首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To analyze transduction mechanisms in human lymphocyte killing, intracellular Ca2+ levels were increased by ionophore A23187 treatment and protein kinase C activated by phorbol ester 12-O-tetradecanoylphorbol-acetate (TPA). Drugs were tested either alone or in combinations on effector cells active in natural, antibody-dependent, and lectin-dependent killing. TPA suppressed killing in all systems at 100 ng/ml whereas A23187 was only suppressive for NK killing at concentrations higher than 0.1 microM. TPA combined with A23187, above 10 ng/ml and 0.5 microM, respectively, induced killing of all tested target cell lines with a slower kinetic than NK killing of K562 cells. Drug-induced killing did not increase optimal lectin and antibody-dependent killing and was demonstrated most easily on NK-resistant target cell lines. Fractionation of effector lymphocytes into NK cell-depleted, T3-positive and NK cell-enriched, T3-negative cells demonstrated that similar levels of TPA/A23187-dependent killing could be induced in both fractions. It is concluded that TPA/A23187 induce normal lymphocytes to nonselective killing of different target cells in similarity to the triggering effect these drugs have in many other cell systems. Whether the induced killing is representative of NK killing is discussed in relation to the presence of other potential effector cells and effector molecules in peripheral blood lymphocytes.  相似文献   

2.
3.
NKp30 (NCR3, CD337) is a natural cytotoxicity receptor, expressed on subsets of human peripheral blood NK cells, involved in NK cell killing of tumor cells and immature dendritic cells. The cellular ligand for NKp30 has remained elusive, although evidence that membrane-associated heparan sulfate (HS) proteoglycans are involved in the recognition of cellular targets by NKp30 was recently reported. The data presented in this report show conclusively that HS glycosaminoglycans (GAG) are not ligands for NKp30. We show that removing HS completely from the cell surface of human 293-EBNA cells with mammalian heparanase does not affect binding of rNKp30/human IgG1 Fc chimera complexes or binding of multimeric liposome-rNKp30 complexes. Removing HS from 293-EBNA cells, culture-generated DC, MM-170 malignant melanoma cells, or HeLa cells does not affect the NKp30-dependent killing of these cells by NK cells. We show further that the GAG-deficient hamster pgsA-745 cells that lack HS and the GAG-expressing parent CHO-K1 cells are both killed by NK cells, with killing of both cell lines inhibited to the same extent by anti-NKp30 mAb. From these results we conclude that HS GAG are not ligands for NKp30, leaving open the question as to the nature of the cellular ligand for this important NK cell activation receptor.  相似文献   

