首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of d (AT)(n) oligonucleotides containing mixtures of normal B-type Watson-Crick and antiparallel Hoogsteen helices have been studied using molecular dynamics simulation techniques to analyze the structural and thermodynamic impact of the junction between Watson-Crick and antiparallel Hoogsteen structures. Analysis of molecular dynamics simulations strongly suggests that for all oligonucleotides studied the antiparallel Hoogsteen appears as a reasonable conformation, only slightly less stable than the canonical B-type Watson-Crick one. The junctions between the Watson-Crick and Hoogsteen structures introduces a priori a sharp discontinuity in the helix, because the properties of each type of conformation are very well preserved in the corresponding fragments. However, and quite counterintuitively, junctions do not largely distort the duplex in structural, dynamics or energetic terms. Our results strongly support the possibility that small fragments of antiparallel Hoogsteen duplex might be embedded into large fragments of B-type Watson-Crick helices, making possible protein-DNA interactions that are specific of the antiparallel Hoogsteen conformation.  相似文献   

2.
RNA secondary structures can be divided into helical regions composed of canonical Watson-Crick and related base pairs, as well as single-stranded regions such as hairpin loops, internal loops, and junctions. These elements function as building blocks in the design of diverse RNA molecules with various fundamental functions in the cell. To better understand the intricate architecture of three-dimensional (3D) RNAs, we analyze existing RNA four-way junctions in terms of base-pair interactions and 3D configurations. Specifically, we identify nine broad junction families according to coaxial stacking patterns and helical configurations. We find that helices within junctions tend to arrange in roughly parallel and perpendicular patterns and stabilize their conformations using common tertiary motifs such as coaxial stacking, loop-helix interaction, and helix packing interaction. Our analysis also reveals a number of highly conserved base-pair interaction patterns and novel tertiary motifs such as A-minor-coaxial stacking combinations and sarcin/ricin motif variants. Such analyses of RNA building blocks can ultimately help in the difficult task of RNA 3D structure prediction.  相似文献   

3.
RNA junctions are common secondary structural elements present in a wide range of RNA species. They play crucial roles in directing the overall folding of RNA molecules as well as in a variety of biological functions. In particular, there has been great interest in the dynamics of RNA junctions, including conformational pathways of fully base-paired 4-way (4H) RNA junctions. In such constructs, all nucleotides participate in one of the four double-stranded stem regions, with no connecting loops. Dynamical aspects of these 4H RNAs are interesting because frequent interchanges between parallel and antiparallel conformations are thought to occur without binding of other factors. Gel electrophoresis and single-molecule fluorescence resonance energy transfer experiments have suggested two possible pathways: one involves a helical rearrangement via disruption of coaxial stacking, and the other occurs by a rotation between the helical axes of coaxially stacked conformers. Employing molecular dynamics simulations, we explore this conformational variability in a 4H junction derived from domain 3 of the foot-and-mouth disease virus internal ribosome entry site (IRES); this junction contains highly conserved motifs for RNA-RNA and RNA-protein interactions, important for IRES activity. Our simulations capture transitions of the 4H junction between parallel and antiparallel conformations. The interconversion is virtually barrier-free and occurs via a rotation between the axes of coaxially stacked helices with a transient perpendicular intermediate. We characterize this transition, with various interhelical orientations, by pseudodihedral angle and interhelical distance measures. The high flexibility of the junction, as also demonstrated experimentally, is suitable for IRES activity. Because foot-and-mouth disease virus IRES structure depends on long-range interactions involving domain 3, the perpendicular intermediate, which maintains coaxial stacking of helices and thereby consensus primary and secondary structure information, may be beneficial for guiding the overall organization of the RNA system in domain 3.  相似文献   

