首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Clostridum propionicum is a chemical autotroph that metabolizes alanine to propionic acid (reduction product) and acetic acid (oxidation product). The ratio of propionate/acetate predicted by the electron balance is 2:1. This study reports the effect of pH on growth and organic acid production by this organism when grown in both test tube cultures initially buffered from pH 7.0 to 5.0, and in fermentors maintained at pH 7.0 and 6.5. Highest growth and organic acid production was found at pH 7.0 in both cases. HPLC analysis showed that at pH 7.0, the ratios of propionate to acetate were 0.45:1 (stationary tube, 24 h). The highest ratio observed was 1.8:1 (stationary tube, pH 6.0, 24h). This tube produced 8.5% of the acids produced in the pH 7.0 culture tube. The identify of the major portion of the reduction products of the organism remains unknown.  相似文献   

2.
Nineteen strains of root nodule bacteria were grown under various iron regimes (0.1, 1.0 and 20 M added iron) and tested for catechol and hydroxamate siderophore production and the excretion of malate and citrate. The growth response of the strains to iron differed markedly. For 12 strains (Bradyrhizobium strains NC92B and 32H1, B. japonicum USDA110 and CB1809, B. lupini WU8, cowpea Rhizobium NGR234, Rhizobium meliloti strains U45 and CC169, Rhizobium leguminosarum bv viciae WU235 and Rhizobium leguminosarum bv trifolii strains TA1, T1 and WU95) the mean generation time showed no variation with the 200-fold increase in iron concentration. In contrast, in Bradyrhizobium strains NC921, CB756 and TAL1000, B. japonicum strain 61A76 and R. leguminosarum bv viciae MNF300 there was a 2–5 fold decrease in growth rate at low iron. R. meliloti strains WSM419 and WSM540 showed decreased growth at high iron.All strains of root nodule bacteria tested gave a positive CAS (chrome azurol S) assay for siderophore production. No catechol-type siderophores were found in any strain, and only R. leguminosarum bv trifolii T1 and bv viciae WU235 produced hydroxamate under low iron (0.1 and 1.0 M added iron).Malate was excreted by all strains grown under all iron regimes. Citrate was excreted by B. japonicum USDA110 and B. lupini WU8 in all iron concentrations, while Bradyrhizobium TAL1000, R. leguminosarum bv viciae MNF300 and B. japonicum 61A76 only produced citrate under low iron (0.1 and/or 1.0 M added iron) during the stationary phase of growth.Abbreviations CAS chrome azurol S - HDTMA hexadecyltrime-thylammonium bromide  相似文献   

3.
Acid whey, a byproduct in cheese and yogurt production, demands high costs in disposal at large quantities. Nonetheless, it contains abundant sugars and nutrients that can potentially be utilized by microorganisms. Here we report a novel platform technology that converts acid whey into value-added products using Yarrowia lipolytica. Since wild type strains do not assimilate lactose, a major carbon source in whey, a secreted β-galactosidase was introduced. Additionally, to accelerate galactose metabolism, we overexpressed the relevant native four genes of the Leloir pathway. The engineered strain could achieve rapid total conversion of all carbon sources in acid whey, producing 6.61 g/L of fatty acids (FAs) with a yield of 0.146 g-FAs/g-substrates. Further engineering to introduce an omega-3 desaturase enabled the synthesis of α-linolenic acid from acid whey, producing 10.5 mg/gDCW within a short fermentation time. Finally, PEX10 knockout in our platform strain was shown to minimize hyphal formation in concentrated acid whey cultures, greatly improving fatty acid content. These results demonstrate the feasibility of using acid whey as a previously untapped resource for biotechnology.  相似文献   

