首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Dose-response relationships of genotoxic agents differ greatly depending on the agent and the endpoint being evaluated. Simple conclusions that genotoxic effects are linear cannot be applied universally. The shape of the molecular dose of DNA adducts varies from linear, to supralinear, to sublinear depending on metabolic activation and detoxication, and repair of individual types of DNA adducts. For mutagenesis and other genotoxicity endpoints, the dose-response reflects the molecular dose of each type of DNA adduct, cell proliferation, as well as endogenous factors that lead to mutagenesis such as the formation and repair of endogenous DNA adducts. These same factors are important when interpreting the shape of dose-response data for carcinogenesis of genotoxic agents, however, tumor background variability adds additional complexity. Endogenously formed DNA adducts may be identical to those formed by chemicals, as in the case of vinyl chloride and ethylene oxide, or they may be those associated with oxidative stress. Data presented in this paper demonstrate that the exogenous number of adducts induced by 5 days of exposure to 10 ppm vinyl chloride is only 2. 2-fold greater than that present as a steady-state amount in unexposed control rats. Similar data are shown for ethylene oxide. Extremely sensitive methods have been developed for measuring the molecular dose of genotoxins. These methods can detect DNA adducts as low as 1 per 10(9) to 10(10). However, in view of the high number of endogenous DNA adducts that are present in all cells, it is unlikely that causal relationships can be attributed to very low numbers of such DNA adducts. Effects of both exogenous and endogenous DNA adducts need to be factored into the interpretation of chemical exposures.  相似文献   

2.
Phillips DH 《Mutation research》2005,577(1-2):284-292
Many carcinogens exert their biological effects through the formation of DNA adducts by metabolically activated intermediates. Detecting the presence of DNA adducts in human tissues is, therefore, a tool for molecular epidemiological studies of cancer. A large body of evidence demonstrates that DNA adducts are useful markers of carcinogen exposure, providing an integrated measurement of carcinogen intake, metabolic activation, and delivery to the target macromolecule in target tissues. Monitoring accessible surrogate tissues, such as white blood cells, also provides a means of investigating occupational or environmental exposure in healthy individuals. Such exposure to carcinogens, e.g. to polycyclic aromatic hydrocarbons, has been demonstrated in several industries and in defined populations, respectively, by the detection of higher levels of adducts. Adducts detected in many tissues of smokers are at levels significantly higher than in non-smokers, although the magnitude of the elevation does not predict the magnitude of the risk. While such associations do not demonstrate causality, they do, importantly, lend plausibility to observed associations between smoking and cancer. However, there is still resistance to the notion that such monitoring can inform, rather than merely confirm, epidemiological investigations of cancer causation. Interestingly, smoking was recently causally linked to cervical cancer after years of being considered a confounding factor; yet smoking-related adducts have been known to be present in cervical epithelium for some time. In the few prospective studies thus far, elevated adduct levels have been found in individuals who subsequently developed cancer compared with individuals who did not. The potential for biomarker measurements, such as DNA adducts, to provide answers to the origin of many cases of human cancer for which an environmental cause is suspected, needs to be exploited more fully in future epidemiological studies.  相似文献   

3.
Otteneder M  Lutz U  Lutz WK 《Mutation research》2002,500(1-2):111-116
Styrene by inhalation had been shown to increase the lung tumor incidence in mice at 20 ppm and higher, but was not carcinogenic in rats at up to 1000 ppm. Styrene-7,8-oxide, the major metabolic intermediate, has weak electrophilic reactivity. Therefore, DNA adduct formation was expected at a low level and a 32P-postlabeling method for a determination of the two regioisomeric 2'-deoxyguanosyl-O6-adducts at the alpha(7)- and beta(8)-positions had been established. The first question was whether DNA adducts could be measured in the rat at the end of the 2 years exposure of a bioassay for carcinogenicity, even though tumor incidence was not increased. Liver samples of male and female CD rats were available for DNA adduct analysis. Adducts were above the limit of detection only in the highest dose group (1000 ppm), with median levels of 9 and 8 adducts per 10(7) nucleotides in males and females, respectively (sum of alpha- and beta-adducts). The result indicates that the rat liver tolerated a relatively high steady-state level of styrene-induced DNA adducts without detectable increase in tumor formation. The second question was whether different DNA adduct levels in the lung of rats and mice could account for the species difference in tumor incidence. Groups of female CD-1 mice were exposed for 2 weeks to 0, 40, and 160 ppm styrene (6h per day; 5 days per week), female CD rats were exposed to 0 and 500 ppm. In none of the lung DNA samples were adducts above a limit of detection of 1 adduct per 10(7) DNA nucleotides. The data indicate that species- and organ-specific tumor induction by styrene is not reflected by DNA adduct levels determined in tissue homogenate. The particular susceptibility of the mouse lung might have to be based on other reactive metabolites and DNA adducts, indirect DNA damage and/or cell-type specific toxicity and tumor promotion.  相似文献   