4.
5.
6.
Isolated pore-lining helices derived from three types of K-channel have been analyzed in terms of their structural and dynamic features in nanosecond molecular dynamics (MD) simulations while spanning a lipid bilayer. The helices were 1) M1 and M2 from the bacterial channel KcsA (Streptomyces lividans), 2) S5 and S6 from the voltage-gated (Kv) channel Shaker (Drosophila melanogaster), and 3) M1 and M2 from the inward rectifier channel Kir6.2 (human). In the case of the Kv and Kir channels, for which x-ray structures are not known, both short and long models of each helix were considered. Each helix was incorporated into a lipid bilayer containing 127 palmitoyloleoylphosphatidylcholine molecules, which was solvated with approximately 4000 water molecules, yielding approximately 20, 000 atoms in each system. Nanosecond MD simulations were used to aid the definition of optimal lengths for the helix models from Kv and Kir. Thus the study corresponds to a total simulation time of 10 ns. The inner pore-lining helices (M2 in KcsA and Kir, S6 in Shaker) appear to be slightly more flexible than the outer pore-lining helices. In particular, the Pro-Val-Pro motif of S6 results in flexibility about a molecular hinge, as was suggested by previous in vacuo simulations (, Biopolymers. 39:503-515). Such flexibility may be related to gating in the corresponding intact channel protein molecules. Analysis of H-bonds revealed interactions with both water and lipid molecules in the water/bilayer interfacial region. Such H-bonding interactions may lock the helices in place in the bilayer during the folding of the channel protein (as is implicit in the two-stage model of membrane protein folding). Aromatic residues at the extremities of the helices underwent complex motions on both short (<10 ps) and long (>100 ps) time scales.  相似文献   

7.
Hydrogen bond (H-bond) interactions between the two cyclo dipeptides, cyclo(glycyl-glycine) (CGG) and cyclo(glycyl-alanine) (CGA), and water have been studied using molecular dynamics (MD) and quantum chemical methods. The MD studies have been carried out on CGG and CGA in water using fixed charge force field (AMBER ff03) for over 10 ns with a MD time step of 2 fs. The results of this study show that the solvation pattern influences the conformations of the cyclo dipeptides. Following molecular simulations, post Hartree–Fock and density functional theory methods have been used to explore the molecular properties of the cyclo dipeptides in gaseous and aqueous phase environments. The self-consistent reaction field theory has been used to optimise the cyclopeptides in diethyl ether (? = 4.3) and water (? = 78.5), and the solvent effects have been analysed. A cluster of eight water molecules leads to the formation of first solvation shell of CGG and CGA and the strong H-bonding mainly contributes to the interaction energies. The H-bond interactions have been analysed by the calculation of electron density ρ(r) and its Laplacian ▽2ρ(r) at bond critical points using atoms in molecules theory. The natural bond orbital analysis was carried out to reveal the nature of H-bond interactions. In the solvated complexes, the keto carbons registered the maximum NMR chemical shifts.  相似文献   

8.
Helical junctions are common architectural features in RNA. They are particularly important in autonomously folding molecules, as exemplified by the hairpin ribozyme. We have used single-molecule fluorescence spectroscopy to study the dynamic properties of the perfect (4H) four-way helical junction derived from the hairpin ribozyme. In the presence of Mg(2+), the junction samples parallel and antiparallel conformations and both stacking conformers, with a bias towards one antiparallel stacking conformer. There is continual interconversion between the forms, such that there are several transitions per second under physiological conditions. Our data suggest that interconversion proceeds via an open intermediate with reduced cation binding in which coaxial stacking between helices is disrupted. The rate of interconversion becomes slower at higher Mg(2+) concentrations, yet the activation barrier decreases under these conditions, indicating that entropic effects are important. Transitions also occur in the presence of Na(+) only; however, the coaxial stacking appears incomplete under these conditions. The polymorphic and dynamic character of the four-way RNA junction provides a source of structural diversity, from which particular conformations required for biological function might be stabilised by additional RNA interactions or protein binding.  相似文献   

9.
AAF linked to the guanine amino group: a B-Z junction.   总被引:1,自引:1,他引:0       下载免费PDF全文
Minimized conformational potential energy calculations have been performed for AAF linked to dCpdG at the guanine amino group. This is a model for the minor AAF adduct observed in DNA, whose conformational influence has been difficult to ascertain. A global minimum energy conformation was computed with torsion angles like those of the dCpdG residue of Z-DNA. This conformation was incorporated into a larger polymer model at a B-Z junction, with the carcinogen residing in the groove in the Z direction. Local minimum energy conformations of the B type were also computed. In addition, two minima were found with fluorenecytidine stacking. These results suggest that existing B-Z junctions may be vulnerable to modification by AAF at the guanine amino group, or that such junctions may be induced by the carcinogen if the base sequence is appropriate. Otherwise the carcinogen can be located in the minor groove of the B helix (5, 10, 11) or covalently intercalated (13-15).  相似文献   