4.
Filamentous fungi from the genus Aspergillus are of high importance for biobased organic acid production. So far, a number of Aspergillus strains belonging to phylogenetically distantly related species have been successfully applied in industrial production of organic acids due to their excellent capabilities of secreting high amounts of desired organic acids. For the past decades, numerous efforts have been made to reveal the mechanisms of organic acid biosynthesis in several Aspergillus species and to improve the production of desired organic acids via genetic engineering. This review summarizes the recent breakthroughs in the fundamental understanding of physiological aspects of organic acid accumulation by fungal biocatalysts and highlights the progress in genetic engineering of aspergilli for organic acid production. The challenges for the future applications of aspergilli as commercial cell factories for organic acid production are also discussed.  相似文献   

5.
目的 探讨细菌破坏琼脂凝胶形成的原因和机制。方法 利用细菌培养技术培养细菌;高压灭菌再融化琼脂‒酵母培养基,室温下观察其是否凝固;利用硬度测量仪测量培养基硬度;pH测量仪测量pH值。结果 首先,固体琼脂培养基在培养屎肠球菌之后再融化出现室温条件下不凝固现象;其次,pH是一个影响琼脂凝固性的主要因素;最后,屎肠球菌通过发酵产酸而降低pH,当pH值小于4时就破坏了琼脂的凝固性。结论 细菌发酵产生酸性物质,降低了培养基pH,引起琼脂凝固点降低。  相似文献   

6.
Aims: To study phosphate solubilization in Penicillium purpurogenum as function of medium pH, and carbon and nitrogen concentrations. Methods and Results: Tricalcium phosphate (CP) solubilization efficiency of P. purpurogenum was evaluated at acid or alkaline pH using different C and N sources. Glucose‐ and (NH4)2SO4‐based media showed the highest P solubilization values followed by fructose. P. purpurogenum solubilizing ability was higher in cultures grown at pH 6·5 than cultures at pH 8·5. Organic acids were detected in both alkaline and neutral media, but the relative percentages of each organic acid differed. Highest P release coincided with the highest organic acids production peak, especially gluconic acid. When P. purpurogenum grew in alkaline media, the nature and concentration of organic acids changed at different N and C concentrations. A factorial categorical experimental design showed that the highest P‐solubilizing activity, coinciding with the highest organic acid production, corresponded to the highest C concentration and lowest N concentration. Conclusions: The results described in the present study show that medium pH and carbon and nitrogen concentrations modulate the P solubilization efficiency of P. purpurogenum through the production of organic acids and particularly that of gluconic acid. In the P solubilization optimization studies, glucose and (NH4)2SO4 as C and N sources allowed a higher solubilization efficiency at high pH. Significance and Impact of the Study: This organism is a potentially proficient soil inoculant, especially in P‐poor alkaline soils where other P solubilizers fail to release soluble P. Further work is necessary to elucidate whether these results can be extrapolated to natural soil ecosystems, where different pH values are present. Penicillium purpurogenum could be used to develop a bioprocess for the manufacture of phosphatic fertilizer with phosphate calcium minerals.  相似文献   

7.
Two feeding trials using 48 weaned crossbred piglets each were carried out to determine the effect of acidifying diets with potassium diformate (K-diformate), formic or sorbic acid on dietary preferences in piglets. In Exp. 1 two reference groups were fed either an unacidified diet or a diet containing 2.4% of K-diformate with no choice for selection. Furthermore, piglets in choice group 1 and 2 had the choice between an unacidified diet and a diet supplemented with 1.2 and 2.4% K-diformate, respectively. In Exp. 2, animals of three reference groups received exclusively an unacidified diet or diets supplemented with 1.2% formic acid or 1.2% sorbic acid, respectively. The animals of the choice groups had the choice between an unacidified diet and diets with 1.2% formic acid or 1.2% sorbic acid, respectively. In Exp. 1 average daily feed intake, daily gain and feed conversion ratio were 751?g, 458?g and 1.64?kg/kg, respectively, with no significant differences between treatments. In both choice feeding groups animals chose the diets on offer at random (each around 50%). In Exp. 2 growth and feed intake were not affected by the treatment, but feed conversion ratio was enhanced due to the 1.2% formic acid supplementation. Animals of both organic acid choice groups showed a significant preference for the unacidified diets in each experimental week. The formic acid and sorbic acid diets represented on average only 13.5% and 23.5% of the total feed intake. The present results demonstrate that the inclusion of 1.2% sorbic or formic acid or 2.4% of K-diformate in piglet diets has no negative impact on feed intake, but in a situation of choice feeding, piglets will refuse diets acidified with 1.2% formic or sorbic acid, presumably because of negative taste cues. Acidifying the diets with varying amounts of a K-diformate had no effect on dietary preferences of piglets.  相似文献   