4.
Many industrial bulk chemicals are oxiranes or alkenes that are easily metabolised to oxiranes in mammalian systems. Many oxiranes may react with DNA and are therefore mutagenic in vitro. Some oxiranes have been shown to be carcinogenic in rodents in vivo as well. Despite the very limited evidence of the carcinogenicity of oxiranes in humans, they should be considered potential human carcinogens. As a consequence, exposure to these compounds should be minimised and controlled. Twenty-five years ago, Ehrenberg and co-workers suggested that exposure to oxiranes might be determined through the measurement of the adducts they form with haemoglobin (Hb). Ten years later, a modification of the Edman degradation was developed at Stockholm University that allowed determination of adducts with the N-terminal valine of Hb by GC-MS. In our laboratory, this methodology was modified and adapted for analysis on an industrial scale. Since 1987, exposure of operators in our facilities to ethylene oxide (EO) has been routinely monitored by determination of N-(2-hydroxyethyl)valine in Hb. Biological monitoring programmes for propylene oxide (PO) and 1,3-butadiene (BD) were developed later. In this review, the methodology and its results are discussed as a tool in human risk assessment of industrial chemicals. Two major advantages of Hb adduct determinations in risk assessment are (1) the qualitative information on the structure of reactive intermediates that may be obtained through the mass spectrometry, which may provide insight in the molecular toxicology of compounds such as BD, and (2) the possibility of reliable determination of exposure over periods of several months with limited number of samples for compounds such as ethylene oxide (EO), propylene oxide (PO) and BD which form stable adducts with Hb. Since good correlations between the airborne concentrations of these chemicals with their respective adducts have been established, Hb adducts can also be used to quantitate airborne exposure which is of paramount importance as exposure assessment is usually one of the weaker parameters in risk assessment.  相似文献   

5.
Outbred 7-week old male Wistar rats were exposed for 21 days to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) via the drinking water and N7-methyl deoxyguanosine 3'-monophosphate (N7-MedGp) levels in DNA from the pyloric mucosa (target tissue) and white blood cells (wbc: non-target tissue) were determined by 32P-postlabelling. Exposure to MNNG resulted in the non-linear, dose-related formation of N7-medGp in both tissues. Adduct levels in the pyloric mucosa were determined to be 1058, 5.4 and 1.1 μmole N7-medGp mole-1 deoxyguanosine 3'-monophosphate (dGp) after exposure to 4.1, 0.62 and 0.006 mg MNNG kg-1 day-1 respectively whereas adduct levels in the wbc DNA were lower at 5.2, 0.52 and 0.68 μmoles N7-medGp mole-1 dGp after exposure to 4.1, 0.62 and 0.062 mg MNNG kg-1 day-1 respectively. In addition, the persistence of N7-medGp was investigated. Loss of adduct occurred rapidly, with a decrease of 87 and 97% respectively in target tissue and wbc DNA by 48 h after cessation of 4.1 mg MNNG kg-1 day-1 exposure; 14 days post-MNNG treatment, however, N7-medGp was still detectable (0.46 μmole N7-medGp mole-1 dGp) in pyloric mucosal DNA. The quantitation of N7-medGp after exposure to low doses of carcinogen, i.e. 0.006 mg MNNG kg-1 day-1, approaching environmentally relevant levels has not been previously reported, and indicates that the 32P-postlabelling assay developed here possesses sufficient sensitivity to quantitate N7- medGp in human DNA arising from environmental exposure to methylating agents.  相似文献   