10.
Molecular structures for parallel DNA and RNA double helices with Hoogsteen pairing are proposed for the first time. The DNA helices have sugars in the C2′-endo region and the phosphodiester conformations are (trans, gauche?), and the RNA helices have sugars in the C3′-endo region and the phosphodiester conformations are (gauche?, gauche?). A pseudorotational symmetry relates the two parallel strands of DNA helices and a screw symmetry relates the two strands of RNA helices, which have an associated tilt of the The conformational space of parallel helices with Hoogsteen base pairing, unlike the Watson-Crick duplex, is highly restricted due to the unique positioning of the symmetry axis in the former case. The features of the parallel double helix with Hoogsteen pairing are compared with the Watson-Crick duplex and the corresponding triple helix. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
The telomeric G‐quadruplexes for their unique structural features are considered as potential anticancer drug targets. These, however, exhibit structural polymorphism as different topology types for the intra‐molecular G‐quadruplexes from human telomeric G‐rich sequences have been reported based on NMR spectroscopy and X‐ray crystallography. These techniques provide detailed atomic‐level information about the molecule but relative conformational stability of the different topologies remains unsolved. Therefore, to understand the conformational preference, we have carried out quantum chemical calculations on G‐quartets; used all‐atom molecular dynamics (MD) simulations and steered molecular dynamics (SMD) simulations to characterize the four human telomeric G‐quadruplex topologies based on its G‐tetrad core‐types, viz., parallel, anti‐parallel, mixed‐(3 + 1)‐form1 and mixed‐(3 + 1)‐form2. We have also studied a non‐telomeric sequence along with these telomeric forms giving a comparison between the two G‐rich forms. The structural properties such as base pairing, stacking geometry and backbone conformations have been analyzed. The quantum calculations indicate that presence of a sodium ion inside the G‐tetrad plane or two potassium ions on both sides of the plane give it an overall planarity which is much needed for good stacking to form a helix. MD simulations indicate that capping of the G‐tetrad core by the TTA loops keep the terminal guanine bases away from water. The SMD simulations along with equilibrium MD studies indicate that the parallel and non‐telomeric forms are comparatively less stable. We could come to the conclusion that the anti‐parallel form and also the mixed‐(3 + 1)‐form1 topology are most likely to represent the major conformation., 2016. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 83–99, 2016  相似文献   

12.
P Auffinger  E Westhof 《Biopolymers》2000,56(4):266-274
With the availability of accurate methods to treat the electrostatic long-range interactions, molecular dynamics simulations have resulted in refined dynamical models of the structure of the hydration shell around RNA motifs. The models reviewed here range from basic Watson-Crick to more specific noncanonical base pairs, from "simple" double helices to RNA molecules displaying more complex tertiary folds, and from DNA/RNA hybrid double helices to RNA hybrids formed with a chemically modified strand.  相似文献   

13.
RNA junctions are secondary-structure elements formed when three or more helices come together. They are present in diverse RNA molecules with various fundamental functions in the cell. To better understand the intricate architecture of three-dimensional (3D) RNAs, we analyze currently solved 3D RNA junctions in terms of base-pair interactions and 3D configurations. First, we study base-pair interaction diagrams for solved RNA junctions with 5 to 10 helices and discuss common features. Second, we compare these higher-order junctions to those containing 3 or 4 helices and identify global motif patterns such as coaxial stacking and parallel and perpendicular helical configurations. These analyses show that higher-order junctions organize their helical components in parallel and helical configurations similar to lower-order junctions. Their sub-junctions also resemble local helical configurations found in three- and four-way junctions and are stabilized by similar long-range interaction preferences such as A-minor interactions. Furthermore, loop regions within junctions are high in adenine but low in cytosine, and in agreement with previous studies, we suggest that coaxial stacking between helices likely forms when the common single-stranded loop is small in size; however, other factors such as stacking interactions involving noncanonical base pairs and proteins can greatly determine or disrupt coaxial stacking. Finally, we introduce the ribo-base interactions: when combined with the along-groove packing motif, these ribo-base interactions form novel motifs involved in perpendicular helix-helix interactions. Overall, these analyses suggest recurrent tertiary motifs that stabilize junction architecture, pack helices, and help form helical configurations that occur as sub-elements of larger junction networks. The frequent occurrence of similar helical motifs suggest nature's finite and perhaps limited repertoire of RNA helical conformation preferences. More generally, studies of RNA junctions and tertiary building blocks can ultimately help in the difficult task of RNA 3D structure prediction.  相似文献   

