首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cloning and structure of the BepI modification methylase.   总被引:7,自引:7,他引:0       下载免费PDF全文
The gene coding for a CGCG specific DNA methylase has been cloned in E. coli from Brevibacterium epidermidis. The enzyme, named BepI methylase, is probably the cognate methylase of the FnuDII isoschizomer BepI endonuclease isolated from this strain. The expression of BepI methylase in E. coli is dependent on the orientation of the cloned fragment suggesting that the gene is transcribed from a promoter on the plasmid vector. No BepI endonuclease could be detected in the clones producing BepI methylase. The nucleotide sequence of the BepI methylase gene has been determined, it predicts a protein of 403 amino acids (MR: 45,447). Analysis of the amino acid sequence deduced from the nucleotide sequence revealed similarities between the BepI methylase and other cytosine methylases. M. BepI methylates the external cytosine in its recognition sequence.  相似文献   

2.
The dcm locus of Escherichia coli K-12 has been shown to code for a methylase that methylates the second cytosine within the sequence 5'-CC(A/T)GG-3'. This sequence is also recognized by the EcoRII restriction-modification system coded by the E. coli plasmid N3. The methylase within the EcoRII system methylates the same cytosine as the dcm protein. We have isolated, from a library of E. coli K-12 DNA, two overlapping clones that carry the dcm locus. We show that the two clones carry overlapping sequences that are present in a dcm+ strain, but are absent in a delta dcm strain. We also show that the cloned gene codes for a methylase, that it complements mutations in the EcoRII methylase, and that it protects EcoRII recognition sites from cleavage by the EcoRII endonuclease. We found no phage restriction activity associated with the dcm clones.  相似文献   

3.
DNA containing 5-azacytosine is an irreversible inhibitor of DNA(cytosine-5)methyltransferase. This paper describes the binding of DNA methyltransferase to 32P-labeled fragments of DNA containing 5-azacytosine. The complexes were identified by gel electrophoresis. The EcoRII methyltransferase specified by the R15 plasmid was purified from Escherichia coli B(R15). This enzyme methylates the second C in the sequence CCAGG and has a molecular mass of 60,000 Da. Specific binding of enzyme to DNA fragments could be detected if either excess unlabeled DNA or 0.8% sodium dodecyl sulfate was added to the reaction mixture prior to electrophoresis. Binding was dependent upon the presence of both the CCAGG sequence and azacytosine in the DNA fragment. S-Adenosylmethionine stimulated the formation of the complex. The complex was stable to 6 M urea but could be digested with pronase. These DNA fragments could be used to detect the presence of several different methyltransferases in crude extracts of E. coli. No DNA protein complexes could be detected in E. coli B extracts, a strain that contains no DNA(cytosine-5)methyltransferases. The chromosomally determined methylase with the same specificity as the purified EcoRII methylase could be detected in crude extracts of E. coli K12 strains. The MspI methylase cloned in E. coli HB101 could also be detected in crude extracts. These enzymes are the only proteins that bind azacytosine-containing DNA in crude extracts of E. coli.  相似文献   

4.
S Kim  B Lew    F N Chang 《Journal of bacteriology》1977,130(2):839-845
Enzymatic methyl ester formation in Escherichia coli ribosomal proteins was observed. Alkali lability of the methylated proteins and derivatization of the methyl groups as methyl esters of 3,5-dinitrobenzoate indicate the presence of protein methyl esters. The esterification reaction occurs predominantly on the 30S ribosomal subunit, with protein S3 as the major esterified protein. When the purified 30S subunit was used as the methyl acceptor, protein S9 was also found to be esterified. The enzyme responsible for the esterification of free carboxyl groups in proteins, protein methylase II (S-adenosyl-L-methionine:protein carboxyl methyltransferase, EC 2.1.1.24), was identified in E. coli Q13. This enzyme is extremely unstable when compared with that from mammalian origin. By molecular sieve chromatography, E. coli protein methylase II showed multiple peaks, with a major broad peak around 120,000 daltons and several minor peaks in the lower-molecular-weight region. Rechromatography of the major enzyme peak showed activities in several fractions that are much lower in molecular weight. The substrate specificity of the E. coli enzyme is similar to that of the mammalian enzyme. The Km value for S-adenosyl-L-methionine is 1.96 X 10(-6) M, and S-adenosyl-L-homocysteine was found to be a competitive inhibitor, with a Ki value of 1.75 X 10(-6) M.  相似文献   

