首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
2.
Fibroblast growth factor receptor 4 (FGFR4) is a transmembrane tyrosine kinase receptor that plays a crucial role in the regulation of hepatic bile acid and lipid metabolism. FGFR4 underlies high-fat diet-induced hepatic steatosis, suggesting that inhibition of FGFR4 activation may be an effective way to prevent or treat nonalcoholic fatty liver disease (NAFLD). To determine whether neutralization of FGFR4 ligands by soluble FGFR4 extracellular domain (FGFR4-ECD) can inhibit the activation of FGFR4, we constructed FGFR4-ECD expression vector and showed that FGFR4-ECD was effectively expressed in cells and secreted into culture medium. FGFR4-ECD inhibited FGF19-induced activation of FGFR4 signaling and reduced steatosis of HepG2 induced by palmitic acid in vitro. Furthermore, in a tetracycline-induced fatty liver model, expression of FGFR4-ECD in mouse liver reduced the accumulation of hepatic lipids and partially restored the expression of peroxisome proliferator-activated receptor α (PPARα), which promotes the mitochondrial fatty acid beta-oxidation but is repressed by tetracycline. Taken together, these results demonstrate that FGFR4-ECD can block FGFR4 signaling and prevent hepatic steatosis, highlighting the potential value of inhibition of FGFR4 signaling as a method for therapeutic intervention against NAFLD.  相似文献   

3.
Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease associated with insulin resistance, oxidative stress, and inflammation. Evidence indicates that chromium has a role in the regulation of glucose and lipid metabolism and may improve insulin sensitivity. In this study, we report that chromium supplementation has a beneficial effect against NAFLD. We found that KK/HlJ mice developed obesity and progressed to NAFLD after feeding with high-fat diet for 8 weeks. High-fat-fed KK/HlJ mice showed hepatocyte injury and hepatic triglyceride accumulation, which was accompanied by insulin resistance, oxidative stress, and inflammation. Chromium supplementation prevented progression of NAFLD and the beneficial effects were accompanied by reduction of hepatic triglyceride accumulation, elevation of hepatic lipid catabolic enzyme, improvement of glucose and lipid metabolism, suppression of inflammation as well as resolution of oxidative stress, probably through enhancement of insulin signaling. Our findings suggest that chromium could serve as a hepatoprotective agent against NAFLD.  相似文献   

4.
BackgroundNon-alcoholic fatty liver disease (NAFLD) causes a wide spectrum of liver damage, ranging from simple steatosis to cirrhosis. However, simple steatosis (SS) and steatohepatitis (NASH) cannot yet be distinguished by clinical or laboratory features. The aim of this study was to assess the relationship between alpha-ketoglutarate and the degrees of NAFLD in morbidly obese patients.ResultsWe found that serum levels of alpha-ketoglutarate were significantly higher in morbidly obese women than in normal-weight women. We showed that circulating levels of alpha-ketoglutarate were lower in lean controls and morbidly obese patients without NAFLD. We also found that alpha-ketoglutarate serum levels were higher in both SS and NASH than in normal liver of morbidly obese patients. However, there was no difference between SS and NASH. Moreover, we observed that circulating levels of alpha-ketoglutarate were associated with glucose metabolism parameters, lipid profile, hepatic enzymes and steatosis degree. In addition, diagnostic performance of alpha-ketoglutarate has been analyzed in NAFLD patients. The AUROC curves from patients with liver steatosis exhibited an acceptable clinical utility. Finally, we showed that the combination of biomarkers (AST, ALT and alpha-ketoglutarate) had the highest accuracy in diagnosing liver steatosis.ConclusionThese findings suggest that alpha-ketoglutarate can determine the presence of non-alcoholic fatty liver in morbidly obese patients but it is not valid a biomarker for NASH.  相似文献   

5.
6.

Context

Non alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome. NAFLD represents a spectrum of liver disease ranging from reversible hepatic steatosis, to non alcoholic steato-hepatitis (NASH) and cirrhosis. The potential role of glucocorticoids (GC) in the pathogenesis of NAFLD is highlighted in patients with GC excess, Cushing''s syndrome, who develop central adiposity, insulin resistance and in 20% of cases, NAFLD. Although in most cases of NAFLD, circulating cortisol levels are normal, hepatic cortisol availability is controlled by enzymes that regenerate cortisol (F) from inactive cortisone (E) (11β-hydroxysteroid dehydrogenase type 1, 11β-HSD1), or inactivate cortisol through A-ring metabolism (5α- and 5β-reductase, 5αR and 5βR).

