首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Eukaryotic translation initiation factor 5 (eIF5) forms a complex with eIF2 by interacting with the beta subunit of eIF2. This interaction is essential for eIF5-promoted hydrolysis of GTP bound to the 40 S initiation complex. In this work, we show that, in addition to the eIF2 beta-binding region at the C terminus of eIF5, the N-terminal region of eIF5 is also required for eIF5-dependent GTP hydrolysis. Like other GTPase-activating proteins, eIF5 contains an invariant arginine residue (Arg-15) at its N terminus that is essential for its function. Mutation of this arginine residue to alanine or even to conservative lysine caused a severe defect in the ability of eIF5 to promote GTP hydrolysis from the 40 S initiation complex, although the ability of these mutant proteins to bind to eIF2 beta remained unchanged. These mutants were also defective in overall protein synthesis as well as in their ability to support cell growth of a Delta TIF5 yeast strain. Additionally, alanine substitution mutagenesis of eIF5 defined Lys-33 and Lys-55 as also critical for eIF5 function in vitro and in vivo. The implications of these results in relation to other well characterized GAPs are discussed and provide additional evidence that eIF5 functions as a GTPase-activating protein.  相似文献   

3.
4.
C to U editing of apolipoprotein B (apoB) mRNA involves the interaction of a multicomponent editing enzyme complex with a requisite RNA sequence embedded within an AU-rich context. This enzyme complex includes apobec-1, an RNA-specific cytidine deaminase, and apobec-1 complementation factor (ACF), a novel 65-kDa RNA-binding protein, that together represent the minimal core of the editing enzyme complex. The precise composition of the holo-enzyme, however, remains unknown. We have previously isolated an enriched fraction of S100 extracts, prepared from chicken intestinal cells, that displays apoB RNA binding and which, following supplementation with apobec-1, permits efficient C to U editing. Peptide sequencing of this most active fraction reveals the presence of ACF as well as GRY-RBP, an RNA-binding protein with approximately 50% homology to ACF. GRY-RBP was independently isolated from a two-hybrid screen of chicken intestinal cDNA. GRY-RBP binds to ACF, to apobec-1, and also binds apoB RNA. Experiments using recombinant proteins demonstrate that GRY-RBP binds to ACF and inhibits both the binding of ACF to apoB RNA and C to U RNA editing. This competitive inhibition is rescued by addition of ACF, suggesting that GRY-RBP binds to and sequesters ACF. As further evidence of the role of GRY-RBP, rat hepatoma cells treated with an antisense oligonucleotide to GRY-RBP demonstrated an increase in C to U editing of endogenous apoB RNA. ACF and GRY-RBP colocalize in the nucleus of transfected cells and, in cotransfection experiments with apobec-1, each appears to colocalize in a predominantly nuclear distribution. Taken together, the results indicate that GRY-RBP is a member of the ACF gene family that may function to modulate C to U RNA editing through binding either to ACF or to apobec-1 or, alternatively, to the target RNA itself.  相似文献   

5.
Innate immunity and cell death are essential host defense mechanisms. Mounting evidence reveals that these processes are closely linked. The aim of this review is to highlight the close relationship between the pathways governing these processes, particularly how regulators of cell death control the induction of the innate immune response.  相似文献   

6.
7.
8.
9.
10.
11.
12.
Kok KH  Lui PY  Ng MH  Siu KL  Au SW  Jin DY 《Cell host & microbe》2011,9(4):299-309
RIG-I, a virus sensor that triggers innate antiviral response, is a DExD/H box RNA helicase bearing structural similarity with Dicer, an RNase III-type nuclease that mediates RNA interference. Dicer requires double-stranded RNA-binding protein partners, such as PACT, for optimal activity. Here we show that PACT physically binds to the C-terminal repression domain of RIG-I and potently stimulates RIG-I-induced type I interferon production. PACT potentiates the activation of RIG-I by poly(I:C) of intermediate length. PACT also cooperates with RIG-I to sustain the activation of antiviral defense. Depletion of PACT substantially attenuates viral induction of interferons. The activation of RIG-I by PACT does not require double-stranded RNA-dependent protein kinase or Dicer, but is mediated by a direct interaction that leads to stimulation of its ATPase activity. Our findings reveal PACT as an important component in initiating and sustaining the RIG-I-dependent antiviral response.  相似文献   

13.
A rice (Oryza sativa L.) cDNA clone coding for the cytoplasmic ribosomal protein L5, which associates with 5 S rRNA for ribosome assembly, was cloned and its nucleotide sequence was determined. The primary structure of rice L5, deduced from the nucleotide sequence, contains 294 amino acids and has intriguing features some of which are also conserved in other eucaryotic homologues. These include: four clusters of basic amino acids, one of which may serve as a nucleolar localization signal; three repeated amino acid sequences; the conservation of glycine residues. This protein was identified as the nuclear-encoded cytoplasmic ribosomal protein L5 of rice by sequence similarity to other eucaryotic ribosomal 5 S RNA-binding proteins of rat, chicken, Xenopus laevis, and Saccharomyces cerevisiae. Rice L5 shares 51 to 62% amino acid sequence identity with the homologues. A group of ribosomal proteins from archaebacteria including Methanococcus vanniellii L18 and Halobacterium cutirubrum L13, which are known to be associated with 5 S rRNA, also related to rice L5 and the other eucaryotic counterparts, suggesting an evolutionary relationship in these ribosomal 5 S RNA-binding proteins.  相似文献   