5.
The Escherichia coli plasmid pDXX1 codes for a new restriction-modification system. The specific restriction endonuclease coded by this system has been purified by a procedure that includes phosphocellulose and heparin-agarose chromatography. Sedimentation on glycerol gradients showed one peak of activity with a value of about 12 S. The highly purified enzyme require ATP and Mg2+ for activity as well as S-adenosylmethionine, although some S-adenosylmethionine molecules are probably bound to the enzyme. The enzyme does not cleave lambda DNA at well-defined sites and has a strong non-modified DNA-dependent ATPase activity. The enzyme has also methylase activity acting against non-modified DNA.  相似文献   

6.
The BamHI restriction modification system was previously cloned into E. coli and maintained with an extra copy of the methylase gene on a high copy vector (Brooks et al., (1989) Nucl. Acids Res. 17, 979-997). The nucleotide sequence of a 3014 bp region containing the endonuclease (R) and methylase (M) genes has now been determined. The sequence predicts a methylase protein of 423 amino acids, Mr 49,527, and an endonuclease protein of 213 amino acids, Mr 24,570. Between the two genes is a small open reading frame capable of encoding a 102 amino acid protein, Mr 13,351. The M. BamHI enzyme has been purified from a high expression clone, its amino terminal sequence determined, and the nature of its substrate modification studied. The BamHI methylase modifies the internal C within its recognition sequence at the N4 position. Comparisons of the deduced amino acid sequence of M. BamHI have been made with those available for other DNA methylases: among them, several contain five distinct regions, 12 to 22 amino acids in length, of pronounced sequence similarity. Finally, stability and expression of the BamHI system in both E. coli and B. subtilis have been studied. The results suggest R and M expression are carefully regulated in a 'natural' host like B. subtilis.  相似文献   

7.
Cloning and characterization of the HpaII methylase gene.   总被引:10,自引:9,他引:1       下载免费PDF全文
The HpaII restriction-modification system from Haemophilus parainfluenzae recognizes the DNA sequence CCGG. The gene for the HpaII methylase has been cloned into E. coli and its nucleotide sequence has been determined. The DNA of the clones is fully protected against cleavage by the HpaII restriction enzyme in vitro, indicating that the methylase gene is active in E. coli. The clones were isolated in an McrA-strain of E. coli; attempts to isolate them in an McrA+ strain were unsuccessful. The clones do not express detectable HpaII restriction endonuclease activity, suggesting that either the endonuclease gene is not expressed well in E. coli, or that it is not present in its entirety in any of the clones that we have isolated. The derived amino acid sequence of the HpaII methylase shows overall similarity to other cytosine methylases. It bears a particularly close resemblance to the sequences of the HhaI, BsuFI and MspI methylases. When compared with three other methylases that recognize CCGG, the variable region of the HpaII methylase, which is believed to be responsible for sequence specific recognition, shows some similarity to the corresponding regions of the BsuFI and MspI methylases, but is rather dissimilar to that of the SPR methylase.  相似文献   

8.
DNA methylase methylating adenine with formation of 6-methylaminopurine has been identified in Shigella sonnei 1188 cells which are the natural host of DDVI phage. At the same time, in DNA of DDVI phage replicating both in Sh. sonnei 1188 cells and in Escherichia coli B cells 7-methylguanine was found as the only minor base in amounts of 0.25 and 0.27 mol per 100 mol of nucleotides, respectively. The extract of the infected cells was found to contain both kinds of DNA methylases: virus-specific guanine methylase and cellular adenine methylase. The lack of 6-methylaminopurine in DNA of this phage is explained by reversible inhibition of the cell enzyme in the infected cells. The amount of methyl groups transferred by DDVI-specific methylase on DNA does not depend on the species of the infected cells and is similar in the case of unmodified SD phage DNA and DNA of T2 phage methylated by E. coli B enzyme. Guanine methylase has been shown to be a DDVI-induced modification enzyme and to protect against restriction of B-type. It methylates double-stranded DNAs only and is inhibited by S-adenosylhomocysteine.  相似文献   

9.
The T4 dam+ gene has been cloned (S. L. Schlagman and S. Hattman, Gene 22:139-156, 1983) and transferred into an Escherichia coli dam-host. In this host, the T4 Dam DNA methyltransferase methylates mainly, if not exclusively, the sequence 5'-GATC-3'; this sequence specificity is the same as that of the E. coli Dam enzyme. Expression of the cloned T4 dam+ gene suppresses almost all the phenotypic traits associated with E. coli dam mutants, with the exception of hypermutability. In wild-type hosts, 20- to 500-fold overproduction of the E. coli Dam methylase by plasmids containing the cloned E. coli dam+ gene results in a hypermutability phenotype (G.E. Herman and P. Modrich, J. Bacteriol. 145:644-646, 1981; M.G. Marinus, A. Poteete, and J.A. Arraj, Gene 28:123-125, 1984). In contrast, the same high level of T4 Dam methylase activity, produced by plasmids containing the cloned T4 dam+ gene, does not result in hypermutability. To account for these results we propose that the E. coli Dam methylase may be directly involved in the process of methylation-instructed mismatch repair and that the T4 Dam methylase is unable to substitute for the E. coli enzyme.  相似文献   