8.
The aim of this work was to study the feasibility of using sugarcane tops as feedstock for the production of bioethanol. The process involved the pretreatment using acid followed by enzymatic saccharification using cellulases and the process was optimized for various parameters such as biomass loading, enzyme loading, surfactant concentration and incubation time using Box–Behnken design. Under optimum hydrolysis conditions, 0.685 g/g of reducing sugar was produced per gram of pretreated biomass. The fermentation of the hydrolyzate using Saccharomyces cerevisae produced 11.365 g/L of bioethanol with an efficiency of about 50%. This is the first report on utilization of sugarcane tops for bioethanol production.  相似文献   

9.
Zhou Z  Du G  Hua Z  Zhou J  Chen J 《Bioresource technology》2011,102(20):9345-9349
The effects of temperature, agitation rate and medium composition, including concentrations of glucose, soybean peptone, and inorganic ions, on pellet formation and pellet diameter of Rhizopus delemar (Rhizopus oryzae) NRRL1526 during pre-culture were studied. Inorganic ions and soybean peptone had negative and positive effects on pellet formation, respectively. The initial glucose and soybean peptone concentrations directly affected pellet diameter. Within a certain range, pellet diameter decreased with increased initial substrate concentrations; however, above this range there was an opposite trend. Thus, optimal concentrations of substrate during pre-culture were beneficial for producing small pellets of R. delemar. Furthermore, dry cell mass and yield of fumaric acid tended to increase with decreased pellet diameter. Based on the pellet morphology optimization, the final fumaric acid concentration was improved by 46.13% when fermented in a flask and 31.82% in stirred bioreactor tank fermentation.  相似文献   

10.
Summary. Glutaryl-CoA dehydrogenase deficiency (GDD), which is one of the most frequent organic acid disorders, is characterized by a specific age- and regional-dependent neuropathology. We hypothesized that the distinct brain damage in GDD could be caused by the main pathologic metabolites, the organic acids glutaric (GA) and 3-hydroxyglutaric (3-OH-GA) acids, through an excitotoxic sequence. Therefore, we investigated the effects of 3-OH-GA and GA on primary neuronal cultures from chick embryonic telencephalons. Here we report that 3-OH-GA and GA decreased cell viability concentration- and time-dependently, which could be only totally prevented by preincubation with MK-801, ifenprodil and NR2B antibodies. Furthermore, cell viability decreased in parallel with the increasing expression of NR2B subunit on cultured neurons from 2nd to 6th DIV. We conclude that GA and 3-OH-GA act as excitotoxic organic acids (EOA) specifically through NR1/NR2B and that the extent of induced neurotoxicity is dependent on NR1/NR2B expression during maturation. Received February 5, 1999, Accepted May 1, 1999  相似文献   

11.
资源化利用是应对餐厨垃圾(Kitchen waste,KW)和剩余污泥(Excess sludge,ES)快速增加的有效方法,而厌氧发酵获得挥发性脂肪酸(Volatile fatty acids,VFAs)是其中的重要方式之一,但单一底物限制了VFAs的高效生产.近年来,不同底物厌氧共发酵产生VFAs被广泛研究与应用,...  相似文献   

12.
根分泌的有机酸对土壤磷和微量元素的活化作用   总被引:35,自引:12,他引:35  
在养分胁迫下,尤其是缺磷条件下,许多植物可通过增加有机酸的分泌,作为其适应机制.讨论了营养胁迫条件下不同生态型植物根系分泌有机酸的种类,分析了不同生态型植物分泌的有机酸种类和数量之间的差异.结果表明,在缺磷条件下植物根系所分泌有机酸的种类和数量与它们所处的土壤环境关系密切.在营养胁迫条件下植物根系分泌的有机酸具有活化土壤磷、微量元素和缓解Al毒的功能;对有机酸活化土壤养分,解Al毒可能的作用机制进行了论述  相似文献   