Objective and Methods

In vitro studies defined 11β-HSD1 expression in normal and NASH liver samples. We then characterised hepatic cortisol metabolism in 16 patients with histologically proven NAFLD compared to 32 obese controls using gas chromatographic analysis of 24 hour urine collection and plasma cortisol generation profile following oral cortisone.

Results

In patients with steatosis 5αR activity was increased, with a decrease in hepatic 11β-HSD1 activity. Total cortisol metabolites were increased in this group consistent with increased GC production rate. In contrast, in patients with NASH, 11β-HSD1 activity was increased both in comparison to patients with steatosis, and controls. Endorsing these findings, 11β-HSD1 mRNA and immunostaining was markedly increased in NASH patients in peri septal hepatocytes and within CD68 positive macrophages within inflamed cirrhotic septa.

Conclusion

Patients with hepatic steatosis have increased clearance and decreased hepatic regeneration of cortisol and we propose that this may represent a protective mechanism to decrease local GC availability to preserve hepatic metabolic phenotype. With progression to NASH, increased 11β-HSD1 activity and consequent cortisol regeneration may serve to limit hepatic inflammation.  相似文献   

7.
Thyroid hormone receptor (TR) agonists have been proposed as therapeutic agents to treat non-alcoholic fatty liver disease (NAFLD) and insulin resistance. We investigated the ability of the TR agonists GC-1 and KB2115 to reduce hepatic steatosis in ob/ob mice. Both compounds markedly reduced hepatic triglyceride levels and ameliorated hepatic steatosis. However, the amelioration of fatty liver was not sufficient to improve insulin sensitivity in these mice and reductions in hepatic triglycerides did not correlate with improvements in insulin sensitivity or glycemic control. Instead, the effects of TR activation on glycemia varied widely and were found to depend upon the time of treatment as well as the compound and dosage used. Lower doses of GC-1 were found to further impair glycemic control, while a higher dose of the same compound resulted in substantially improved glucose tolerance and insulin sensitivity, despite all doses being equally effective at reducing hepatic triglyceride levels. Improvements in glycemic control and insulin sensitivity were observed only in treatments that also increased body temperature, suggesting that the induction of thermogenesis may play a role in mediating these beneficial effects. These data illustrate that the relationship between TR activation and insulin sensitivity is complex and suggests that although TR agonists may have value in treating NAFLD, their effect on insulin sensitivity must also be considered.  相似文献   

8.
Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of obesity-associated liver diseases and it has become the major cause of cirrhosis in the Western world. The high prevalence of NAFLD-associated advanced liver disease reflects both the high prevalence of obesity-related fatty liver (hepatic steatosis) and the lack of specific treatments to prevent hepatic steatosis from progressing to more serious forms of liver damage, including nonalcoholic steatohepatitis (NASH), cirrhosis, and primary liver cancer. The pathogenesis of NAFLD is complex, and not fully understood. However, compelling evidence demonstrates that dysregulation of the hedgehog (Hh) pathway is involved in both the pathogenesis of hepatic steatosis and the progression from hepatic steatosis to more serious forms of liver damage. Inhibiting hedgehog signaling enhances hepatic steatosis, a condition which seldom results in liver-related morbidity or mortality. In contrast, excessive Hh pathway activation promotes development of NASH, cirrhosis, and primary liver cancer, the major causes of liver-related deaths. Thus, suppressing excessive Hh pathway activity is a potential approach to prevent progressive liver damage in NAFLD. Various pharmacologic agents that inhibit Hh signaling are available and approved for cancer therapeutics; more are being developed to optimize the benefits and minimize the risks of inhibiting this pathway. In this review we will describe the Hh pathway, summarize the evidence for its role in NAFLD evolution, and discuss the potential role for Hh pathway inhibitors as therapies to prevent NASH, cirrhosis and liver cancer.  相似文献   

9.
10.
Non-alcoholic fatty liver disease (NAFLD) is becoming the main cause of liver disease in Western countries, especially in morbidly obese patients (MOPs). The proprotein convertase subtilisin/kexin type 9 (PCSK9) has been recently studied because of its possible involvement in the pathogenesis of NAFLD, but its role, at least in MOPs, is still controversial. The aim of this study was to clarify the correlation between the circulating levels of the PCSK9 protein (cPCSK9) and its hepatic expression with the severity of liver damage in a population of MOPs with NAFLD undergoing bariatric surgery. PCSK9 mRNA was positively correlated with FASN, PPARγ and PPARα mRNAs, while no significant differences were found in PCSK9 mRNA expression in relation to the severity of liver steatosis, lobular inflammation and hepatocellular ballooning. In addition, hepatic PCSK9 protein expression levels were not related to histological parameters of lobular inflammation and hepatocyte ballooning, decreased significantly only in relation to the severity of hepatic steatosis, and were inversely correlated with ALT and AST serum levels. cPCSK9 levels in the whole population were associated with the severity of hepatic steatosis and were positively correlated to total cholesterol levels. In multivariate analysis, cPCSK9 levels were associated with age, total cholesterol and HbA1c. In conclusion, in MOPs our findings support a role for PCSK9 in liver fat accumulation, but not in liver damage progression, and confirm its role in the increase of blood cholesterol, which ultimately may contribute to increased cardiovascular risk in this population.  相似文献   

