首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of initial inoculum density of the antagonistic bacterial strains Pseudomonas fluorescens B5 and Pseudomonas corrugata 2140 (103 to 108 CFU per seed pellet) on sugar beet seedling colonisation, in situ bioluminescence and antagonistic activity towards Pythium ultimum was investigated. Populations of the bacteria colonising sugar beet root systems approached an apparent carrying capacity of 105 to 106 CFU per plant after 12 d growth, irrespective of inoculum density. This meant an up to 320-fold population increase at low inoculum densities and a decrease at high densities. Population densities of both bacteria and their corresponding in situ bioluminescence (resulting from luciferase enzyme expression from the inserted luxAB genes) reached highest levels in the hypocotyl region and in the upper root region 0–20 mm below seed level (104–106 CFU/cm section, 101–103 RLU/cm section) and decreased with root depth. In situ bioluminescence, which indicates physiological activity, was measurable at lowest antagonist initial inoculum density (103 CFU per seed pellet) and did not increase significantly with increasing inoculum density. Bioluminescence was also significantly correlated with population density. For Pseudomonas fluorescens B5, the total population size per plant and downward colonisation of the root (below 40 mm depth) increased significantly with antagonist inoculum density applied to the seeds. For Pseudomonas corrugata 2140, no significant influence of initial inoculum density on root colonisation was observable. Survival and dry weight of sugar beet seedlings in Pythium infested soil increased significantly with increasing inoculum density of Pseudomonas fluorescens B5, whereas for Pseudomonas corrugata 2140, initial densities of 104 to 106 CFU per seed resulted in maximal survival of plants.  相似文献   

2.
Idli, a traditional cereal/legume-based naturally fermented steamed product with soft and spongy texture is highly popular and widely consumed in India. The inherent viable bacterial populations of mesophilic aerobes and lactics in idli batter increased in their numbers with time at 35 °C, reaching numbers in the range of 13 to 15 log10 CFU g–1. Simultaneously, the pH level decreased from 6.2 to 4.4. Strains of Bacillus cereus F 4810, Escherichia coli D 21 and Staphylococcus aureus FRI 722 (foodborne pathogens) introduced into the idli batter at an initial level of 4.3 log10 CFU g–1 was able to survive and grow well in an initial period of 6 h. However, the strain of S. aureus showed a constant increase in its numbers reaching 9.3 log10 CFU g–1 in 12 h. The addition of plantaricin LP84, a bacteriocin produced by Lactobacillus plantarum NCIM 2084 to idli batter at 1% (v/w) level was able to retard the growth of the inoculated cultures during fermentation. Two aspects were established from this study, (i) that foodborne pathogens occurring as contaminants in idli batter can survive and grow under conditions of natural fermentation and (ii) the efficacy of a lactic bacteriocin as a potential food biopreservative.  相似文献   

3.
Fusarium verticillioides is the most important seed transmitted pathogen that infects maize. It produces fumonisins, toxins that have potential toxicity for humans and animals. Control of F. verticillioides colonisation and systemic contamination of maize has become a priority area in food safety research. The aims of this research were (1) to characterise the maize endorhizosphere and rhizoplane inhabitant bacteria and Fusarium spp., (2) to select bacterial strains with impact on F. verticillioides growth and fumonisin B1 production in vitro, (3) to examine the effects of bacterial inoculum levels on F. verticillioides root colonisation under greenhouse conditions. Arthrobacter spp. and Azotobacter spp. were the predominant genera isolated from maize endorhizosphere and rhizoplane at the first sampling period, whilst F. verticillioides strains showed the greatest counts at the same isolation period. All F. verticillioides strains were able to produce fumonisin B1 in maize cultures. Arthrobacter globiformis RC5 and Azotobacter armeniacus RC2, used alone or in a mix, demonstrated important effects on F. verticillioides growth and fumonisin B1 suppression in vitro. Only Azotobacter armeniacus RC2 significantly reduced the F. verticillioides root colonisation at 106 and 107 CFU g–1 levels under greenhouse conditions.  相似文献   

