首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To have some insight into the functional coupling between the parasternal intercostals (PS) and the diaphragm (DPM), we have examined the isometric contractile properties of bundles from canine PS and DPM muscles. Bundles of external (EXT) and internal (INT) interosseous intercostals were studied for comparison. In addition we have related sonometrically measured length of the intercostals in vivo at supine functional residual capacity (FRC) to in vitro optimal force-producing length (Lo). We found that 1) intercostal twitch speed is significantly faster than DPM, thus displacing their relative force-frequency curve to the right of that of the DPM; 2) the ascending limb of the active length-tension curve of all intercostals lies below the DPM curve; i.e., at 85% Lo, PS force is 46% of maximal force (Po), whereas DPM force is still 87% Po; 3) for any given length change beyond Lo, all intercostals generate greater passive tension than the DPM; 4) Po is greater for the intercostals than the DPM; and 5) at supine FRC, both EXT and INT in dogs are nearly operating at Lo, whereas the PS are operating at a length greater than Lo. We conclude that 1) PS produce less force than DPM during breathing efforts involving low- (10-20 Hz) stimulation frequencies, but they generate more force than DPM when high- (greater than 50 Hz) stimulation frequencies are required; and 2) the pressure-generating ability of the PS is better preserved than that of the DPM with increases in lung volume.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The performance of the diaphragm is influenced by its in situ length relative to its optimal force-generating length (Lo). Lead markers were sutured to the abdominal surface of the diaphragm along bundles of the left ventral, middle, and dorsal regions of the costal diaphragm and the left crural diaphragm of six beagle dogs. After 2-3 wk postoperative recovery, the dogs were anesthetized, paralyzed, and scanned prone and supine in the Dynamic Spatial Reconstructor (DSR) at a total lung capacity (TLC), functional residual capacity (FRC), and residual volume (RV). The location of each marker was digitized from the reconstructed DSR images, and in situ lengths were determined. After an overdose of anesthetic had been administered to the dogs, each marked diaphragm bundle was removed, mounted in a 37 degrees C in vitro chamber, and adjusted to Lo (maximum tetanic force). The operating length of the diaphragm, or in situ length expressed as percent Lo, varied from region to region at the lung volumes studied; variability was least at RV and increased with increasing lung volume. At FRC, all regions of the diaphragm was shorter in the prone posture compared with the supine, but there was no clear gravity-dependent vertical gradient of in situ length in either posture. Because in vitro length-tension characteristics were similar for all diaphragm regions, regional in vivo length differences indicate that the diaphragm's potential to generate maximal force is nonuniform.  相似文献   

3.
To examine the mechanical effects of the abdominal and triangularis sterni expiratory recruitment that occurs when anesthetized dogs are tilted head up, we measured both before and after cervical vagotomy the end-expiratory length of the costal and crural diaphragmatic segments and the end-expiratory lung volume (FRC) in eight spontaneously breathing animals during postural changes from supine (0 degree) to 80 degrees head up. Tilting the animals from 0 degree to 80 degrees head up in both conditions was associated with a gradual decrease in end-expiratory costal and crural diaphragmatic length and with a progressive increase in FRC. All these changes, however, were considerably larger (P less than 0.005 or less) postvagotomy when the expiratory muscles were no longer recruited with tilting. Alterations in the elastic properties of the lung could not account for the effects of vagotomy on the postural changes. We conclude therefore that 1) by contracting during expiration, the canine expiratory muscles minimize the shortening of the diaphragm and the increase in FRC that the action of gravity would otherwise introduce, and 2) the end-expiratory diaphragmatic length and FRC in upright dogs are thus actively determined. The present data also indicate that by relaxing at end expiration, the expiratory muscles make a substantial contribution to tidal volume in upright dogs; in the 80 degrees head-up posture, this contribution would amount to approximately 60% of tidal volume.  相似文献   