14.
In C. elegans, PUF proteins promote germline stem cell self-renewal. Their functions hinge on partnerships with two proteins that are redundantly required for stem cell maintenance. Here we focus on understanding how the essential partner protein, LST-1, modulates mRNA regulation by the PUF protein, FBF-2. LST-1 contains two nonidentical sites of interaction with FBF-2, LST-1 A and B. Our crystal structures of complexes of FBF-2, LST-1 A, and RNA visualize how FBF-2 associates with LST-1 A versus LST-1 B. One commonality is that FBF-2 contacts the conserved lysine and leucine side chains in the KxxL motifs in LST-1 A and B. A key difference is that FBF-2 forms unique contacts with regions N- and C-terminal to the KxxL motif. Consequently, LST-1 A does not modulate the RNA-binding affinity of FBF-2, whereas LST-1 B decreases RNA-binding affinity of FBF-2. The N-terminal region of LST-1 B, which binds near the 5′ end of RNA elements, is essential to modulate FBF-2 RNA-binding affinity, while the C-terminal residues of LST-1 B contribute strong binding affinity to FBF-2. We conclude that LST-1 has the potential to impact which mRNAs are regulated depending on the precise nature of engagement through its functionally distinct FBF binding sites.  相似文献   

15.
16.
17.
18.
LEAFY COTYLEDON1 (LEC1), a NUCLEAR FACTOR-Y (NF-Y) family member, plays a critical role in embryogenesis and seed development in Arabidopsis. Previous studies have shown that rice OsNF-YB9 and OsNF-YB7 are homologous to Arabidopsis LEC1. However, the functions of LEC1-like genes in rice remain unclear. Here we report that OsNF-YB9 and OsNF-YB7 display sub-functionalization in rice. We demonstrate that OsNF-YB7 is expressed mainly in the embryo, whereas OsNF-YB9 is preferentially expressed in the developing endosperm. Heterologous expression of either OsNF-YB9 or OsNF-YB7 in Arabidopsis lec1-1 was able to complement the lec1-1 defects. We failed to generate osnf-yb7 homozygous mutants due to lethality caused by OsNF-YB7 defects. Loss of OsNF-YB9 function caused abnormal seed development: seeds were longer, narrower and thinner and exhibited a higher chalkiness ratio. Furthermore, the expression of genes related to starch synthesis was deregulated in osnf-yb9. OsNF-YB9 could interact with SPK, a sucrose synthase protein kinase that is predominantly expressed in rice endosperm. Knockout of SPK resulted in chalky seeds similar to those observed in the osnf-yb9 mutants. Ectopic expression of OsNF-YB9 in both rice and Arabidopsis resulted in unhealthy plants with small seeds. Taken together, these results suggest a critical role for OsNF-YB9 in rice seed development.  相似文献   

19.
Rho family small GTPases are involved in diverse signaling processes including immunity, growth, and development. The activity of Rho GTPases is regulated by cycling between guanosine diphosphate (GDP)-bound inactive and guanosine triphosphate (GTP)-bound active forms, in which guanine nucleotide exchange factors (GEFs) predominantly function to promote activation of the GTPases. In animals, most Rho GEFs possess a Dbl (diffuse B-cell lymphoma) homology (DH) domain which functions as a GEF-catalytic domain. However, no proteins with the DH domain have been identified in plants so far. Instead, plant-specific Rho GEFs with the PRONE domain responsible for GEF activity have been found to constitute a large family in plants. In this study, we found rice homologs of human SWAP70, Oryza sativa (Os) SWAP70A and SWAP70B, containing the DH domain. OsSWAP70A interacted with rice Rho GTPase OsRac1, an important signaling factor for immune responses. The DH domain of OsSWAP70A exhibited the GEF-catalytic activity toward OsRac1 as found in animal Rho GEFs, indicating that plants have the functional DH domains. Transient expression of OsSWAP70A enhanced OsRac1-mediated production of reactive oxygen species in planta. Reduction of OsSWAP70A and OsSWAP70B mRNA levels by RNA interference resulted in the suppression of chitin elicitor-induced defense gene expression and ROS production. Thus, it is likely that OsSWAP70 regulates immune responses through activation of OsRac1.  相似文献   

20.
Modalities for inducing long-lasting immune responses are essential components of vaccine design. Most currently available immunological adjuvants empirically used for this purpose cause some inflammation, limiting clinical acceptability. We show that pentoxifylline (PF), a phosphodiesterase (PDE) inhibitor in common clinical use, enhances long-term persistence of T cell responses, including protective responses to a bacterial immunogen, Salmonella typhimurium, via a cAMP-dependent protein kinase A-mediated effect on T cells if given to mice for a brief period during immunization. PF inhibits activation-mediated loss of superantigen-reactive CD4 as well as CD8 T cells in vivo without significantly affecting their activation, and inhibits activation-induced death and caspase induction in stimulated CD4 as well as CD8 T cells in vitro without preventing the induction of activation markers. Consistent with this ability to prevent activation-induced death in not only CD4 but also CD8 T cells, PF also enhances the persistence of CD8 T cell responses in vivo. Thus, specific inhibition of activation-induced T cell apoptosis transiently during immune priming is likely to enhance the persistence of CD4 and CD8 T cell responses to vaccination, and pharmacological modulators of the cAMP pathway already in clinical use can be used for this purpose as immunological adjuvants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号