13.
Heterofermentative lactic acid bacteria (LAB) such as Leuconostoc, Oenococcus, and Lactobacillus strains ferment pentoses by the phosphoketolase pathway. The extra NAD(P)H, which is produced during growth on hexoses, is transferred to acetyl-CoA, yielding ethanol. Ethanol fermentation represents the limiting step in hexose fermentation, therefore, part of the extra NAD(P)H is used to produce erythritol and glycerol. Fructose, pyruvate, citrate, and O2 can be used in addition as external electron acceptors for NAD(P)H reoxidation. Use of the external acceptors increases the growth rate of the bacteria. The bacteria are also able to ferment organic acids like malate, pyruvate, and citrate. Malolactic fermentation generates a proton potential by substrate transport. Pyruvate fermentation sustains growth by pyruvate disproportionation involving pyruvate dehydrogenase. Citrate is fermented in the presence of an additional electron donor to acetate and lactate. Thus, heterofermentative LAB are able to use a variety of unusual fermentation reactions in addition to classical heterofermentation. Most of the reactions are significant for food biotechnology/microbiology.  相似文献   

14.
Sahrawat  K. L. 《Plant and Soil》1980,57(1):143-146
Summary Mineralization of soil nitrogen studies with two acid sulfate soils under anaerobic and aerobic incubation at 30°C for 2 weeks showed that the mineral N was released and accumulated entirely as NH 4 + in both soils. Nitrification did not occur in either of the soils under conditions that stimulate nitrification. The acid sulfate soils studied release good amounts of mineralizable N, and, because of lack of nitrifying activity, denitrification may not be a serious problem in these soils.  相似文献   

15.
The effect of ethoxylated oleyl–cetyl alcohol (Henkel, “Merima”, Serbia) on the growth and metabolic activity of Cladosporium cladosporioides, Geotrichum candidum and their mixed culture was in the focus of this paper. The cultures were grown in Czapek-Dox liquid nutrient medium with the addition of 0.5% pollutant and without it. The physico-chemical and biochemical changes of pH, the total biomass dry weight, the quantity of free and total organic acids, proteolytic activity and the quality of carbohydrates were evaluated from 4th to 19th day of fungal growth. The pollutant caused an inhibitory effect on biomass dry weight of C. cladosporioides and G. candidum for 10.36% and 4.65% respectively, and stimulatory effect on biomass of mixed culture for 3.80%. The pollutant had influence on the decrease in pH value of the media in the phase of culture growth, and pH changes were correlated with the amount of excreted total organic acids. The highest quantity of free and total organic acids was noted in media with pollutant of mixed culture and C. cladosporioides, respectively. The alkaline protease activities of C. cladosporioides, G. candidum and mixed culture were enhanced by addition of pollutant for 56.88%, 55.84% and 30.94% respectively. The obtained results indicate the potential of both pure and mixed cultures in mycoremediation environment contaminated by alcohol ethoxylated and detergent industry.  相似文献   