4.
The activation of human peripheral blood mononuclear cells (PBM) in culture leads to the generation of nonspecific killer cells. These cells, termed activated lymphocyte killer (ALK) cells, can kill fresh tumor cells and tumor cell lines, in addition to the natural killer (NK) cell sensitive target K562. ALK cells have features in common with both T and NK cells, but their nature and origin are unknown. In the present study, it is shown that ALK cells are in fact heterogeneous and can be generated from both large granular lymphocytes with the same phenotype as NK cells and from T cells. Cell populations enriched for NK cells, when cultured with lymphokines, rapidly acquired a T cell phenotype, enhanced cytolytic activity against K562, and the ability to lyse NK-insensitive target cells such as a melanoma cell line LiBr; these ALK cells were described as NK-like cells. On the other hand, of the cloned cells derived from PBM stimulated with irradiated B lymphoblasts and grown in lymphokines, the major proportion of cytolytic T cells (CTC) able to kill the specific stimulator lymphoblasts were also found to kill LiBr but not K562 cells. These ALK cells, which were derived from the same precursors as CTC, were designated anomalous killer (AK) cells. Consistent with this, the presence of the pan T monoclonal antibody UCHT1 from the beginning of mixed cell cultures inhibited the generation of CTC and of the AK-type of ALK cell, which killed melanoma cells, but not the NK type, which killed K562 targets. By contrast, at the effector cell level, the antibodies UCHT1 and OKT8 only blocked specific killing by CTC but did not block the killing of LiBr or of K562 targets by ALK cells. However, at the effector cell level there was additional evidence for the heterogeneity of ALK cells. Thus, monoclonal antibody 9.1C3, which blocks killing by freshly isolated NK cells, also blocked the killing of K562 targets by NK-like cells, but did not block B lymphoblast killing by CTC or melanoma cell killing by AK cells. It is concluded that after mixed lymphocyte culture, the majority of ALK cells measured by the killing of melanoma target cells arise from the same precursors and are under the same influences as classical CTC (AK cells), whereas cells killing K562 targets are derived from NK cells (NK-like cells). Once generated, the AK cells have a different mechanism of killing from both classical CTC and from NK and NK-like cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Natural killer cells mediate spontaneously secretory/necrotic killing against rare leukemia cell lines and a nonsecretory/apoptotic killing against a large variety of tumor cell lines. The molecules involved in nonsecretory/apoptotic killing are largely undefined. In the present study, freshly isolated, nonactivated, human NK cells were shown to express TNF, lymphotoxin (LT)-alpha, LT-beta, Fas ligand (L), CD27L, CD30L, OX40L, 4-1BBL, and TNF-related apoptosis-inducing ligand (TRAIL), but not CD40L or nerve growth factor. Complementary receptors were demonstrated to be expressed on the cell surface of solid tumor cell lines susceptible to apoptotic killing mediated by NK cells. Individually applied, antagonists of TNF, LT-alpha1beta2, or FasL fully inhibited NK cell-mediated apoptotic killing of tumor cells. On the other hand, recombinant TNF, LT-alpha1beta2, or FasL applied individually or as pairs were not cytotoxic. In contrast, a mixture of the three ligands mediated significant apoptosis in tumor cells. These findings demonstrate that human NK cells constitutively express several of the TNF family ligands and induce apoptosis in tumor cells by simultaneous engagement of at least three of these cytotoxic molecules.  相似文献   

6.
Bortezomib is a proteasome inhibitor that has direct antitumor effects. We and others have previously demonstrated that bortezomib could also sensitize tumor cells to killing via the death ligand, TRAIL. NK cells represent a potent antitumor effector cell. Therefore, we investigated whether bortezomib could sensitize tumor cells to NK cell-mediated killing. Preincubation of tumor cells with bortezomib had no effect on short-term NK cell killing or purified granule killing assays. Using a 24-h lysis assay, increases in tumor killing was only observed using perforin-deficient NK cells, and this increased killing was found to be dependent on both TRAIL and FasL, correlating with an increase in tumor Fas and DR5 expression. Long-term tumor outgrowth assays allowed for the detection of this increased tumor killing by activated NK cells following bortezomib treatment of the tumor. In a tumor purging assay, in which tumor:bone marrow cell mixtures were placed into lethally irradiated mice, only treatment of these mixtures with a combination of NK cells with bortezomib resulted in significant tumor-free survival of the recipients. These results demonstrate that bortezomib treatment can sensitize tumor cells to cellular effector pathways. These results suggest that the combination of proteasome inhibition with immune therapy may result in increased antitumor efficacy.  相似文献   