11.
Reactive oxygen species, when released under controlled conditions and limited amounts, contribute to cellular proliferation, senescence, and survival by acting as signaling intermediates. In past decades there has been an epidemic diffusion of nonalcoholic fatty liver disease (NAFLD) that represents the result of the impairment of lipid metabolism, redox imbalance, and insulin resistance in the liver. To date, most studies and reviews have been focused on the molecular mechanisms by which fatty liver progresses to steatohepatitis, but the processes leading toward the development of hepatic steatosis in NAFLD are not fully understood yet. Several nuclear receptors, such as peroxisome proliferator-activated receptors (PPARs) α/γ/δ, PPARγ coactivators 1α and 1β, sterol-regulatory element-binding proteins, AMP-activated protein kinase, liver-X-receptors, and farnesoid-X-receptor, play key roles in the regulation of lipid homeostasis during the pathogenesis of NAFLD. These nuclear receptors may act as redox sensors and may modulate various metabolic pathways in response to specific molecules that act as ligands. It is conceivable that a redox-dependent modulation of lipid metabolism, nuclear receptor-mediated, could cause the development of hepatic steatosis and insulin resistance. Thus, this network may represent a potential therapeutic target for the treatment and prevention of hepatic steatosis and its progression to steatohepatitis. This review summarizes the redox-dependent factors that contribute to metabolism alterations in fatty liver with a focus on the redox control of nuclear receptors in normal liver as well as in NAFLD.  相似文献   

12.
13.
Obesity is a major contributor to the development of steatohepatitis and fibrosis from nonalcoholic fatty liver disease (NAFLD). Hypoxia aggravates progression of NAFLD. In mice on high-fat diet (HFD), hepatic steatosis leads to liver tissue hypoxia, evidenced by accumulation of hypoxia inducible factor-1-alpha (HIF-1α), which is a central regulator of the global response to hypoxia. Hepatocyte cell signaling is an important factor in hepatic fibrogenesis. We here hypothesize that HIF-1α knockout in hepatocyte may protect against liver fibrosis. We first found that HFD led to 80% more hepatic collagen deposition than Hif1a−/−hep mice, which was confirmed by a-SMA staining of liver tissue. Body weight and liver weight were similar between groups. We then found the increasing HIF1a expression and decreasing PTEN expression in the mice on HFD and in PA-treated HepG2 cells. Finally, we found that HIF1 mediated PTEN/nfkb-p65 pathway plays an important role in the development of NAFLD to liver fibrosis. Collectively, these results identify a novel HIF1a/PTEN/NF-κ Bp65 signaling pathway in NAFLD, which could be targeted for the therapy.  相似文献   

14.
Nonalcoholic fatty liver disease (NAFLD) is a chronic disease affecting the health of many people worldwide. Previous studies have shown that dietary calcium supplementation may alleviate NAFLD, but the underlying mechanism is not clear. In this study investigating the effect of calcium on hepatic lipid metabolism, 8-week-old male C57BL/6J mice were divided into four groups (n = 6): (1) mice given a normal chow containing 0.5% calcium (CN0.5), (2) mice given a normal chow containing 1.2% calcium (CN1.2), (3) mice given a high-fat diet (HFD) containing 0.5% calcium (HFD0.5), and (4) mice fed a HFD containing 1.2% calcium (HFD1.2). To understand the underlying mechanism, cells were treated with oleic acid and palmitic acid to mimic the HFD conditions in vitro. The results showed that calcium alleviated the increase in triglyceride accumulation induced by oleic acid and/or palmitic acid in HepG2, AML12, and primary hepatocyte cells. Our data demonstrated that calcium supplementation alleviated HFD-induced hepatic steatosis through increased liver lipase activity, proving calcium is involved in the regulation of hepatic lipid metabolism. Moreover, calcium also increased the level of glycogen in the liver, and at the same time had the effect of reducing glycolysis and promoting glucose absorption. Calcium addition increased calcium levels in the mitochondria and cytoplasm. Taken together, we concluded that calcium supplementation could relieve HFD-induced hepatic steatosis by changing energy metabolism and lipase activity.  相似文献   