14.
Loops which are linkers connecting G-strands and supporting the G-tetrad core in G-quadruplex are important for biological roles of G-quadruplexes. TTA loop is a common sequence which mainly resides in human telomeric DNA (hTel) G-quadruplex. A series of molecular dynamics (MD) simulations were carried out to investigate the structural dynamics of TTA loops. We found that (1) the TA base pair formed in TTA loops are very stable, the occupied of all hydrogen bonds are more than 0.95. (2) The TA base pair makes the adjacent G-quartet more stable than others. (3) For the edgewise loop and the diagonal loop, most loop bases are stacking with others, only few bases have considerable freedom. (4) The stabilities of these stacking structures are distinct. Part of the loops, especially TA base pairs, and bases stacking with the G-quartet, maintain certain stable conformations in the simulation, but other parts, like TT and TA stacking structures, are not stable enough. For the first time, spontaneous conformational switches of TTA edgewise loops were observed in our long time MD simulations. (5) For double chain reversal loop, it is really hard to maintain a stable conformation in the long time simulation under present force fields (parm99 and parmbsc0), as it has multiple conformations with similar free energies.  相似文献   

15.
Natural nucleic acids duplexes formed by Watson-Crick base pairing fold into right-handed helices that are classified in two families of secondary structures, i.e. the A- and B-form. For a long time, these A and B allomorphic nucleic acids have been considered as the 'non plus ultra' of double-stranded nucleic acids geometries with the only exception of Z-DNA, a left-handed helix that can be adopted by some DNA sequences. The five-membered furanose ring in the sugar-phosphate backbone of DNA and RNA is the underlying cause of this restriction in conformational diversity. A collection of new Watson-Crick duplexes have joined the 'original' nucleic acid double helixes at the moment the furanose sugar was replaced by different types of six-membered ring systems. The increase in this structural and conformational diversity originates from the rigid chair conformation of a saturated six-membered ring that determines the orientation of the ring substituents with respect to each other. The original A- and B-form oligonucleotide duplexes have expanded into a whole family of new structures with the potential for selective cross-communication in a parallel or antiparallel orientation, opening up a new world for information storage and for molecular recognition-directed self-organization.  相似文献   

16.
The TT mismatch region in duplex d (CGCGATTCGCG) was studied using a 500-ps molecular dynamics (MD) simulation in water, and a series of 1-ps MD simulations and energy minimizations in vacuum. The DNA maintained its duplex structure, although the mismatch region showed significantly higher flexibility than the GC regions. The predominant conformation in the 500-ps MD simulation involved an average -42 degrees propeller twist between T6 and T'6, and a -22 degree buckle between A5 and T'7. One hydrogen bond was formed between T6 and T'6, and another between T6 and the O2 of T'7, with both Watson-Crick hydrogen bonds between A5 and T'7 remaining intact. The minimizations resulted in conformations with the equivalent hydrogen-bonding pattern, as well as ones with "wobble pair" hydrogen bonds between T6 and T'6. However, the wobble pair conformation was found to be unstable in the water simulation.  相似文献   

17.
Almond A  Sheehan JK 《Glycobiology》2000,10(3):329-338
Glycosaminoglycan-protein interactions are biologically important and require an appreciation of glycan molecular shape in solution, which is presently unavailable. In previous studies we found strong similarity between aqueous molecular dynamics (MD) simulations and published x-ray diffraction refinements of hyaluronan. We have applied a similar approach here to chondroitin and dermatan, attempting to clarify some of the issues raised by the x-ray diffraction literature relating to chondroitin and dermatan sulfate. We predict that chondroitin has the same beta(1-->4) linkage conformation as hyaluronan, and that their average beta(1-->3) conformations differ. This is explained by changes in hydrogen-bonding across this linkage, resulting from its axial hydroxyl, causing a different sampling of left-handed helices in chondroitin (2.5- to 3.5-fold) as compared with hyaluronan (3.0- to 4.0-fold). Few right-handed helices, which lack intramolecular hydrogen-bonds, were sampled during our MD simulations. Thus, we propose that the 8-fold helix observed in chondroitin-6-sulfate, represented in the literature as an 8(3) helix (right-handed), though it has never been refined, is more likely to be 8(5) (left-handed) helix. Molecular dynamics simulations implied that (4)C(1) and (2)S(O), but not (1)C(4), forms of iduronate could be used in refinements of dermatan x-ray fiber diffraction patterns. Current models of 8-fold dermatan sulfate chains containing (4)C(1) iduronate refine to right-handed helices, which possess no intramolecular hydrogen-bonds. However, MD simulations predict that models containing (2)S(O) iduronate could provide better (8(5) helix) starting structures for refinement. Thus, the 8-fold dermatan sulfate refinement (8(3) helix) could be in error.  相似文献   