6.
The methodology applied for DNA adducts in humans has become more reliable in recent years, allowing to detect even background carcinogenic adduct levels in environmentally exposed persons. Particularly, combinations of the various methods now allow the elucidation of specific adduct structures with detection limits of 1 adduct in 108 unmodified nucleotides or even lower. The quantification of polycyclic aromatic hydrocarbon-DNA (PAH-DNA) adducts in human tissues and cells has been achieved with a number of highly sensitive techniques: immunoassays and immunocytochemistry using polyclonal or monoclonal antisera specific for DNA adducts or modified DNA, the 32P-postlabelling assay, and adduct identification using physicochemical instrumentation. The results summarized in this review show that PAH-DNA adducts have been detected in a variety of human tissues, including target organs of PAH- and tobacco-associated cancers. Although dosimetry has not always been precise, a large number of data now clearly show that lowering exposure to carcinogenic PAH results in decreasing PAH-DNA adduct levels. In most studies, however, bulk DNA of a certain tissue or cell type has been examined, and there were relatively few studies in which mutations as a consequence of DNA damage at specific genes have been investigated. Promising as these biomarker studies seem for epidemiology and health surveillance, future biomonitoring and molecular epidemiological studies should be directed to combine several endpoint measurements: i.e., adduct formation (preferably at specific sites), mutational spectra in cancer-relevant genes, and genetic markers of (cancer) susceptibility in a number of cancer-predisposing genes.  相似文献   

7.
8.
The results of efforts to identify and quantify macromolecular adducts of ethylene oxide (ETO), to determine the source and significance of background levels of these adducts, and to generate molecular dosimetry data on these adducts are reviewed. A time-course study was conducted to investigate the formation and persistence of 7-(2-hydroxyethyl)guanine (7-HEG; Fig. 1) in various tissues of rats exposed to ETO by inhalation, providing information necessary for designing investigations on the molecular dosimetry of adducts of ETO. Male F344 rats were exposed 6 h/day for up to 4 weeks (5 days/wk) to 300 ppm ETO by inhalation. Another set of rats was exposed for 4 weeks to 300 ppm ETO, and then killed 1–10 days after cessation of exposures. DNA samples from control and treated rats were analyzed for 7-HEG using neutral thermal hydrolysis, HPLC separation, and fluorescence detection. The adduct was detectable in all tissues of treated rats following 1 day of ETO exposure and increased approximately linearly for 3–5 days before the rate of increase began to level off. Concentrations of 7-HEG were greatest in brain, but the extent of formation was similar in all tissues studied. The adduct disappeared slowly from DNA, with an apparent half-life approx. 7 days. The shape of the formation curve and the in vivo half-life indicate that 7-HEG will approach steady-state concentrations in rat DNA by 28 days of ETO exposure. The similarity in 7-HEG formation in target and nontarget tissues indicates that the tissue specificity for tumor induction is due to factors in addition to DNA-adduct formation.  相似文献   