15.
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease. NAFLD begins with steatosis and advances to nonalcoholic steatohepatitis (NASH) and cirrhosis. The molecular mechanisms involved in NAFLD progression are not understood. Based on recent studies showing dysregulation of epidermal growth factor receptor (EGFR) in animal models of liver injury, we sought to determine if inhibition of EGFR mitigates liver fibrosis and HSC activation in NAFLD. We utilized the high fat diet (HFD)-induced murine model of liver injury to study the role of EGFR in NAFLD. The lipid accumulation, oxidative stress, hepatic stellate cell (HSC) activation and matrix deposition were examined in the liver tissues. We also evaluated the EGFR signaling pathway, ROS activation and pro-fibrogenic phenotype in oxidized low density lipoproteins (ox-LDL) challenged cultured HSCs. We demonstrate that EGFR was phosphorylated in liver tissues of HFD murine model of NAFLD. Inhibition of EGFR prevented diet-induced lipid accumulation, oxidative stress, and HSC activation and matrix deposition. In cultured HSCs, we show that ox-LDL caused rapid activation of the EGFR signaling pathway and induce the production of reactive oxygen species. EGFR also mediated HSC activation and promoted a pro-fibrogenic phenotype. In conclusion, our data demonstrate that EGFR plays an important role in NAFLD and is an attractive target for NAFLD therapy.  相似文献   

16.
Tumor necrosis factor α (TNFα) is known to be involved in dysregulation of hepatic lipid metabolism and insulin signaling. However, whether TNFα also plays a casual role in the onset of fructose-induced nonalcoholic fatty liver disease (NAFLD) has not yet been determined. Therefore, wild-type and TNFα receptor 1 (TNFR1)−/− mice were fed with either 30% fructose solution or plain tap water. Hepatic triglycerides, markers of inflammation and ATP concentration as well as plasma ALT levels were determined. Hepatic PAI-1, SREBP-1, FAS mRNA expression was assessed by real-time RT-PCR. Furthermore, lipid peroxidation and indices of insulin resistance were determined in liver tissue and plasma. In comparison to water controls, chronic intake of 30% fructose solution caused a significant ∼5-fold increase in triglyceride accumulation and neutrophil infiltration in livers of wild-type mice and a ∼8-fold increase in plasma ALT levels. In TNFR1−/− mice, hepatic steatosis was attenuated and neutrophil infiltration in the liver as well as plasma ALT levels was similar to water controls. The protective effect of the TNFR1 deletion against the onset of fructose-induced steatosis was associated with increased phospho AMPK and Akt levels, decreased SREBP-1 and FAS expression in the liver and decreased RBP4 plasma levels, whereas hepatic lipid peroxidation, iNOS protein and ATP levels were similar between wild-type and TNFR1−/− mice fed fructose. Taken together, these data suggest that TNFα plays a casual role in the onset of fructose-induced liver damage as well as insulin resistance in mice through signaling cascades downstream of TNFR1.  相似文献   

17.
Nonalcoholic steatohepatitis (NASH) is a progressive disease and poses a high risk of severe liver damage. However, the pathogenesis of NASH is still unclear. Accumulation of lipid droplets and insulin resistance is the hallmark of NASH. Pyruvate dehydrogenase kinase isoenzyme 4 (PDK4) plays key role in glucose metabolism via regulating the activity of pyruvate dehydrogenase complex (PDC). Here, we demonstrated a novel of PDK4 in NASH by regulating hepatic steatosis and insulin signaling pathway in methionine and choline deficient (MCD) diet induced NASH model. Hepatic PDK4 levels were highly induced in human patients with NASH and MCD diet fed mice, as well as in hepatocytes treated with oleic acid. The glucose and lipid metabolism were impaired in Pdk4?/? mice. Pdk4 deficiency ameliorated the hepatic steatosis significantly in NASH mice. Pdk4?/?-MCD mice had reduced liver weights and triglyceride (TG) levels. And Pdk4 deficiency dramatically reduced the expression of genes related to fatty acid uptake, synthesis and gluconeogenesis. In addition, elevated phosphorylated AMPK (p-AMPK), p-SAPK/JNK and diminished p-ERK, p-P38, p-Akt and p-mTOR/p-4EBP1 proteins were observed. In conclusion, our data indicated that PDK4 potentially contributes to the hepatic steatosis in NASH via regulating several signaling pathway and PDK4 may be a new therapeutic strategy against NAFLD.  相似文献   