4.
A milk–soymilk mixture was fermented using Lactobacillus paracasei subsp. paracasei NTU101 and Bifidobacterium longum BCRC11847 at different inoculum ratios (1:1, 1:2, 1:5, 2:1, and 5:1). When the inoculum ratio was 1:2, the cell numbers of both strains were balanced after 12 h of cultivation. The pH and titratable acidity were very similar at the various inoculum ratios of cultivation. The milk–soymilk mixture was supplemented with 5, 10, 15, and 20% Lycium chinense Miller juice and fermented with Lactobacillus paracasei subsp. paracasei NTU101 and B. longum BCRC11847. Sensory evaluation results showed that supplementation with 5% Lycium chinense Miller juice improved the acceptability of the fermented milk–soymilk. The fermented beverage was stored at 4°C for 14 days; variations in pH and titratable acidity were slight. The cell numbers of L. paracasei subsp. paracasei NTU101 and B. longum BCRC11847 in the fermented beverage were maintained at 1.2×109 CFU/ml and 6.3×108 CFU/ml, respectively, after 14 days of storage.  相似文献   

5.
The possible involvement of IAA in the effect thatAzospirillum brasilense has on the elongation and morphology ofPanicum miliaceum roots was examined by comparing in a Petri dish system the effects of inoculation with a wild strain (Cd) with those of an IAA-overproducing mutant (FT-326). Both bacterial strains produced IAA in culture in the absence of tryptophan. At the stationary growth phase, production of IAA by FT-326 wasca. 12 times greater than that of Cd. When inoculation was made with bacterial concentrations higher than, 106 colony forming units ml–1 (CFU ml–1), both strains inhibited root elongation to the same extent. At lower concentrations Cd enhanced elongation, by 15–20%, while FT-326 was ineffective. Both strains promoted root-hair development, and root-hairs were produced nearer the root tip the higher the bacterial concentration (e. g. root elongation region was reduced). Effects of FT-326 on root-hair development were greater than those of Cd. Acidified ether extracts of Cd and FT-326 cultures had inhibitory or promoting effects on root elongation depending on the dilution applied. At low dilutions, extracts from FT-326 were more inhibitory for elongation than those from Cd. At higher dilutions root elongation was promoted, but FT-326 extracts had to be more diluted than those from Cd. Dilutions that promoted root elongation contained supra-optimal concentrations of IAA, 1–3 orders of magnitude higher than those required for optimal enhancement by synthetic IAA. It is suggested that the bacteria produce in culture an IAA-antagonist or growth inhibitor that decreases the effectiveness of IAA action. The large variability reported for the effects ofAzospirillum on root elongation could be the result of the opposite effects on root elongation of IAA and other compounds, produced by the bacteria.  相似文献   

6.
In 2003, 50 game carcasses (ungulates) originating from one Austrian hunting ground were subject to visual examination for (fecal) contamination of the body cavities and microbiological testing of the body cavities in order to assess variations in microbial surface contamination in the season June–August compared to October–December. No carcass tested positive for the bacterial pathogens Salmonella or Listeria. Bacterial surface counts in October–December (median values: total aerobic count: 4.12 log10 colony-forming-units (cfu)/cm2; Enterobacteriaceae: 2.48 log10 cfu/cm2) were significantly lower than those in June–August (median values: total aerobic count: 5.65 log10 cfu/cm2; Enterobacteriaceae: 3.45 log10 cfu/cm2). The cooling regime (0.4 °C, 62% relative humidity) allowed no microbial growth for 96 h but was associated with weight loss of the carcasses. All carcasses had undergone a precooling phase of 8–12 h, with temperatures of 17.8±1.2 °C in the season June–August and 9.8±1.2 °C in October–December. This temperature difference was identified as the most probable effector for the observed seasonal variation. The results demonstrate the need for a continuous cool chain after evisceration of game carcasses.  相似文献   