9.
Ethylene oxide (EO) is an important industrial chemical that is classified as a known human carcinogen (IARC, Group 1). It is also a metabolite of ethylene (ET), a compound that is ubiquitous in the environment and is the most used petrochemical. ET has not produced evidence of cancer in laboratory animals and is "not classifiable as to its carcinogenicity to humans" (IARC, Group 3). The mechanism of carcinogenicity of EO is not well characterized, but is thought to involve the formation of DNA adducts. EO is mutagenic in a variety of in vitro and in vivo systems, whereas ET is not. Apurinic/apyrimidinic sites (AP) that result from chemical or glycosylase-mediated depurination of EO-induced DNA adducts could be an additional mechanism leading to mutations and chromosomal aberrations. This study tested the hypothesis that EO exposure results in the accumulation of AP sites and induces changes in expression of genes for base excision DNA repair (BER). Male Fisher 344 rats were exposed to EO (100 ppm) or ET (40 or 3000 ppm) by inhalation for 1, 3 or 20 days (6h/day, 5 days a week). Animals were sacrificed 2h after exposure for 1, 3 or 20 days as well as 6, 24 and 72 h after a single-day exposure. Experiments were performed with tissues from brain and spleen, target sites for EO-induced carcinogenesis, and liver, a non-target organ. Exposure to EO resulted in time-dependent increases in N7-(2-hydroxyethyl)guanine (7-HEG) in brain, spleen, and liver and N7-(2-hydroxyethyl)valine (7-HEVal) in globin. Ethylene exposure also induced 7-HEG and 7-HEVal, but the numbers of adducts were much lower. No increase in the number of aldehydic DNA lesions, an indicator of AP sites, was detected in any of the tissues between controls and EO-, or ET-exposed animals, regardless of the duration or strength of exposure. EO exposure led to a 3-7-fold decrease in expression of 3-methyladenine-DNA glycosylase (Mpg) in brain and spleen in rats exposed to EO for 1 day. Expression of 8-oxoguanine DNA glycosylase, Mpg, AP endonuclease (Ape), polymerase beta (Pol beta) and alkylguanine methyltransferase were increased by 20-100% in livers of rats exposed to EO for 20 days. The only effects of ET on BER gene expression were observed in brain, where Ape and Pol beta expression were increased by less than 20% after 20 days of exposure to 3000 ppm. These data suggest that DNA damage induced by exposure to EO is repaired without accumulation of AP sites and is associated with biologically insignificant changes in BER gene expression in target organs. We conclude that accumulation of AP sites is not a likely primary mechanism for mutagenicity and carcinogenicity of EO.  相似文献   

10.
Benzene is a widely used chemical and common environmental contaminant. It is carcinogenic in man and animals and is genotoxic in mice, rats, and occupationally exposed humans at doses above one part per million. In order to evaluate the genotoxic effects of prolonged exposures to very low concentrations of benzene, we exposed CD-1 mice to benzene by inhalation for 22 h per day, seven days per week for six weeks at 40, 100 and 1000 parts per billion (ppb). Additional groups were exposed to purified air or were housed in standard plastic cages. The effects of in vivo exposure to benzene were evaluated by using an autoradiographic assay to determine the frequency of mutants which represent mutations at the hypoxanthine-guanine phosphoribosyl transferase (hprt) locus in spleen lymphocytes. At the end of the six weeks exposure period lymphocytes were recovered from the spleens of the mice and cryopreserved prior to assay. Mutant cells were selected on the basis of their ability to incorporate tritiated thymidine in the presence of 6-thioguanine. The weighted mean variant (mutant) frequencies (Vf) of female mice (three per group) were 7.2 x 10(-6) at 0 ppb; 29.2 x 10(-6) at 40 ppb; 62.5 x 10(-6) at 100 ppb and 25.0 x 10(-6) at 1000 ppb. The Vf of unexposed mice housed in standard cages was 13.2 x 10(-6). In male mice the same pattern of response was observed, but the increases in Vf in response to benzene were not as great. In both sexes of mice, the increases at 40 and 100 ppb were significantly greater than at 0 ppb (P less than 0.05). The increase in Vf with exposure to 100 ppb and the decline at 1000 ppb parallel the results observed for chromosome damage in spleen lymphocytes from the same animals (Au et al., Mutation Res., 260 (1991) 219-224). These results indicate that sub-chronic exposure to benzene at levels below the current Occupational Safety and Health Administration Permitted Exposure Limit may induce gene mutations in lymphocytes in mice.  相似文献   

11.
Male (101 × C3H)F1 mice were exposed in an inhalation chamber to ethylene oxide (EtO) in air at a concentration of (generally) 255 ppm. After accumulating total exposures of 101 000 or 150 000 ppm.h in 16–23 weeks, the males were mated to T-stock females for a standard specific-locus mutation-rate study in which 71 387 offspring were observed. The spermatogonial stem-cell mutation rate at each exposure level, as well as the combined result, does not differ significantly from the historical control frequency. At the lower and higher exposure levels, the results rule out (at the 5% significance level) an induced frequency that is, respectively, 0.97 and 6.33 times the spontaneous rate; the combined results rule out a multiple of 1.64.