10.
A new E. coli strain has been constructed that contains the dinD1::LacZ+ fusion and is deficient in methylation-dependent restriction systems (McrA-, McrBC-, Mrr-). This strain has been used to clone restriction endonuclease genes directly into E. coli. When E. coli cells are not fully protected by the cognate methylase, the restriction enzyme damages the DNA in vivo and induces the SOS response. The SOS-induced cells form blue colonies on indicator plates containing X-gal. Using this method the genes coding for the thermostable restriction enzymes Taql (5'TCGA3') and Tth111l (5'GACNNNGTC3') have been successfully cloned in E. coli. The new strain will be useful to clone other genes involved in DNA metabolism.  相似文献   

11.
The genes encoding the endonuclease and the methylase of the PvuI restriction and modification system were cloned in E.coli and characterized. The genes were adjacent in tandem orientation spanning a distance of 2200 bases. The PvuI endonuclease was a single polypeptide with a calculated molecular weight of 27,950 daltons. The endonuclease was easily detectable when the gene was expressed from its endogenous promotor and present on a low copy plasmid, but expression was considerably enhanced when the endonuclease gene was placed under the control of a strong promoter on a high copy plasmid. The methylase did not completely protect plasmid DNA from R.PvuI digestion until the methylase gene was placed under lac promotor control in a multicopy plasmid. In the absence of the M.PvuI methylase, expression of the R.PvuI endonuclease from the lac promotor on a multicopy plasmid was not lethal to wild type E.coli, but was lethal in a temperature-sensitive ligase mutant at the non-permissive temperature. Moreover, induction of the R.PvuI endonuclease under lambda pL promotor control resulted in complete digestion of the E.coli chromosome by R.PvuI.  相似文献   

12.
The E. coli dam (DNA adenine methylase) enzyme is known to methylate the sequence GATC. A general method for cloning sequence-specific DNA methylase genes was used to isolate the dam gene on a 1.14 kb fragment, inserted in the plasmid vector pBR322. Subsequent restriction mapping and subcloning experiments established a set of approximate boundaries of the gene. The nucleotide sequence of the dam gene was determined, and analysis of that sequence revealed a unique open reading frame which corresponded in length to that necessary to code for a protein the size of dam. Amino acid composition derived from this sequence corresponds closely to the amino acid composition of the purified dam protein. Enzymatic and DNA:DNA hybridization methods were used to investigate the possible presence of dam genes in a variety of prokaryotic organisms.  相似文献   

13.
An Escherichia coli K12 strain carrying the HhaII methylase and restriction genes on two separate compatible plasmids, pSK5 and pSK7, is used to overproduce the restriction endonuclease. Plasmid pSK5 expresses the methylase gene constitutively from its chloramphenicol resistance gene promoter, and plasmid pSK7 expresses the restriction endonuclease under control of the lacUV5 promoter. Induction of the two-plasmid clone with 1 mM isopropyl-1-thio-beta-D-galactopyranoside results in a 15-fold increase in HhaII endonuclease activity. The enzyme has been purified to apparent homogeneity. It migrates as a 23-kilodalton polypeptide on denaturing sodium dodecyl sulfate-polyacrylamide electrophoretic gels and as a 52-kilo-dalton native protein dimer on a high pressure liquid chromatography sizing column.  相似文献   

14.
DdeI, a Type II restriction-modification system from the gram-negative anaerobic bacterium Desulfovibrio desulfuricans, recognizes the sequence CTNAG. The system has been cloned into E. coli in two steps. First the methylase gene was cloned into pBR322 and a derivative expressing higher levels was constructed. Then the endonuclease gene was located by Southern blot analyses; BamHI fragments large enough to contain the gene were cloned into pACYC184, introduced into a host containing the methylase gene, and screened for endonuclease activity. Both genes are stably maintained in E. coli on separate but compatible plasmids. The DdeI methylase is shown to be a cytosine methylase. DdeI methylase clones decrease in viability as methylation activity increases in E. coli RR1 (our original cloning strain). Therefore the DdeI system has been cloned and maintained in ER1467, a new E. coli cloning strain engineered to accept cytosine methylases. Finally, it has been demonstrated that a very high level of methylation was necessary in the DdeI system for successful introduction of the active endonuclease gene into E. coli.  相似文献   