16.
Diterpenoids display a large and structurally diverse class of natural compounds mainly found as specialized plant metabolites. Due to their diverse biological functions they represent an essential source for various industrially relevant applications as biopharmaceuticals, nutraceuticals, and fragrances. However, commercial production utilizing their native hosts is inhibited by low abundances, limited cultivability, and challenging extraction, while the precise stereochemistry displays a particular challenge for chemical synthesis. Due to a high carbon flux through their native 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway towards photosynthetically active pigments, green microalgae hold great potential as efficient and sustainable heterologous chassis for sustainable biosynthesis of plant-derived diterpenoids. In this study, innovative synthetic biology and efficient metabolic engineering strategies were systematically combined to re-direct the metabolic flux through the MEP pathway for efficient heterologous diterpenoid synthesis in C. reinhardtii. Engineering of the 1-Deoxy-D-xylulose 5-phosphate synthase (DXS) as the main rate-limiting enzyme of the MEP pathway and overexpression of diterpene synthase fusion proteins increased the production of high-value diterpenoids. Applying fully photoautotrophic high cell density cultivations demonstrate potent and sustainable production of the high-value diterpenoid sclareol up to 656 mg L−1 with a maximal productivity of 78 mg L−1 day−1 in a 2.5 L scale photobioreactor, which is comparable to sclareol titers reached by highly engineered yeast. Consequently, this work represents a breakthrough in establishing a powerful phototrophic green cell factory for the competetive use in industrial biotechnology.  相似文献   

17.
The effects of supplied ammonium and nitrate on the amino and organic acid contents and enzyme activities of cell suspension cultures of Acer pseudoplatanus L. were examined. Regardless of nitrogen source the pH of the culture medium strongly affected the malate and citrate contents of the cells; these organic acid pools declined at pH 5, but increased at pH 7 and 8. Over a period of two days, ammonium had little effect on the responses of the organic acid pool sizes to the pH of the medium. In contrast, ammonium had a strong influence on amino acid pool sizes, and this effect was dependent on the pH of the medium. At pH 5 there was no increase in cell ammonium or amino acid contents, but at higher pH values cellular ammonium content rose, accompanied by accumulation of glutamine, glutamate and asparagine. Over several days, supplied ammonium led to an increase in activity of glutamate dehydrogenase irrespective of any changes in internal ammonium and amino acid contents. If the pH of the medium was allowed to fall below pH 4 in the presence of ammonium, phosphoenolpyruvate (PEP) carboxylase activity declined to a very low value over several days; at higher pH, the activity of this enzyme, and that of NAD malic enzyme and NAD malate dehydrogenase, remained substantial irrespective of whether the nitrogen source was NH+4 or NO-3.  相似文献   

18.
19.
Probiotics are the healthy living bacteria when administered in adequate amounts confers health benefits in the host. The main objective of present study was to screen the bacteria for potential probiotic characters and enzyme production. The probiotic characters like tolerance to low pH, bile salts, antibiotic sensitivity, hydrophobicity and auto-aggregation properties were evaluated. Among all isolates Lactobacillus fermentum and Lactobacillus sp G3_4_1TO2 showed maximum potential probiotic characters and produced amylase enzyme by observing the halo zone around the colonies with the diameter 0.9?mm and 1.23?mm. Lactobacillus sp G3_4_1TO2 produced maximum amylase when compared with Lb. fermentum. The protein yield was 55.4% with the specific activity of 88.9 U/mg and obtained 40.8% purification fold. The molecular weight of amylase enzyme determined by SDS PAGE was 95,000?Da. From the present study it was considered that Lactobacillus sp G3_4_1TO2 was a potential probiotic bacteria producing maximum amylase enzyme.  相似文献   

20.
Saccharomyces cerevisiae is an attractive chassis for the production of medium-chain fatty acids, but the toxic effect of these compounds often prevents further improvements in titer, yield, and productivity. To address this issue, Lem3 and Sfk1 were identified from adaptive laboratory evolution mutant strains as membrane asymmetry regulators. Co-overexpression of Lem3 and Sfk1 [Lem3(M)-Sfk1(H) strain] through promoter engineering remodeled the membrane phospholipid distribution, leading to an increased accumulation of phosphatidylethanolamine in the inner leaflet of the plasma membrane. As a result, membrane potential and integrity were increased by 131.5% and 29.2%, respectively; meanwhile, the final OD600 in the presence of hexanoic acid, octanoic acid, and decanoic acid was improved by 79.6%, 73.4%, and 57.7%, respectively. In summary, this study shows that membrane asymmetry engineering offers an efficient strategy to enhance medium-chain fatty acids tolerance in S. cerevisiae, thus generating a robust industrial strain for producing high-value biofuels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号