4.
To assess the characteristics and function of the muscles of the anterolateral abdominal wall, we have examined the isometric contractile properties of bundles of canine rectus abdominis (RA) and external oblique (EO) muscles. In addition, we have related the lengths of these muscles measured sonometrically in vivo at supine functional residual capacity (FRC) to in vitro optimal force-producing length (Lo). We also investigated the action of the abdominal muscles on the displacement of costal and crural diaphragm. We found that 1) contraction time of RA was longer and that the RA developed greater force than the EO at submaximal stimulation frequencies; 2) maximal tetanic force and the active length-tension curves were similar in both abdominal muscles; 3) on passive stretch, the compliance of the RA was one-third that of the EO; 4) at supine FRC, the EO is operating at 83% of Lo, whereas the RA is operating at 105% of Lo; 5) stimulation of either RA or EO (abdominal pressure of 15 cmH2O) lengthened the costal and crural diaphragm toward their Lo values, with greater crural excursion occurring than costal. We conclude that the RA is well suited for restraining the abdominal viscera in prone quadrupeds, whereas the EO is better designed to assist expiration. Stimulation of both muscles improves in situ diaphragmatic operating length.  相似文献   

5.
The purpose of the present study was to assess the relationship between excised length (unstressed length of excised muscle; Lex) and optimal force-generating length (Lo) in a variety of respiratory muscles, with the goal of establishing a reliable method whereby Lo could be rapidly and easily estimated with a high level of accuracy. Experiments were conducted on 111 muscle bundles obtained from 18 mongrel dogs. Segments of costal diaphragm, parasternal intercostal, scalene, sternomastoid, triangularis sterni, rectus abdominis, external oblique, and transversus abdominis muscles were studied. We noted a linear relationship between the distance measured between two fixed points in excised bundles (Lex) and at the muscles' Lo. Correlation coefficients ranged from 0.83 (P less than 0.01) for the transversus abdominis to 0.92 (P less than 0.01) for the triangularis sterni and external oblique muscles. Pooled Lex for all muscles averaged 61.4 +/- 6.3% (SD) Lo, with specific values ranging from 55.5 +/- 3.9% Lo for triangularis sterni bundles to 63.0 +/- 5.1% Lo for external oblique bundles. In three additional dogs, we verified the usefulness of this relationship and prospectively estimated Lo from excised length in 10 costal diaphragm bundles and 10 transversus abdominis bundles and then measured Lo directly. Predicted Lo averaged 100.0 +/- 6.0% Lo for diaphragm and 97.6 +/- 5.9% Lo for transversus abdominis muscle. We conclude that Lo can be conveniently and accurately estimated from excised dimensions. This rapid estimation technique should prove valuable for future studies in respiratory muscle physiology.  相似文献   

6.
It is established that during tidal breathing the rib cage expands more than the abdomen in the upright posture, whereas the reverse is usually true in the supine posture. To explore the reasons for this, we studied nine normal subjects in the supine, standing, and sitting postures, measuring thoracoabdominal movement with magnetometers and respiratory muscle activity via integrated electromyograms. In eight of the subjects, gastric and esophageal pressures and diaphragmatic electromyograms via esophageal electrodes were also measured. In the upright postures, there was generally more phasic and tonic activity in the scalene, sternocleidomastoid, and parasternal intercostal muscles. The diaphragm showed more phasic (but not more tonic) activity in the upright postures, and the abdominal oblique muscle showed more tonic (but not phasic) activity in the standing posture. Relative to the esophageal pressure change with inspiration, the inspiratory gastric pressure change was greater in the upright than in the supine posture. We conclude that the increased rib cage motion characteristic of the upright posture owes to a combination of increased activation of rib cage inspiratory muscles plus greater activation of the diaphragm that, together with a stiffened abdomen, acts to move the rib cage more effectively.  相似文献   

7.
In vivo length-force relationship of canine diaphragm   总被引:4,自引:0,他引:4  
Diaphragmatic length was measured by sonomicrometry and transdiaphragmatic pressure (Pdi) by conventional latex balloons in eight dogs anesthetized with pentobarbital sodium under passive conditions and during supramaximal phrenic stimulation. The passive length-pressure relationship indicates that the crural part of the diaphragm is more compliant than the costal part. With supramaximal stimulation the costal diaphragm showed a length-pressure relationship similar in shape to in vitro length-tension curves previously described for the canine diaphragm. The crural part has a smaller pressure-length slope than the costal part in the length range from 80% of optimum muscle length (Lo) to Lo. At supine functional residual capacity (FRC) the resting length (LFRC) of the costal and crural diaphragms are not at Lo. The costal part is distended to 105% of Lo, and crural is shortened to 92% of Lo. Tidal shortening will increase the force output of costal while decreasing that of the crural diaphragm. The major forces setting the passive supine LFRC are the abdominal weight (pressure) and the elastic recoil of the lungs. The equilibrium length (resting length of excised diaphragmatic strips) was 79 +/- 3.6% LFRC for the costal diaphragm and 87 +/- 3.9% LFRC for the crural diaphragm. Similar shortening was obtained in the upright position, indicating passive diaphragmatic stretch at supine LFRC.  相似文献   