15.
Large-scale production of citrate synthase from a cloned gene   总被引:2,自引:0,他引:2  
Starting with a colicin E1 resistance recombinant plasmid which contains gltA, the gene for citrate synthase in Escherichia coli, we have constructed an ampicillin-resistance plasmid containing the gltA region as a 2.9-kilobase-pair insert in the tetracycline-resistance region of pBR322. Escherichia coli HB101 harbouring this plasmid, when grown on rich medium containing ampicillin, contains citrate synthase as about 8% of its soluble protein. The enzyme has been purified from this rich source and is identical to the chromosomal enzyme prepared previously in every property tested, except for specific activity, which is 64 U . mg-1 as compared with 45-50 U . mg-1 previously obtained. The N-terminal sequences of both enzymes are reported, and they are identical up to residue 16 at least. The overall yield of pure enzyme, starting with the cells grown in 15 L of medium, is 600-800 mg.  相似文献   

16.
The ada gene of Escherichia coli encodes O6-methylguanine-DNA methyltransferase, which serves as a positive regulator of the adaptive response to alkylating agents and as a DNA repair enzyme. The gene which can make an ada-deficient strain of E. coli resistant to the cell-killing and mutagenic effects of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) has been cloned from Salmonella typhimurium TA1538. DNA sequence analysis indicated that the gene potentially encoded a protein with a calculated molecular weight of 39,217. Since the nucleotide sequence of the cloned gene shows 70% similarity to the ada gene of E. coli and there is an ada box-like sequence (5'-GAATTAAAACGCA-3') in the promoter region, we tentatively refer to this cloned DNA as the adaST gene. The gene encodes Cys-68 and Cys-320, which are potential acceptor sites for the methyl group from the damaged DNA. The multicopy plasmid carrying the adaST gene significantly reduced the frequency of mutation induced by MNNG both in E. coli and in S. typhimurium. The AdaST protein encoded by the plasmid increased expression of the ada'-lacZ chromosome fusion about 5-fold when an E. coli strain carrying both the fusion operon and the plasmid was exposed to a low concentration of MNNG, whereas the E. coli Ada protein encoded by a low-copy-number plasmid increased it about 40-fold under the same conditions. The low ability of AdaST to function as a positive regulator could account for the apparent lack of an adaptive response to alkylation damage in S. typhimurium.  相似文献   

17.
The gene for the major phosphofructokinase enzyme in Escherichia coli, pfkA, has been sequenced. Comparison of the amino acid sequence with other phosphofructokinases showed that this enzyme is related to the Bacillus stearothermophilus and rabbit muscle enzymes, but is different from the second, minor phosphofructokinase found in E. coli. The region which has been sequenced comprises the complete pfkA--tpi interval on the E. coli genetic map. Two other genes have been identified from the nucleotide sequence: a gene for a periplasmic sulphate-binding protein, sbp, and for a membrane-bound enzyme, CDP-diglyceride hydrolase, cdh. This establishes the complete gene arrangement in this region as pfkA-sbp-cdh-tpi. The pfkA gene has been subcloned into a high-copy-number plasmid under the control of a strong, chimaeric promoter which arose as an artefact in the construction of the plasmid gene bank from which the original pfkA recombinant was isolated. A specialised recombinant has been constructed which carries a 1.4 X 10(3)-nucleotide insert containing just the pfkA gene flanked by two HindIII recognition sites providing a simple system for the recloning of this gene into different vectors. This recombinant expresses the enzyme at high levels (40-50% of total cell protein is active, soluble phosphofructokinase). This expression system is now being used to study the enzyme using 'reverse genetics'.  相似文献   

18.
The gene of methylase M.SccL1I that protects DNA against hydrolysis with the nickase N.BspD6I was inserted into plasmid pRARE carrying genes of tRNA, which are rare in E. coli. The insertion of the gene sscML1I into pRARE was reasoned by incompatibility of pRARE and the plasmid carrying the gene sscML1I, because both plasmids contained the same ori-site. Upon transformation of E. coli TOP10F cells with both the recombinant plasmid pRARE/MSsc and the expression vector pET28b containing the nickase gene bspD6IN under the phage T7 promoter, a strain of E. coli was obtained which produced 7 x 10(5) units of the nickase N.BspD6I per 1 g wet biomass, and this yield was two orders of magnitude higher than the yield of the enzyme from the strain free of pRARE/MSsc.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号