enkephalinase (membrane metalloendopeptidase, EC 3.4.24.11) in ANF inactivation was deduced from the effects of inhibitors. These compounds not only protect partially exogenous ANF from hydrolysis by some tissue preparations in vitro but also, in vivo, they increase the half-life of the exogenous hormone in plasma and, even more markedly, its recovery in intact form in kidney, a major target organ. In addition, enkephalinase inhibitors increase by two- to three-fold the circulating level of endogenous ANF, even when the latter is already markedly elevated, such as in patients with chronic heart failure. Finally, enkephalinase inhibitors induce a series of ANF-like responses such as natriuresis, diuresis or increase in cGMP excretion which are attributable to the hormone. These pharmacological observations, as well as preliminary clinical trials, suggest that enkephalinase inhibitors may represent a novel class of therapeutic agents with potential applications in congestive heart failure, essential hypertension and various sodium-retaining states.  相似文献   

20.
This study was conducted to examine the role of atrial natriuretic factor (ANF) in the development of diuresis and natriuresis in response to the head-out immersion in 35 degrees C water. Six male subjects were hydrated (0.5% body wt), sat for 1 hr in air (preimmersion), were immersed in water to the neck for 3 hr, and then sat for 1 hr in air (postimmersion). In another series they were similarly hydrated and then sat for 5 hr in air for the time control. Urine and venous blood samples were collected hourly for creatinine and electrolyte measurements. In addition, the concentration of ANF was determined in unextracted plasma by a radioimmunoassay. The pattern of electrolyte excretion was evaluated on the basis of fractional excretion of filtered load. In the time control series, urine flow and fractional excretion of Na and K remained low throughout the 5-hr experimental period. On the other hand, urine flow increased significantly from the preimmersion level of approximately 2 to approximately 7 ml/min during the first hour of immersion (P less than 0.05), after which it decreased to approximately 5 ml/min during the second hour of immersion (P less than 0.05) and to approximately 2 ml/min during the third hour of immersion. Fractional excretion of Na increased continuously from preimmersion level of approximately 1.0 to approximately 1.8% during the second and third hours of immersion (P less than 0.05) and then decreased to 1.2% during the 1-hr postimmersion period. The plasma ANF remained low (approximately 75 pg/ml) during the 5-hr time control period. In the immersion series, plasma ANF increased significantly from the preimmersion level of approximately 80 to approximately 120 pg/ml during the entire 3-hr immersion period and then returned to the preimmersion level during 1 hr postimmersion. These results indicate that the immersion diuresis and natriuresis are indeed associated with the increased ANF release. However, it can not be ascertained from the present study if the increased ANF contributes directly to these renal responses to immersion or in concert with other mediators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号