8.
Functional characteristics of canine costal and crural diaphragm   总被引:1,自引:0,他引:1  
We estimated the in situ force-generating capacity of the costal and crural portions of the canine diaphragm by relating in vitro contractile properties and diaphragmatic dimensions to in situ lengths. Piezoelectric crystals were implanted on right costal and left crural diaphragms of anesthetized dogs, via midline laparatomy. With the abdomen reclosed, diaphragm lengths were recorded at five lung volumes. Contractile properties of excised muscle bundles were then measured. In vitro force-frequency and length-tension characteristics of the costal and crural diaphragms were virtually identical; their optimal force values were 2.15 and 2.22 kg/cm2, respectively. In situ, at residual volume, functional residual capacity (FRC), and total lung capacity the costal diaphragm lay at 102, 95, and 60% of optimal length (Lo), whereas the crural diaphragm lay at 88, 84, and 66% of Lo. Muscle cross-sectional area was 40% greater in costal than in crural diaphragms. Considering in situ lengths, cross-sectional areas, and in vitro length-tension characteristics at FRC, the costal diaphragm could exert 60% more force than the crural diaphragm.  相似文献   

9.
The electromyographic activity of the diaphragm (EMGdi) and scalene muscle (EMGsc) was studied in the supine and upright positions, respectively, during hyperoxic progressive hypercapnic rebreathing (HCVR) in five healthy males. End-expiratory esophageal pressure (EEPes) was quantified on a breath-to-breath basis as a reflection of altered end-expiratory lung volume. There was no significant difference in the slopes of EMGdi, expressed as a percentage of maximum at total lung capacity vs. minute volume of ventilation (VI), between the supine and upright positions [0.79 +/- 0.05 (SE) vs. 0.92 +/- 0.17, respectively]. In contrast, the slope of the regression line relating EMGsc to VI was steeper in the upright than in the supine position (0.69 +/- 0.05 vs. 0.35 +/- 0.04, respectively; P less than 0.005). Positive EEPes at comparable VI at the ends of HCVRs were of greater magnitude upright than supine (3.27 +/- 0.68 vs. 4.35 +/- 0.60 cmH2O, respectively, P less than 0.001). We conclude that altering posture has a greater effect on scalene and expiratory muscle activity than on diaphragmatic activity during hypercapnic stimulation.  相似文献   

10.
The purpose of the present study was to assess the mechanical role of the expiratory muscles during spontaneous breathing in prone animals. The electromyographic (EMG) activity of the triangularis sterni, the rectus abdominis, the external oblique, and the transversus abdominis was studied in 10 dogs light anesthetized with pentobarbital sodium. EMGs were recorded during spontaneous steady-state breathing in supine and prone suspended animals both before and after cervical vagotomy. We also measured the end-expiratory lung volume [functional residual capacity (FRC)] in supine and prone positions to assess the mechanical role of expiratory muscle activation in prone dogs. Spontaneous breathing in the prone posture elicited a significant recruitment of the triangularis sterni, the external oblique, and the transversus abdominis (P less than 0.05). Bilateral cervical vagotomy eliminated the postural activation of the external oblique and the transversus abdominis but not the triangularis sterni. Changes in posture during control and after cervical vagotomy were associated with an increase in FRC. However, changes in FRC, on average, were 132.3 +/- 33.8 (SE) ml larger (P less than 0.01) postvagotomy. We conclude that spontaneous breathing in prone anesthetized dogs is associated with a marked phasic expiratory recruitment of rib cage and abdominal muscles. The present data also indicate that by relaxing at end expiration the expiratory muscles of the abdominal region are directly responsible for generating roughly 40% of the tidal volume.  相似文献   