7.
Shahid Shaukat  S.  Siddiqui  Imran A.  Khan  Ghazala H.  Zaki  M.J. 《Plant and Soil》2002,245(2):239-247
Argemone mexicana L. (Papaveraceae), a tropical annual weed, is phytotoxic to many crop species. This study was designed to examine the allelochemical and nematicidal potential of A. mexicana and to better understand the role of this weed in the ecosystem. A methanol-soluble extract of the leaf material caused greater juvenile mortality of Meloidogyne javanica than did ethyl acetate or hexane extracts indicating the polar nature of the toxins. Decomposing tissues of A. mexicana in soil at 50 g kg–1 were highly deleterious causing 80% mortality of tomato plants. At 10 g kg–1 plant growth was enhanced, while at 30 g kg–1 plant growth was substantially retarded. M. javanica population densities in the rhizosphere and in roots, and gall formation were significantly suppressed when 10, 30 or 50 g kg–1 A. mexicana was allowed to decompose in the soil. To establish whether decomposition was necessary to produce phytotoxic symptoms, or whether the shoot extract alone could interfere with plant growth, an aqueous shoot extract was applied to soil. Whereas a 50% extract promoted plant growth, a 100% (100 g/500 mL distilled water) concentration significantly reduced plant height, and fresh weights of shoot and root. In general, decomposing plant material caused greater phytotoxicity compared to the aqueous extract. Addition of N as NH4NO3 partially alleviated the phytotoxic action of A. mexicana,and also reduced severity of root-knot disease. Adding Pseudomonas aeruginosa to soil amended with A. mexicana resulted in decreased density of M. javanicain the rhizosphere and in tomato roots, suppressed galling rates and enhanced plant growth.  相似文献   

8.
The influence of different application rates of the plant growth-promoting rhizobacterium, Pseudomonas aeruginosa, population densities of the root-knot nematode, Meloidogyne javanica, moisture and other plant-associated bacteria in the suppression of root rot–root knot disease complex of tomato are described. The impact of these factors on bacterial rhizosphere and inner root and shoot establishment are also presented. The highest inoculum level of P. aeruginosa (7.4 × 108 cfu ml–1) in the presence of the lowest population density of M. javanica (500 J2/plant) caused the greatest reduction in gall formation due to M. javanica. The number of root–knot nematodes recovered from soil and roots treated with P. aeruginosa were also significantly reduced. Root infection caused by the soilborne root-infecting fungi Fusarium oxysporum, F. solani and Rhizoctonia solani was also effectively suppressed following application of P. aeruginosa. A P. aeruginosa-Bacillus subtilis treatment was the most effective in the suppression of root-rot disease complex with enhancement of plant growth. Biocontrol and growth promoting potential of the bacterium was enhanced when soil was kept at 50% or 75% moisture holding capacity, whereas a 25% MHC reduced bacterial efficacy. Rhizosphere population of P. aeruginosa declined drastically in P. aeruginosa-Bradyrhizobium japonicum treatments. Rhizosphere colonisation by P. aeruginosa seems to be governed by two factors: Initial inoculum size of the bacterium and severity of the root-knot disease. Endoroot and endoshoot colonisation of the bacterium was dependent on degree of root-colonisation by Fusarium oxysporum. An inoculum level 2.5 × 108 cfu/ml of P. aeruginosa was optimal for the enhancement of plant growth, whereas inoculum below this level reduced plant growth.  相似文献   

9.
Lactobacillus delbrueckii subsp. bulgaricus NCFB 2483, when grown on lactose in continuous culture, showed increasing specific yields and volumetric productivities of exopolysaccharide (EPS) with increasing dilution rate. Specific and volumetric productivities of lactate and galactose, as extracellular metabolites, increased in response to the incremental changes in the dilution rate up to 0.4 h–1. Elevated Yp/s values determined for EPS (0.025 g EPSg lactose–1) at the dilution rates of 0.3 h–1–0.4 h–1, relative to those determined at lower dilution rates, suggest a diversion of carbon flux towards EPS being associated with the higher rates of growth.  相似文献   

10.
A continuous-flow competitive exclusion (CFCE) culture model of human stool microflora was used to examine whether supplemental anaerobic gas is necessary for maintenance of anaerobes and inhibition of vancomycin-resistant Enterococcus (VRE). CFCE cultures of human stool microflora were maintained with supplemental nitrogen, without supplemental nitrogen, or with percolated room air. Cultures with or without supplemental nitrogen maintained >9 log10 CFU mL–1 of obligate anaerobes and eliminated 106 CFU mL–1 of VRE. When room air was percolated into the culture, anaerobes were detected at 2 log10 CFU mL–1, and the same VRE inoculum was not eliminated (P < 0.001). These data demonstrate that human stool CFCE cultures maintain high levels of obligate anaerobes and inhibit VRE without the addition of supplemental anaerobic gas.  相似文献   