The relationship between mouse spermatogonial stem-cell mutation rates and EtO-induced testis ethylations was compared with the relationship between Drosophila post-stem-cell mutation rates and sperm ethylations (Lee, 1980). The comparison does not rule out equal mutability per ethylation; but it cannot prove parallelism. An assessment of the mouse-Drosophila relationship will require a more efficient alkylator than EtO and the use of comparable germ-cell stages.

More meaningful conclusions may be drawn by utilizing the data for direct estimation of human risk by expressing the induced mutation frequency that is ruled out (at the 5% significance level) as a multiple of control rate and extrapolating to human exposure levels. The probable absence of major stem-cell killing (and thus, possibly, cell selection) by EtO indicates that such extrapolation probably does not produce an underestimate. For a human exposure concentration of 0.1 ppm on working days during the reproductive lifespan, the mouse experimental results rule out (at the 5% significance level) an induced spermatogonial stem-cell gene mutation rate greater than 8% of the spontaneous rate; for 1.0 ppm, they rule out an induced rate roughly equal to the spontaneous rate. The induced rate for any one poststem-cell stage would have to be about 3 orders of magnitude higher than that for stem cells to constitute an equivalent risk.  相似文献   


12.
13.
Young adult male Lewis rats were exposed to ethylene oxide (EO) via single intraperitoneal (i.p.) injections (10-80 mg kg-1) or drinking water (4 weeks at concentrations of 2, 5, and 10 mM) or inhalation (50, 100 or 200 ppm for 4 weeks, 5 days week-1, 6 h day-1) to measure induction of HPRT mutations in lymphocytes from spleen by means of a cloning assay. N-ethyl-N-nitrosourea (ENU) and N-(2-hydroxyethyl)-N-nitrosourea (HOENU) were used as positive controls. Levels of N-(2-hydroxyethyl)valine (HOEtVal) adducts in haemoglobin (expressed in nmol g-1 globin) were measured to determine blood doses of EO (mmol kg-1 h, mM h). Blood doses were used as a common denominator for comparison of mutagenic effects of EO administered via the three routes. The mean HPRT mutant frequency (MF) of the historical control was 4.3 x 10(-6). Maximal mean MFs for ENU (100 mg kg-1) and HOENU (75 mg kg-1) were 243 x 10(-6) and 93 x 10(-6), respectively. In two independent experiments, EO injections led to a statistically significant dose-dependent induction of mutations, with a maximal increase in MF by 2.3-fold over the background. Administration of EO via drinking water gave statistically significant increases of MFs in two independent experiments. Effects were, at most, 2.5-fold above the concurrent control. Finally, inhalation exposure also caused a statistically significant maximal increase in MF by 1.4-fold over the background. Plotting of mutagenicity data (i.e., selected data pertaining to expression times where maximal mutagenic effects were found) for the three exposure routes against blood dose as common denominator indicated that, at equal blood doses, acute i.p. exposure led to higher observed MFs than drinking water treatment, which was more mutagenic than exposure via inhalation. In the injection experiments, there was evidence for a saturation of detoxification processes at the highest doses. This was not seen after subchronic administration of EO. The resulting HPRT mutagenicity data suggest that EO is a relatively weak mutagen in T-lymphocytes of rats following exposure(s) by i.p. injection, in drinking water or by inhalation.  相似文献   

14.
The use of DNA adduct measurement as a biomarker of exposure to polycyclic aromatic hydrocarbons (PAHs) is now well established in ecotoxicology. In particular, DNA adduct levels in aquatic organisms has been found to produce a better correlation with PAH exposure than PAH concentrations in organisms. DNA adducts levels are most commonly determined using the 32P-postlabelling assay which measures total aromatic adducts. The relationship between relative DNA adduct formation and carcinogenicity has been investigated for a number of carcinogenic and non-carcinogenic PAHs using an in vitro system. Our results demonstrate that relatively high levels of DNA adducts can be produced by some non-carcinogenic PAHs, while other non-carcinogenic compounds do not produce detectable adducts. In addition, it has been shown that all carcinogenic PAHs investigated produce DNAadducts and that a relationship exists between relative adduct formation and carcinogenic potency. An investigation of adduct levels in fish liver and crustacean hepatopancreas in Oxley Ck, Brisbane has shown that higher than expected DNA adduct levels were correlated with the presence of carcinogenic and non-carcinogenic PAHs with high relative adduct forming potential.  相似文献   