7.
It has been previously shown that unstimulated NK cells cannot preferentially lyse adenovirus serotypes 2 and 5-infected human cells. In this study, the ability of IFN to promote the selective NK cell-mediated lysis of adenovirus-infected human cells was determined. The relationship between target cell susceptibility to NK cell-mediated killing and class I Ag expression was also analyzed through the use of adenovirus serotype 2 and 5 mutants that do not make the adenovirus early region 3 19-kDa class I binding protein. IFN induced the selective lysis of adenovirus serotype 2 and 5-infected human cells by activating NK cells (IFN-alpha) and protecting uninfected, but not adenovirus-infected cells, from NK cell-mediated lysis (IFN-gamma). IFN-gamma increased the expression of class I Ag on the surface of cells infected with the adenovirus early region 3 deletion mutants, dl327 or dl801, to a level equal to or greater than that expressed on uninfected cells. Despite the increased expression of class I Ag, IFN-gamma could not protect these adenovirus-infected cells from NK cell-mediated lysis. Thus, dl327 or dl801 infection prevented IFN-gamma's induction of cytolytic resistance to NK cell-mediated killing but left IFN-gamma's induction of class I Ag intact. Surface class I Ag levels were substantially higher on IFN-gamma-treated, dl327-, and dl801-infected cells in comparison to cells infected with wild type adenovirus serotype 5. Again, higher target cell levels of class I Ag did not correlate with increased resistance to NK cell-mediated lysis because there was equivalent NK cell-mediated killing of IFN-gamma-treated adenovirus serotype 5-, dl327-, or dl801-infected cells. Thus, IFN-gamma only protects uninfected cells from NK cell-mediated killing, irrespective of target class I Ag levels, and thereby concentrates NK lytic activity on just adenovirus-infected cells. These data demonstrate that IFN-gamma's ability to protect target cells from NK cell-mediated cytolysis is unrelated to IFN-gamma's induction of surface class I MHC Ag.  相似文献   

8.
Natural killer cells recognize and induce apoptosis in foreign, transformed or virus-infected cells through the release of perforin and granzymes from secretory lysosomes. Clinically, NK-cell mediated killing is a major limitation to successful allo- and xenotransplantation. The molecular mechanisms that regulate the fusion of granzyme B-containing secretory lysosomes to the plasma membrane in activated NK cells, prior to target cell killing, are not fully understood. Using the NK cell line YT-Indy as a model, we have investigated the expression of SNAP REceptors (SNAREs), both target (t-) and vesicular (v-) SNAREs, and their function in granzyme B-mediated target cell killing. Our data showed that YT-Indy cells express VAMP-7 and SNAP-23, but not VAMP-2. VAMP-7 was associated with granzyme B-containing lysosomal granules. Using VAMP-7 small interfering RNA (siRNA), we successfully knocked down the expression of VAMP-7 protein in YT-Indy to less than 10% of untreated cells in 24 h. VAMP7-deficient YT-Indy cells activated via co-culture with Jurkat cells released <1 ng/mL of granzyme B, compared to 1.5-2.5 μg/mL from controls. Using Jurkat cells as targets, we showed a 7-fold reduction in NK cell-mediated killing by VAMP-7 deficient YT-Indy cells. Our results show that VAMP-7 is a crucial component of granzyme B release and target cell killing in the NK cell line YT-Indy. Thus, targeting VAMP-7 expression specifically with siRNA, following transplantation, may be a viable strategy for preventing NK cell-mediated transplant rejection, in vivo.  相似文献   

9.
We here demonstrate that NK cell activity by human peripheral blood mononuclear cells (PBMC) against K562 or MOLT-4 target cells is rapidly and reversibly inhibited by two agents that inhibit the lipoxygenation of fatty acids, BW755C and nordihydroguaiaretic acid (NDGA). Natural killing by nonadherent PBMC was similarly inhibited by both agents, indicating that monocytes were not required for the effect. The inhibition of natural killing was not seen with indomethacin at concentrations that inhibit prostaglandin synthesis but not the lipoxygenation of arachidonic acid. Moreover, indomethacin did not alter inhibition by either BW755C or NDGA. Thus, suppression of natural killing by these agents was not mediated by the effects on prostaglandin synthesis; neither agent inhibited target cell binding. These results suggest that products of lipoxygenation are required for target cell lysis by human NK cells.  相似文献   