11.
Two strains ofLeptospirillum-like bacteria, L6 and L8, have been isolated from a mixed inoculum, also containingThiobacillus ferrooxidans andT. thiooxidans, cultured for one year with a colbaltiferous pyrite as energy substrate in a 100 I continuous bioleaching laboratory unit. Several physiological properties of the strains are described. The vibrio-shaped microorganisms grew at pH values lower than 1.3. Their growth rate was maximum between 2.5 and 8.0 g l1 ferrous iron. The optimal growth temperature was 37.5° C. Ferric iron had a stimulative effect on bacterial development up to 8 g l–1, and growth was as rapid at 14 g l–1 ferric iron as at 8 g l–1. The negative influence of cobalt on the final cell concentration was observed at 0.5 g l–1, but the growth rate was not affected up to 2 g l–1. The G + C content of strains L8 is 55.6 mol%.  相似文献   

12.
A range of known biocontrol or plant growth-stimulating species ofTrichoderma orGliocladium were grown on peat-bran substrate to yield between 5×107–3×1010 colony forming units (cfu's)g–1 substrate after 14 days growth. Inocula were incorporated into peat:sand potting compost infested withRhizoctonia solani to give 7–8 × 104 cfu's of antagonist g–1 compost and assessed for biological control activity using lettuce seedlings. Six of the eight antagonists decreased daming-off and three of these consistently increased yield in comparison withR. solani treatment alone.Subsequently, peat-bran inoculum ofT. harzianum isolate TH1 was incorporated at 0.5% w/v intoR. solani infested potting compost. Both autoclaved and nonautoclaved inoculum ofT. harzianum TH1 decreased disease and increased yield. Incorporation of ethyl acetate-extracted autoclaved inoculum ofT. harzianum TH1 resulted in similar levels of biocontrol and improved plant growth as did incorporation of nonautoclaved and autoclavedT. harzianum TH1 inoculum. The need to standardize inocula and controls is emphasized.  相似文献   

13.
Development and function ofAzospirillum-inoculated roots   总被引:1,自引:1,他引:0  
Summary The surface distribution ofAzospirillum on inoculated roots of maize and wheat is generally similar to that of other members of the rhizoplane microflora. During the first three days, colonization takes place mainly on the root elongation zone, on the base of root hairs and, to a lesser extent, on the surface of young root hairs.Azospirillum has been found in cortical tissues, in regions of lateral root emergence, along the inner cortex, inside xylem vessels and between pith cells. Inoculation of several cultivars of wheat, corn, sorghum and setaria with several strains ofAzospirillum caused morphological changes in root starting immediately after germination. Root length and surface area were differentially affected according to bacterial age and inoculum level. During the first three weeks after germination, the number of root hairs, root hair branches and lateral roots was increased by inoculation, but there was no change in root weight. Root biomass increased at later stages. Cross-sections of inoculated corn and wheat root showed an irregular arrangement of cells in the outer layers of the cortex. These effects on plant morphology may be due to the production of plant growth-promoting substances by the colonizing bacteria or by the plant as a reaction to colonization. Pectic enzymes may also be involved. Morphological changes had a physiological effect on inoculated roots. Specific activities of oxidative enzymes, and lipid and suberin content, were lower in extracts of inoculated roots than in uninoculated controls. This suggests that inoculated roots have a larger proportion of younger roots. The rate of NO 3, K+ and H2PO 4 uptake was greater in inoculated seedlinds. In the field, dry matter, N, P and K accumulated at faster rates, and water content was higher inAzospirillum-inoculated corn, sorghum, wheat and setaria. The above improvements in root development and function lead in many cases to higher crop yield.  相似文献   

14.
Summary Hydrogen evolution from root nodules has been reported to decrease the efficiency of the nitrogen fixing system. Mutants ofRhizobium meliloti andRhizobium leguminosarum were selected which were deficient in H2-uptake capacity (Hup). The relative efficiency of the nitrogen fixation for both species assessed with C2H2 reduction was 0.66.The hydrogen production was monitored using a simple root incubation method. As such, hydrogen production up to 3.83 and 15.57 ml.day–1.g–1 plant dry weight were recorded forPisum sativum — Rhizobium leguminosarum 4.20 Hup andMedicago sativa — Rhizobium meliloti 1.5 Hup respectively. In a closed container (250 ml), hydrogen concentrations up to 20% (v/v) could be reached in the root phase ofMedicago sativa in a time period of 320 hours.  相似文献   