15.
The use of DNA adduct measurement as a biomarker of exposure to polycyclic aromatic hydrocarbons (PAHs) is now well established in ecotoxicology. In particular, DNA adduct levels in aquatic organisms has been found to produce a better correlation with PAH exposure than PAH concentrations in organisms. DNA adducts levels are most commonly determined using the 32P-postlabelling assay which measures total aromatic adducts. The relationship between relative DNA adduct formation and carcinogenicity has been investigated for a number of carcinogenic and non-carcinogenic PAHs using an in vitro system. Our results demonstrate that relatively high levels of DNA adducts can be produced by some non-carcinogenic PAHs, while other non-carcinogenic compounds do not produce detectable adducts. In addition, it has been shown that all carcinogenic PAHs investigated produce DNAadducts and that a relationship exists between relative adduct formation and carcinogenic potency. An investigation of adduct levels in fish liver and crustacean hepatopancreas in Oxley Ck, Brisbane has shown that higher than expected DNA adduct levels were correlated with the presence of carcinogenic and non-carcinogenic PAHs with high relative adduct forming potential.  相似文献   

16.
Male CBA mice were exposed to propene, unlabelled or 14C-labelled, by inhalation, or to 14C-labelled propylene oxide by intraperitoneal injection. 2-Hydroxypropyl adducts to guanine-N-7 in DNA of various organs and to N-terminal valine and histidine-N pi in hemoglobin were measured. The adduct levels observed show that propylene oxide is the major primary metabolic product of propene. A direct comparison of propylene oxide with the homologous compound ethylene oxide on the basis of adduct levels introduced (in DNA and in hemoglobin) at equimolar injected amounts, shows that propylene oxide is 6-10 times less effective than ethylene oxide.  相似文献   

17.
The causative role of polycyclic aromatic hydrocarbons (PAH) in human carcinogenesis is undisputed. Measurements of PAH-DNA adduct levels in easily accessible white blood cells therefore represent useful early endpoints in exposure intervention or chemoprevention studies. The successful applicability of DNA adducts as early endpoints depends on several criteria: i. adduct levels in easily accessible surrogate tissues should reflect adduct levels in target-tissues, ii. toxicokinetics and the temporal relevance should be properly defined. iii. sources of interand intra-individual variability must be known and controllable, and finally iv. adduct analyses must have advantages as compared to other markers of PAHexposure. In general, higher DNA adduct levels or a higher proportion of subjects with detectable DNA adduct levels were found in exposed individuals as compared with nonexposed subjects, but saturation may occur at high exposures. Furthermore, DNA adduct levels varied according to changes in exposure, for example smoking cessation resulted in lower DNA adduct levels and adduct levels paralleled seasonal variations of air-pollution. Intraindividual variation during continuous exposure was low over a short period of time (weeks), but varied significantly when longer time periods (months) were investigated. Inter-individual variation is currently only partly explained by genetic polymorphisms in genes involved in PAH-metabolism and deserves further investigation. DNA adduct measurements may have three advantages over traditional exposure assessment: i. they can smooth the extreme variability in exposure which is typical for environmental toxicants and may integrate exposure over a longer period of time. Therefore, DNA adduct assessment may reduce the monitoring effort. ii. biological monitoring of DNA adducts accounts for all exposure routes. iii. DNA adducts may account for inter-individual differences in uptake, elimination, distribution, metabolism and repair amongst exposed individuals. In conclusion, there is now a sufficiently large scientific basis to justify the application of DNA adduct measurements as biomarkers in exposure assessment and intervention studies. Their use in risk-assessment, however, requires further investigation.  相似文献   