10.
Pretreatment of normal human lymphocytes with monoclonal IgG against the NK cell-FcR (IgG) or the T3 complex was found to potentiate killing of most NK sensitive target cells with the exception of T-cell derived cells. Anti-FcR IgM monoclonals were suppressive for all target cells. IgG anti-FcR mediated potentiation required minute amounts of antibody but was also seen at high anti-FcR concentrations that modulated FcR activity. Potentiated and FcR modulated cells retained anti-FcR IgG on the membrane and conjugated normally to target cells. Anti-FcR potentiation blocked antibody-dependent killing but did not influence lectin-dependent killing, with anti-T3 the opposed effect was seen. Combined anti-FcR and anti-T3 treatment resulted in decreased potentiation. The results suggest that the NK cell-FcR may be activated during normal NK cell killing (without the addition of antibody) as suggested for FcR in B cell triggering.  相似文献   

11.
Heterogeneity of human natural killer cell populations.   总被引:1,自引:0,他引:1  
Natural killing (NK) in human donors was determined by the ability of peripheral blood subpopulations to lyse the myeloid target, K562, in a 2 to 4 hr 51Cr release assay. The most active cell was a non-T cell which passed through nylon columns (representing 10 to 25% of column passed cells). A second column passed cell population, with characteristics of T lymphocytes (75 to 90% of column passed cells), was also capable of mediating natural killing. Non-T cells which were retained by the nylon columns (45 to 55% of adherent cells) lacked NK activity. However, nylon adherent T cells (45 to 55% of adherent cells) were consistently active in NK assays, illustrating an important subset of NK effector cell often overlooked. Both column passed and adherent T cells were further separated according to their ability to bind IgG or IgM immune complexes, showing that those mediating NK have receptors for IgG (Tγ+) but not for IgM (Tμ+).  相似文献   

12.
Using the whole-cell variation of the patch-clamp technique, we have found a voltage-dependent K+ current in human natural killer (NK) cells. This K+ current is reduced in a dose-dependent manner by a variety of ion-channel blockers (verapamil, quinidine, 4-aminopyridine, Cd2+) at concentrations comparable to those that inhibit natural killing. Pretreatment of target cells with quinidine or verapamil did not significantly reduce their sensitivity to killing, whereas substantial inhibition of killing was observed after pretreatment of effector cells. Both verapamil and quinidine reduced the proportion of effector-target cell conjugates, suggesting that K channels play a role in the "binding" phase of the killing process. By adding EDTA or channel blockers as various times in a Ca-pulse assay system, we have also delineated a blocker-sensitive phase of bound conjugates that strictly corresponds with the Ca-dependent "programming" stage of killing. In contrast, the killer cell-independent stage, which is Ca2+ independent, apparently does not require functioning K channels. Verapamil and quinidine do not affect target cell sensitivity to the putative soluble mediator of natural killing, natural killer cytotoxic factor (NKCF), but inhibit release of NKCF from NK cells. Thus, the data suggest that K channels in NK cells play essential roles in the natural killing process that include events in the "programming-for-lysis" phase leading to release of NKCF.  相似文献   

13.
阐明躯体性应激和心理性应激降低NK细胞杀伤活性的机制及异同。应用Communication box系统分别使小鼠连续负荷躯体性应激和心理性应激后,以~(51)Cr释放法检测鼠脾NK、LAK细胞的杀伤活性;以流式细胞术检测鼠脾细胞、LAK细胞中NK细胞受体的表达水平。结果表明,躯体性应激和心理性应激均可降低鼠脾NK、LAK细胞的杀伤活性,但对脾细胞、LAK细胞中NK细胞受体表达的影响却不同,提示躯体性应激和心理性应激影响NK细胞功能的机制不同。  相似文献   