15.
Summary Two different strains, An 1 and An 2, were obtained from root nodules ofAlnus nitida Endl., collected from one locality in the area of its natural habitat near Bahrin, District Swat, Pakistan. The light and electron microscopy of the isolates revealed the occurrence of septate and branched hyphae bearing sporangia and vesicles. The strains differed in their growth requirements, nitrogen-fixing ability and production of extracellular pigments, thus indicating the existence of more than oneFrankia strain in the same locality. In the absence of combined nitrogen in the medium strain An 1 formed vesicles and fixed N2 (up to 200 nmol C2H4. mg protein–1.h–1), while strain An 2 under the experimental conditions formed only few vesicles and fixed N2 at a very low rate (ca 10 nmol C2H4. mg protein–1 .h–1). The nitrogenase activity of strain An 1 was strongly affected by the O2 concentration.Frankia An 1 and An 2 were infective and effective onA. nitida andA. glutinosa but not onDatisca cannabina andElaeagnus umbellata. Both An 1 and An 2 strains were more infective and effective onA. glutinosa thanFrankia strains AvcIl and CpI1.  相似文献   

16.
The growth rate of different strains of Bradyrhizobium and Rhizobium was studied in media containing amaranth seed meal instead of yeast extract. Results obtained in erlenmeyer flasks and stirred fermenters show that both Bradyrhizobium japonicum strains E109, E110, 5019, 587 and Rhizobium melilotistrains B36, B323, B399, Lq22, Lq42, Lq51 and U322, grow satisfactorily in amaranth seed meal medium. Cell count obtained for the strains tested was greater than 4 × 1010 viable cells.ml–1. Amaranth seed meal (4 g.l–1) is a suitable component for culture media that can be used instead of yeast extract.  相似文献   

17.
Chlorate resistant spontaneous mutants ofAzospirillum spp. (syn.Spirillum lipoferum) were selected in oxygen limited, deep agar tubes with chlorate. Among 20 mutants fromA. brasilense and 13 fromA. lipoferum all retained their functional nitrogenase and 11 from each species were nitrate reductase negative (nr). Most of the mutants were also nitrite reductase negative (nir), only 3 remaining nir+. Two mutants from nr+ nir+ parent strains lost only nir and became like the nr+ nir parent strain ofA. brasilense. No parent strain or nr+ mutant showed any nitrogenase activity with 10 mM NO 3 . In all nr mutants, nitrogenase was unaffected by 10 mM NO 3 . Nitrite inhibited nitrogenase activity of all parent strains and mutants including those which were nir. It seems therefore, that inhibition of nitrogenase by nitrate is dependent on nitrate reduction. Under aerobic conditions, where nitrogenase activity is inhibited by oxygen, nitrate could be used as sole nitrogen source for growth of the parent strains and one mutant (nr nir) and nitritite of the parent strains and 10 mutants (all types). This indicates the loss of both assimilatory and dissimilatory nitrate reduction but only dissimilatory nitrite reduction in the mutants selected with chlorate.  相似文献   