11.
Effect of position and lung volume on upper airway geometry   总被引:7,自引:0,他引:7  
The occurrence of upper airway obstruction during sleep and with anesthesia suggests the possibility that upper airway size might be compromised by the gravitational effects of the supine position. We used an acoustic reflection technique to image airway geometry and made 180 estimates of effective cross-sectional area as a function of distance along the airway in 10 healthy volunteers while they were supine and also while they were seated upright. We calculated z-scores along the airway and found that pharyngeal cross-sectional area was smaller in the supine than in the upright position in 9 of the 10 subjects. For all subjects, pharyngeal cross-sectional area was 23 +/- 8% smaller in the supine than in the upright position (P less than or equal to 0.05), whereas glottic and tracheal areas were not significantly altered. Because changing from the upright to the supine position causes a decrease in functional residual capacity (FRC), six of these subjects were placed in an Emerson cuirass, which was evacuated producing a positive transrespiratory pressure so as to restore end-expiratory lung volume to that seen before the position change. In the supine posture an increase in end-expiratory lung volume did not change the cross-sectional area at any point along the airway. We conclude that pharyngeal cross-sectional area decreases as a result of a change from the upright to the supine position and that the mechanism of this change is independent of the change in FRC.  相似文献   

12.
Active and passive shortening of muscle bundles in the canine diaphragm were measured with the objective of testing a consequence of the minimal-work hypothesis: namely, that the ratio of active to passive shortening is the same for all active muscles. Lengths of six muscle bundles in the costal diaphragm and two muscle bundles in the crural diaphragm of each of four bred-for-research beagle dogs were measured by the radiopaque marker technique during the following maneuvers: a passive deflation maneuver from total lung capacity to functional residual capacity, quiet breathing, and forceful inspiratory efforts against an occluded airway at different lung volumes. Shortening per liter increase in lung volume was, on average, 70% greater during quiet breathing than during passive inflation in the prone posture and 40% greater in the supine posture. For the prone posture, the ratio of active to passive shortening was larger in the ventral and midcostal diaphragm than at the dorsal end of the costal diaphragm. For both postures, active shortening during quiet breathing was poorly correlated with passive shortening. However, shortening during forceful inspiratory efforts was highly correlated with passive shortening. The average ratios of active to passive shortening were 1.23 +/- 0.02 and 1.32 +/- 0.03 for the prone and supine postures, respectively. These data, taken together with the data reported in the companion paper (T. A. Wilson, M. Angelillo, A. Legrand, and A. De Troyer, J. Appl. Physiol. 87: 554-560, 1999), support the hypothesis that, during forceful inspiratory efforts, the inspiratory muscles drive the chest wall along the minimal-work trajectory.  相似文献   

13.
Our purpose was to determine the influence of posture and breathing route on electromyographic (EMG) activities of nasal dilator (NDM) and genioglossus (GG) muscles during exercise. Nasal and oral airflow rates and EMG activities of the NDM and GG were recorded in 10 subjects at rest and during upright and supine incremental cycling exercise to exhaustion. EMG activities immediately before and after the switch from nasal to oronasal breathing were also determined for those subjects who demonstrated a clear switch point (n = 7). NDM and GG EMG activities were significantly correlated with increases in nasal, oral, and total ventilatory rates during exercise, and these relationships were not altered by posture. In both upright and supine exercise, NDM activity rose more sharply as a function of nasal inspired ventilation compared with total or oral inspired ventilation (P < 0.01), but GG activity showed no significant breathing-route dependence. Peak NDM integrated EMG activity decreased (P = 0.008), and peak GG integrated EMG activity increased (P = 0.032) coincident with the switch from nasal to oronasal breathing. In conclusion, 1) neural drive to NDM and GG increases as a function of exercise intensity, but the increase is unaltered by posture; 2) NDM activity is breathing-route dependent in steady-state exercise, but GG activity is not; and 3) drive to both muscles changes significantly at the switch point, but the change in GG activity is more variable and is often transient. This suggests that factors other than the breathing route dominate drive to the GG soon after the initial changes in the configuration of the oronasal airway are made.  相似文献   