18.
Liver disease is a significant health problem worldwide with mortality reaching around 2 million deaths a year. Non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) are the major causes of chronic liver disease. Pathologically, NAFLD and ALD share similar patterns of hepatic disorders ranging from simple steatosis to steatohepatitis, fibrosis and cirrhosis. It is becoming increasingly important to identify new pharmacological targets, given that there is no FDA-approved therapy yet for either NAFLD or ALD. Since the evolution of liver diseases is a multifactorial process, several mechanisms involving parenchymal and non-parenchymal hepatic cells contribute to the initiation and progression of liver pathologies. Moreover, certain protective molecular pathways become repressed during liver injury including signaling pathways such as the cyclic adenosine monophosphate (cAMP) pathway. cAMP, a key second messenger molecule, regulates various cellular functions including lipid metabolism, inflammation, cell differentiation and injury by affecting gene/protein expression and function. This review addresses the current understanding of the role of cAMP metabolism and consequent cAMP signaling pathway(s) in the context of liver health and disease. The cAMP pathway is extremely sophisticated and complex with specific cellular functions dictated by numerous factors such abundance, localization and degradation by phosphodiesterases (PDEs). Furthermore, because of the distinct yet divergent roles of both of its effector molecules, the cAMP pathway is extensively targeted in liver injury to modify its role from physiological to therapeutic, depending on the hepatic condition. This review also examines the behavior of the cAMP-dependent pathway in NAFLD, ALD and in other liver diseases and focuses on PDE inhibition as an excellent therapeutic target in these conditions.  相似文献   

19.
Non-alcoholic fatty liver disease NAFLD is closely associated with the dysregulation of lipid homeostasis. Diet-induced hepatic steatosis, which can initiate NAFLD progression, has been shown to be dramatically reduced in mice lacking the electroneutral Na+/H+ exchanger NHE1 (Slc9a1). In this study, we investigated if NHE1 deficiency had effects in liver that could contribute to the apparent protection against aberrant lipid accumulation. RT-PCR and immunoblot analyses of wild-type and NHE1-null livers revealed an expression profile that strongly suggested attenuation of both de novo lipogenesis and hepatic stellate cell activation, which is implicated in liver fibrosis. This included upregulation of the farnesoid X receptor FXR, peroxisome proliferator-activated receptor PPARγ, its co-activator PGC1α, and sestrin 2, an antioxidant protein involved in hepatic metabolic homeostasis. Furthermore, expression levels of the pro-lipogenic liver X receptor LXRα, and acetyl CoA carboxylases 1 and 2 were downregulated. These changes were associated with evidence of reduced cellular stress, which persisted even upon exposure to a high-fat diet, and the better preservation of insulin signaling, as evidenced by protein kinase B/Akt phosphorylation (Ser473). These results indicate that NHE1 deficiency may protect against NAFLD pathogenesis, which is significant given the availability of highly specific NHE1 inhibitors.  相似文献   

20.
Background and aimsHepatic steatosis is the most common histopathological finding on liver biopsy, with the most prevalent etiology being NAFLD. The pathogenesis of hepatic steatosis and NAFLD is multifactorial, however, studies on the importance of manganese in NAFLD are limited. We aimed to study hepatic manganese content, and other trace elements, in relation to hepatic steatosis in patients with chronic liver diseases of different etiology, mainly NAFLD.MethodsPatients with chronically elevated liver function tests underwent a diagnostic work-up, including routine blood tests and two liver biopsies. One of the biopsies was sent for histopathological evaluation, and the other for ultra-trace elemental determinations. Steatosis was graded using conventional histopathological methodology, and fat content was also quantitated in biopsy samples by measuring the steatotic area of the section using stereological point counting (SPC). Ultra-trace elemental analysis was utilized for determining manganese, iron, and copper using inductively coupled plasma sector field mass spectrometry (ICP-SFMS).Results76 patients were included in the study. Hepatic manganese concentrations in patients with steatosis were lower than in patients without hepatic steatosis (3.8 ± 1.1 vs. 6.4 ± 1.8, P < 0.001). Similar results were seen for blood manganese levels and hepatic steatosis. We found a strong inverse correlation between steatosis grade and hepatic manganese content (ρ=-0.743, P < 0.001). Also, low levels of manganese independently predicted the presence of steatosis (aOR 0.07 [95%CI: 0.01−0.63]).ConclusionPatients with NAFLD, or other CLD and concomitant hepatic steatosis, showed lower levels of hepatic manganese content with increasing grade of steatosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号