18.
Assessing the ecological risks of toxic chemicals is most often based on individual-level responses such as survival, reproduction or growth. Such an approach raises the following questions with regard to translating these measured effects into likely impacts on natural populations. (i) To what extent do individual-level variables underestimate or overestimate population-level responses? (ii) How do toxicant-caused changes in individual-level variables translate into changes in population dynamics for species with different life cycles? (iii) To what extent are these relationships complicated by population-density effects? These issues go to the heart of the ecological relevance of ecotoxicology and we have addressed them using the population growth rate as an integrating concept. Our analysis indicates that although the most sensitive individual-level variables are likely to be equally or more sensitive to increasing concentrations of toxic chemicals than population growth rate, they are difficult to identify a priori and, even if they could be identified, integrating impacts on key life-cycle variables via population growth rate analysis is nevertheless a more robust approach for assessing the ecological risks of chemicals. Populations living under density-dependent control may respond differently to toxic chemicals than exponentially growing populations, and greater care needs to be given to incorporating realistic density conditions (either experimentally or by simulation) into ecotoxicological test designs. It is impractical to expect full life-table studies, which record changes in survival, fecundity and development at defined intervals through the life cycle of organisms under specified conditions, for all relevant species, so we argue that population growth rate analysis should be used to provide guidance for a more pragmatic and ecologically sound approach to ecological risk assessment.  相似文献   

19.
Formaldehyde (FA) is a mutagen that, at high concentrations and long durations, has been reported to cause nasal cancer in rats and in some humans. The level of FA-induced modified DNA in nasal cells should serve as a biomarker of FA exposure and effect. In the present study, a high-performance liquid chromatography (HPLC)-ultraviolet (UV) method at 254 nm was developed and optimized to detect and quantify hydroxymethyldeoxynucleosides after the isolated DNA in exposed human nasal epithelial cells (HNEC) was enzymically digested. Normal and modified deoxynucleosides were successfully resolved from one another and from tissue and enzyme blank interferences. The viability of HNEC exposed to FA in solution for 24 h decreased, and there was a linear dose response between % nonviability and FA dose from 10 to 500 microg/mL. Amounts of 18.0 +/- 1.5 pmol N6-dA and 12.0 +/- 1.2 pmol N2-dG derivatives were determined in a 10 microL injection after 1.4 x 10(7) HNEC (106 microg DNA) were exposed to 500 microg/mL in solution. The respective tissue concentrations in pmol hydroxymethyldeoxynucleoside/mg DNA were 170 +/- 14 and 113 +/- 11. The lower quantifiable limits were about 97 and 88 pmol/mg DNA, respectively. Diffusive exposure of HNEC to air FA up to 100 ppm (v/v) for 24 h did not produce quantifiable hydroxymethylnucleosides. FA-modified deoxynucleosides may be useful biomarkers for FA exposure in biological monitoring samples taken by nasal lavage or brush biopsy.  相似文献   

20.
1,3-Butadiene (BD) is a major industrial chemical and a rodent carcinogen, with mice being much more susceptible than rats. Oxidative metabolism of BD, leading to the DNA-reactive epoxides 1,2-epoxy-3-butene (BMO), 1,2-epoxy-3,4-butanediol (EBD) and 1,2:3,4-diepoxybutane (DEB), is greater in mice than rats. In the present study the DNA adduct profiles in liver and lungs of rats and mice were determined following exposure to BMO and to BD since these profiles may provide qualitative and quantitative information on the DNA-reactive metabolites in target tissues. Adducts detected in vivo were identified by comparison with the products formed from the reaction of the individual epoxides with 2'-deoxyguanosine (dG). In rats and mice exposed to [4-14C]-BMO (1-50 mg/kg, i.p.), DNA adduct profiles were similar in liver and lung with N7-(2-hydroxy-3-butenyl)guanine (G1) and N7-(1-(hydroxymethyl)-2-propenyl)guanine (G2) as major adducts and N7-2,3,4-trihydroxybutylguanine (G4) as minor adduct. In rats and mice exposed to 200 ppm [2,3-14C]-BD by nose-only inhalation for 6 h, G4 was the major adduct in liver, lung and testes while G1 and G2 were only minor adducts. Another N7-trihydroxybutylguanine adduct (G3), which could not unambiguously be identified but is either another isomer of N7-2,3,4-trihydroxybutylguanine or, more likely, N7-(1-hydroxymethyl-2,3-dihydroxypropyl)guanine, was present at low concentrations in liver and lung DNA of mice, but absent in rats. The evidence indicates that the major DNA adduct formed in liver, lung and testes following in vivo exposure to BD is G4, which is formed from EBD, and not from DEB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号