14.
We studied 10 healthy nonsmokers and 8 healthy smokers, in both the upright and supine position, to investigate whether regional differences in respiratory clearance of technetium-99m-labeled diethylenetriamine pentaacetic acid 99mTc-DTPA (RC-DTPA) existed and to assess the influence of posture and smoking on the regional RC-DTPA. RC-DTPA was assessed by the lung clearance rates (%/min) of aerosolized 99mTc-DTPA (0.8 micron MMD; 2.4 GSD), using data corrected for recirculating radioactivity, in the upper (zone 1), middle (zone 2), and lower (zone 3) posterior lung fields. In nonsmokers, RC-DTPA in zone 1 was faster than in zone 2 or 3 in both the upright (P less than 0.001) and supine positions (P less than 0.0). No effect was produced by changes in posture on the regional RC-DTPA. In smokers, RC-DTPA was increased in all zones compared with the nonsmokers (P = 0.004), with a further increase in RC-DTP in zone 1 in the upright posture compared with the other regions (P less than 0.001). We conclude that in nonsmokers regional RC-DTPA is faster in zone 1 than in other zones, and this is not related to recirculation of radioactivity; posture does not modify the regional RC-DTPA of nonsmokers; smoking increases RC-DTPA in all zones and more in zone 1 in the upright posture.  相似文献   

15.
During physiological spontaneous breathing maneuvers, the diaphragm displaces volume while maintaining curvature. However, with maximal diaphragm activation, curvature decreases sharply. We tested the hypotheses that the relationship between diaphragm muscle shortening and volume displacement (VD) is nonlinear and that curvature is a determinant of such a relationship. Radiopaque markers were surgically placed on three neighboring muscle fibers in the midcostal region of the diaphragm in six dogs. The three-dimensional locations were determined using biplanar fluoroscopy and diaphragm VD, curvature, and muscle shortening were computed in the prone and supine postures during spontaneous breathing (SB), spontaneous inspiration efforts after airway occlusion at lung volumes ranging from functional residual capacity (FRC) to total lung capacity, and during bilateral maximal phrenic nerve stimulation at those same lung volumes. In supine dogs, diaphragm VD was approximately two- to three-fold greater during maximal phrenic nerve stimulation than during SB. The contribution of muscle shortening to VD nonlinearly increases with level of diaphragm activation independent of posture. During submaximal diaphragm activation, the contribution is essentially linear due to constancy of diaphragm curvature in both the prone and supine posture. However, the sudden loss of curvature during maximal bilateral phrenic nerve stimulation at muscle shortening values greater than 40% (ΔL/L(FRC)) causes a nonlinear increase in the contribution of muscle shortening to diaphragm VD, which is concomitant with a nonlinear change in diaphragm curvature. We conclude that the nonlinear relationship between diaphragm muscle shortening and its VD is, in part, due to a loss of its curvature at extreme muscle shortening.  相似文献   

16.
We describe a single-posture method for deriving the proportionality constant (K) between rib cage (RC) and abdominal (AB) amplifiers of the respiratory inductive plethysmograph (RIP). Qualitative diagnostic calibration (QDC) is based on equations of the isovolume maneuver calibration (ISOCAL) and is carried out during a 5-min period of natural breathing without using mouthpiece or mask. In this situation, K approximates the ratio of standard deviations (SD) of the uncalibrated changes of AB-to-RC volume deflections. Validity of calibration was evaluated by 1) analyzing RIP waveforms during an isovolume maneuver and 2) comparing changes of tidal volume (VT) amplitude and functional residual capacity (FRC) level measured by spirometry (SP) with RIP values. Comparisons of VT(RIP) to VT(SP) were also obtained in a variety of postures during natural (uninstructed) preferential RC and AB breathing and with voluntary changes of VT amplitude and FRC level. VT(RIP)-to-VT(SP) comparisons were equal to or closer than published reports for single posture, ISOCAL, multiple- and linear-regression procedures. QDC of RIP in supine posture with comparisons to SP in that posture and others showed better accuracy in horizontal than upright postures.  相似文献   

17.
In vivo length and shortening of canine diaphragm with body postural change   总被引:1,自引:0,他引:1  
Using sonomicrometry, we measured the in vivo tidal shortening and velocity of shortening of the costal and crural segments of the diaphragm in the anesthetized dog in the supine, upright, tailup, prone, and lateral decubitus postures. When compared with the supine position, end-expiratory diaphragmatic length varied by less than 11% in all postures, except the upright. During spontaneous breathing, the tidal shortening and the velocity of shortening of the crural segment exceeded that of the costal segment in all postures except the upright and was maximal for both segments in the prone posture. We noted the phasic integrated electromyogram to increase as the end-expiratory length of the diaphragm shortened below and to decrease as the diaphragm lengthened above its optimal length. This study shows that the costal and crural segments have a different quantitative behavior with body posture and both segments show a compensation in neural drive to changes in resting length.  相似文献   