14.
Natural killer (NK) cells belong to an important lymphocyte population that eliminates transformed cells and invading pathogens without any prior sensitization. NK cells possess not only natural killing activity against non-self and altered-self cells but also exhibit cytokine production and antibody-dependent cell-mediated cytotoxicity (ADCC). Despite their important roles in the innate immune system, little is known about the details of NK cell biology. In spite of that several murine NK cell clones have been established, studies have mainly focused on their natural killing activity but not their cytokine production or ADCC. In this study, we established and characterized eight novel, immortalized murine NK cell clones derived from a temperature-sensitive SV40 large-T antigen transgenic mouse. These NK cell lines continuously proliferated for more than 30 months in a culture medium supplemented with interleukin 2. All cell lines contained azurophilic granules in the cytoplasm, and a few clones retained the NK cell functions, such as natural killing activity, cytokine production, and ADCC. In addition, one clone could serve as a host for transient as well as stable gene transfection. Taken together, these findings indicate that the cell lines could constitute useful tools for detailed analysis of murine NK cell biology.  相似文献   

15.
The inhibition of NK cell killing is mainly mediated via the interaction of NK inhibitory receptors with MHC class I proteins. In addition, we have previously demonstrated that NK cells are inhibited in a class I MHC-independent manner via homophilic carcinoembryonic Ag (CEA) cell adhesion molecules (CEACAM1)-CEACAM1 and heterophilic CEACAM1-CEA interactions. However, the cross-talk between immune effector cells and their target cells is not limited to cell interactions per se, but also involves a specific exchange of proteins. The reasons for these molecular exchanges and the functional outcome of this phenomenon are still mostly unknown. In this study, we show that NK cells rapidly and specifically acquire CEA molecules from target cells. We evaluated the role of cytotoxicity in the acquisition of CEA and demonstrated it to be mostly killing independent. We further demonstrate that CEA transfer requires a specific interaction with an unknown putative NK cell receptor and that carbohydrates are probably involved in CEA recognition and acquisition by NK cells. Functionally, the killing of bulk NK cultures was inhibited by CEA-expressing cells, suggesting that this putative receptor is an inhibitory receptor.  相似文献   

16.
Pseudomonas aeruginosa is an opportunistic pathogen that often infects individuals with the genetic disease cystic fibrosis, and contributes to airway blockage and loss of lung function. Natural killer (NK) cells are cytotoxic, granular lymphocytes that are part of the innate immune system. NK cell secretory granules contain the cytolytic proteins granulysin, perforin and granzymes. In addition to their cytotoxic effects on cancer and virally infected cells, NK cells have been shown to play a role in an innate defense against microbes, including bacteria. However, it is not known if NK cells kill extracellular P. aeruginosa or how bacterial killing might occur at the molecular level. Here we show that NK cells directly kill extracellular P. aeruginosa using NK effector molecules. Live cell imaging of a co-culture of YT cells, a human NK cell line, and GFP-expressing P. aeruginosa in the presence of the viability dye propidium iodide demonstrated that YT cell killing of P. aeruginosa is contact-dependent. CRISPR knockout of granulysin or perforin in YT cells had no significant effect on YT cell killing of P. aeruginosa. Pre-treatment of YT and NK cells with the serine protease inhibitor 3,4-dichloroisocoumarin (DCI) to inhibit all granzymes, resulted in an inhibition of killing. Although singular CRISPR knockout of granzyme B or H had no effect, knockout of both in YT cells completely abrogated killing of P. aeruginosa in comparison to wild type YT cell controls. Nitrocefin assays suggest that the bacterial membrane is damaged. Inhibition of killing by antioxidants suggest that ROS are required for the bactericidal mode-of-action. Taken together, these results identify that NK cells kill P. aeruginosa through a membrane damaging, contact-dependent process that requires granzyme induced ROS production, and moreover, that granzyme B and H are redundant in this killing process.  相似文献   