18.
Recently, there has been a resurgence of interest in bioorganic fertilizers as part of sustainable agricultural practices to alleviate drawbacks of intensive farming practices. N2-fixing and P-solubilizing bacteria are important in plant nutrition increasing N and P uptake by the plants, and playing a significant role as plant growth-promoting rhizobacteria in the biofertilization of crops. A study was conducted in order to investigate the effects of two N2-fixing (OSU-140 and OSU-142) and a strain of P-solubilizing bacteria (M-13) in single, dual and three strains combinations on sugar beet and barley yields under field conditions in 2001 and 2002. The treatments included: (1) Control (no inoculation and fertilizer), (2) Bacillus OSU-140, (3) Bacillus OSU-142, (4) Bacillus M-13, (5) OSU-140 + OSU-142, (6) OSU-140 + M-13, (7) OSU-142 + M-13, (8) OSU-140 + OSU-142 + M-13, (9) N, (10) NP. N and NP plots were fertilized with 120 kg N ha–1 and 120 kg N ha–1 + 90 kg P ha- for sugar beet and 80 kg N ha–1 and 80 kg N ha–1 + 60 kg P ha–1 for barley. The experiments were conducted in a randomized block design with five replicates. All inoculations and fertilizer applications significantly increased leaf, root and sugar yield of sugar beet and grain and biomass yields of barley over the control. Single inoculations with N2-fixing bacteria increased sugar beet root and barley yields by 5.6–11.0% depending on the species while P-solubilizing bacteria alone gave yield increases by 5.5–7.5% compared to control. Dual inoculation and mixture of three bacteria gave increases by 7.7–12.7% over control as compared with 20.7–25.9% yield increases by NP application. Mixture of all three strains, dual inoculation of N2-fixing OSU-142 and P-solubilizing M-13, and/or dual inoculation N2-fixing bacteria significantly increased root and sugar yields of sugar beet, compared with single inoculations with OSU-140 or M-13. Dual inoculation of N2-fixing Bacillus OSU-140 and OSU-142, and/or mixed inoculations with three bacteria significantly increased grain yield of barley compared with single inoculations of OSU-142 and M-13. In contrast with other combinations, dual inoculation of N2-fixing OSU-140 and P-solubilizing M-13 did not always significantly increase leaf, root and sugar yield of sugar beet, grain and biomass yield of barley compared to single applications both with N2-fixing bacteria. The beneficial effects of the bacteria on plant growth varied significantly depending on environmental conditions, bacterial strains, and plant and soil conditions.  相似文献   

19.
Nodulation of Vicia sativa subsp. nigra L. by Rhizobium bacteria is coupled to the development of thick and short roots (Tsr). This root phenotype as well as root-hair induction (Hai) and root-hair deformation (Had) are caused by a factor(s) produced by the bacteria in response to plant flavonoids. When very low inoculum concentrations (0.5–5 bacteria·ml-1) were used, V. sativa plants did not develop the Tsr phenotype and became nodulated earlier than plants with Tsr roots. Furthermore, the nodules of these plants were located on the primary root in contrast to nodules on Tsr roots, which were all located at sites of lateral-root emergence. The average numbers of nodules per plant were not significantly different for these two types of nodulation. Root-growth inhibition and Hai, but not Had, could be mimicked by ethephon, and inhibited by aminoethoxyvinylglycine (AVG). Addition of AVG to co-cultures of Vicia sativa and the standard inoculum concentration of 5·105 bacteria·ml-1 suppressed the development of the Tsr phenotype and restored nodulation to the pattern that was observed with very low concentrations of bacteria (0.5–5 bacteria·ml-1). The delay in nodulation on Tsr roots appeared to be caused by the fact that nodule meristems did not develop on the primary root, but only on the emerging laterals. The relationship between Tsr, Hai, Had, and nodulation is discussed.Abbreviations AVG aminoethoxyvinylglycine - cfu colonyforming units - Had root-hair deformation - Hai root-hair induction - NB naringenin-bacteria filtrate - Tsr Thick and short roots  相似文献   

20.
The effect of medium components (carbon, nitrogen, and mineral sources) and environmental factors (initial pH and temperature) for mycelial growth and exopolysaccharide (EPS) production in Sarcodon aspratus(Berk) S.lto TG-3 was investigated. The optimal temperature (25°C) and initial pH (5.0) for the EPS production in shake flask cultures of S. aspratus were determined using the two-dimensional contour plot. The most suitable carbon, nitrogen, and mineral sources for EPS production were glucose, yeast extract, CaCl2 and KH2PO4, respectively. Notably, the EPS production was significantly enhanced by supplementation of calcium ion. Subsequently, the optimum concentration of glucose (30gl–1), yeast extract (15gl–1), CaCl2 (1.1gl–1), and KH2PO4 (1.2gl–1) were determined using the orthogonal matrix method. The effects of nutritional requirement on the mycelial growth of S.aspratuswere in regular sequence of glucose>KH2PO4>yeast extract>CaCl2, and those on EPS production were in the order of glucose>yeast extract>CaCl2>KH2PO4. Under the optimal culture conditions, the maximum EPS concentration in a 5-l stirred-tank reactor was 2.68gl–1 after 4days of fermentation, which was 6-fold higher than that at a basal medium. The two-dimensional contour plot and orthogonal matrix method allowed us to find the relationship between environmental factors and nutritional requirement by determining optimal operating conditions for maximum EPS production in S.asparatus. The statistical experiments used in this work can be useful strategies for optimization of submerged culture processes for other mushrooms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号