18.
Structural biology experiments and structure prediction tools have provided many high-resolution three-dimensional structures of nucleic acids. Also, molecular dynamics force field parameters have been adapted to simulating charged and flexible nucleic acid structures on microsecond time scales. Therefore, we can generate the dynamics of DNA or RNA molecules, but we still lack adequate tools for the analysis of the resulting huge amounts of data. We present MINT (Motif Identifier for Nucleic acids Trajectory) — an automatic tool for analyzing three-dimensional structures of RNA and DNA, and their full-atom molecular dynamics trajectories or other conformation sets (e.g. X-ray or nuclear magnetic resonance-derived structures). For each RNA or DNA conformation MINT determines the hydrogen bonding network resolving the base pairing patterns, identifies secondary structure motifs (helices, junctions, loops, etc.) and pseudoknots. MINT also estimates the energy of stacking and phosphate anion-base interactions. For many conformations, as in a molecular dynamics trajectory, MINT provides averages of the above structural and energetic features and their evolution. We show MINT functionality based on all-atom explicit solvent molecular dynamics trajectory of the 30S ribosomal subunit.  相似文献   

19.
To evaluate the ability of molecular dynamics (MD) simulations using atomic force-fields to correctly predict stable folded conformations of a peptide in solution, we show results from MD simulations of the reversible folding of an octapeptide rich in alpha-aminoisobutyric acid (2-amino-2-methyl-propanoic acid, Aib) solvated in di-methyl-sulfoxide (DMSO). This solvent generally prevents the formation of secondary structure, whereas Aib-rich peptides show a high propensity to form secondary structural elements, in particular 3(10)- and alpha-helical structures. Aib is, moreover, achiral, so that Aib-rich peptides can form left- or right-handed helices depending on the overall composition of the peptide, the temperature, and the solvation conditions. This makes the system an interesting case to study the ensembles of peptide conformations as a function of temperature by MD simulation. Simulations involving the folding and unfolding of the peptide were performed starting from two initial structures, a right-handed alpha-helical structure and an extended structure, at three temperatures, 298 K, 340 K, and 380 K, and the results are compared with experimental nuclear magnetic resonance (NMR) data measured at 298 K and 340 K. The simulations generally reproduce the available experimental nuclear Overhauser effect (NOE) data, even when a wide range of conformations is sampled at each temperature. The importance of adequate statistical sampling in order to reliably interpret the experimental data is discussed.  相似文献   

20.
The self-cleaving hepatitis delta virus (HDV) ribozyme is essential for the replication of HDV, a liver disease causing pathogen in humans. The catalytically critical nucleotide C75 of the ribozyme is buttressed by a trefoil turn pivoting around an extruded G76. In all available crystal structures, the conformation of G76 is restricted by stacking with G76 of a neighboring molecule. To test whether this crystal contact introduces a structural perturbation into the catalytic core, we have analyzed approximately 200 ns of molecular dynamics (MD) simulations. In the absence of crystal packing, the simulated G76 fluctuates between several conformations, including one wherein G76 establishes a perpendicular base quadruplet in the major groove of the adjacent P1 stem. Second-site mutagenesis experiments suggest that the identity of the nucleotide in position 76 (N76) indeed contributes to the catalytic activity of a trans-acting HDV ribozyme through its capacity for hydrogen bonding with P1. By contrast, in the cis-cleaving genomic ribozyme the functional relevance of N76 is less pronounced and not correlated with the P1 sequence. Terbium(III) footprinting and additional MD show that the activity differences between N76 mutants of this ribozyme are related instead to changes in average conformation and modified cross-correlations in the trefoil turn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号