17.
Over the last decade, several studies have extensively reported that activated natural killer (NK) cells can kill autologous immature dendritic cells (DCs) in vitro, whereas they spare fully activated DCs. This led to the proposal that activated NK cells might select a more immunogenic subset of DCs during a protective immune response. However, there is no demonstration that autologous DC killing by NK cells is an event occurring in vivo and, consequently, the functional relevance of this killing remains elusive. Here we report that a significant decrease of CD11c(+) DCs was observed in draining lymph nodes of mice inoculated with MHC-devoid cells as NK cell targets able to induce NK cell activation. This in vivo DC editing by NK cells was perforin-dependent and it was functionally relevant, since residual lymph node DCs displayed an improved capability to induce T cell proliferation. In addition, in a model of anti-cancer vaccination, the administration of MHC-devoid cells together with tumor cells increased the number of tumor-specific CTLs and resulted in a significant increase in survival of mice upon challenge with a lethal dose of tumor cells. Depletion of NK cells or the use of perforin knockout mice strongly decreased the tumor-specific CTL expansion and its protective role against tumor cell challenge. As a whole, our data support the hypothesis that NK cell-mediated DC killing takes place in vivo and is able to promote expansion of cancer-specific CTLs. Our results also indicate that cancer vaccines could be improved by strategies aimed at activating NK cells.  相似文献   

18.
In this study we have addressed the question of how activation and inhibition of human NK cells is regulated by the expression level of MHC class I protein on target cells. Using target cell transfectants sorted to stably express different levels of the MHC class I protein HLA-Cw6, we show that induction of degranulation and that of IFN-γ secretion are not correlated. In contrast, the inhibition of these two processes by MHC class-I occurs at the same level of class I MHC protein. Primary human NK cell clones were found to differ in the amount of target MHC class I protein required for their inhibition, rather than in their maximum killing capacity. Importantly, we show that KIR2DL1 expression determines the thresholds (in terms of MHC I protein levels) required for NK cell inhibition, while the expression of other receptors such as LIR1 is less important. Furthermore, using mathematical models to explore the dynamics of target cell killing, we found that the observed delay in target cell killing is exhibited by a model in which NK cells require some activation or priming, such that each cell can lyse a target cell only after being activated by a first encounter with the same or a different target cell, but not by models which lack this feature.  相似文献   

19.
Conjugation between human NK cells and susceptible target cells (K562 and Jurkat) leads to breakdown of inositol lipids in the effector cells but not when conjugated with resistant target cells. Extracellular Ca2+ is required for this activation. Sphingosine inhibits NK killing in both normal and IL-2-activated NK cells. Phorbol esters, TPA, and PDBU enhanced NK killing at low concentrations, where 4-alpha-PDIDE did not. The diacylglycerol derivative OAG increased NK cell killing and activated PKC from human lymphocytes. These results strongly suggest that phosphoinositide breakdown and activation of PKC is involved in NK killing.  相似文献   

20.
Fragmentation of YAC-1 target cell DNA during cytolysis mediated by mouse natural killer (NK) cells and cytotoxic T lymphocytes (CTL) was compared. Cleavage of nuclear chromatin was always an extensive and early event in CTL-mediated cytolysis, whereas with NK cell-mediated killing the degree of DNA fragmentation showed an unexpected relationship to the effector:target (E:T) ratio. At low NK:YAC-1 ratios, DNA fragmentation and 51Cr release were equivalent and increased proportionately until a ratio of about 50:1 was reached; at higher ratios, 51Cr release increased as expected but DNA fragmentation decreased dramatically. Comparison of time course data at E:T ratios producing similar rates of 51Cr release showed that the target cell DNA fragmentation observed in NK killing was not nearly as rapid nor as extensive as that observed with CTL effectors. These results suggest that NK cells induce target cell injury via two different mechanisms. One mechanism would involve lysis mediated by cell-to-cell contact, while the other may induce DNA fragmentation via a soluble mediator. In support of this notion, cell-free culture supernatants containing NK cytotoxic factor (NKCF) induced DNA fragmentation in YAC-1 cells. The DNA fragments induced by NK cells and NKCF-containing supernatants consisted of oligonucleosomes indistinguishable from those induced by CTL. The results presented here show distinct differences in target cell DNA fragmentation induced by CTL and NK cells, and suggest that these two effectors use different mechanisms to achieve the same end. CTL seem to induce DNA fragmentation in their targets by direct signaling, whereas NK cells may do so by means of a soluble factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号