18.
Mixing for two gases of markedly different gaseous diffusivity, helium (He) (mol wt = 4) and sulfur hexafluoride (SF6) (mol wt = 146) has been studied by a rebreathing method in different postures. In nine normal subjects duplicate measurements were made in the erect (seated), supine, and lateral decubitus posture, at a constant tidal volume (700 ml) and frequency (1 Hz) starting from functional residual capacity (FRC). Additional measurements were made on four of the subjects, rebreathing seated erect at a volume similar to the relaxed FRC supine and supine at a volume similar to the relaxed FRC seated. In the supine posture the mean breath number to reach 99% equilibrium (n99), was not significantly different for the two gases, 8.9 for He and 9.8 for SF6. There was a difference (P less than 0.01) when erect; n99 (He) = 8.2 and n99 (SF6) = 10.9. The greatest He-SF6 difference (P less than 0.001) was in the lateral decubitus position n99 (He) = 10.1 and n99 (SF6) = 15.9. The mean relaxed FRC as percent of seated was 71% supine and 75% in lateral decubitus posture. Rebreathing seated at a lower volume did not abolish the He-SF6 mixing difference nor did rebreathing at a higher volume when supine induce a He-SF6 mixing difference. Thus the effect of posture on gas mixing cannot be due solely to lung volume and must represent a convective and diffusive dependent change in the distribution of ventilation per unit lung volume.  相似文献   

19.
A change from the supine to the head-up posture in anesthetized dogs elicits increased phasic expiratory activation of the rib cage and abdominal expiratory muscles. However, when this postural change is produced over a 4- to 5-s period, there is an initial apnea during which all the muscles are silent. In the present studies, we have taken advantage of this initial silence to determine functional residual capacity (FRC) and measure the subsequent change in end-expiratory lung volume. Eight animals were studied, and in all of them end-expiratory lung volume in the head-up posture decreased relative to FRC [329 +/- 70 (SE) ml]. Because this decrease also represents the increase in lung volume as a result of expiratory muscle relaxation at the end of the expiratory pause, it can be used to determine the expiratory muscle contribution to tidal volume (VT). The average contribution was 62 +/- 6% VT. After denervation of the rib cage expiratory muscles, the reduction in end-expiratory lung volume still amounted to 273 +/- 84 ml (49 +/- 10% VT). Thus, in head-up dogs, about two-thirds of VT result from the action of the expiratory muscles, and most of it (83%) is due to the action of the abdominal rather than the rib cage expiratory muscles.  相似文献   

20.
Transdiaphragmatic pressure is a result of both tension in the muscles of the diaphragm and curvature of the muscles. As lung volume increases, the pressure-generating capability of the diaphragm decreases. Whether decrease in curvature contributes to the loss in transdiaphragmatic pressure and, if so, under what conditions it contributes are unknown. Here we report data on muscle length and curvature in the supine dog. Radiopaque markers were attached along muscle bundles in the midcostal region of the diaphragm in six beagle dogs of approximately 8 kg, and marker locations were obtained from biplanar images at functional residual capacity (FRC), during spontaneous inspiratory efforts against a closed airway at lung volumes from FRC to total lung capacity, and during bilateral maximal phrenic nerve stimulation at the same lung volumes. Muscle length and curvature were obtained from these data. During spontaneous inspiratory efforts, muscle shortened by 15-40% of length at FRC, but curvature remained unchanged. During phrenic nerve stimulation, muscle shortened by 30 to nearly 50%, and, for shortening exceeding 52%, curvature appeared to decrease sharply. We conclude that diaphragm curvature is nearly constant during spontaneous breathing maneuvers in normal animals. However, we speculate that it is possible, if lung compliance were increased and the chest wall and the diameter of the diaphragm ring of insertion were enlarged, as in the case of chronic obstructive pulmonary disease, that decrease in diaphragm curvature could contribute to loss of diaphragm function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号