首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structural Maintenance of Chromosomes (SMC) proteins are vital for a wide range of processes including chromosome structure and dynamics, gene regulation and DNA repair. Eukaryotes have three SMC complexes, consisting of heterodimeric pairs of six different SMC proteins along with several specific regulatory subunits. In addition to their other functions, all three SMC complexes play distinct roles in DNA repair. Cohesin (SMC1–SMC3) is involved in DNA double-strand break repair, condensin (SMC2–SMC4) participates in single-strand break (SSB) repair, and the SMC5–SMC6 complex functions in various DNA repair pathways. SMC proteins consist of N- and C-terminal domains that fold back onto each other to create an ATPase ‘head’ domain, connected to a central ‘hinge’ domain via long coiled-coils. The hinge domain mediates dimerization of SMC proteins and binds DNA, but it is not clear to what purpose this activity serves. We studied the structure and function of the condensin hinge domain from mouse. While the SMC hinge domain structure is largely conserved from prokaryotes to eukaryotes, its function seems to have diversified throughout the course of evolution. The condensin hinge domain preferentially binds single-stranded DNA. We propose that this activity plays a role in the SSB repair function of the condensin complex.  相似文献   

2.
Watson–Crick base pairs (bps) are the fundamental unit of genetic information and the building blocks of the DNA double helix. However, A-T and G-C can also form alternative ‘Hoogsteen’ bps, expanding the functional complexity of DNA. We developed ‘Hoog-finder’, which uses structural fingerprints to rapidly screen Hoogsteen bps, which may have been mismodeled as Watson–Crick in crystal structures of protein–DNA complexes. We uncovered 17 Hoogsteen bps, 7 of which were in complex with 6 proteins never before shown to bind Hoogsteen bps. The Hoogsteen bps occur near mismatches, nicks and lesions and some appear to participate in recognition and damage repair. Our results suggest a potentially broad role for Hoogsteen bps in stressed regions of the genome and call for a community-wide effort to identify these bps in current and future crystal structures of DNA and its complexes.  相似文献   

3.
The condensin SMC protein complex organizes chromosomal structure by extruding loops of DNA. Its ATP-dependent motor mechanism remains unclear but likely involves steps associated with large conformational changes within the ∼50 nm protein complex. Here, using high-resolution magnetic tweezers, we resolve single steps in the loop extrusion process by individual yeast condensins. The measured median step sizes range between 20–40 nm at forces of 1.0–0.2 pN, respectively, comparable with the holocomplex size. These large steps show that, strikingly, condensin typically reels in DNA in very sizeable amounts with ∼200 bp on average per single extrusion step at low force, and occasionally even much larger, exceeding 500 bp per step. Using Molecular Dynamics simulations, we demonstrate that this is due to the structural flexibility of the DNA polymer at these low forces. Using ATP-binding-impaired and ATP-hydrolysis-deficient mutants, we find that ATP binding is the primary step-generating stage underlying DNA loop extrusion. We discuss our findings in terms of a scrunching model where a stepwise DNA loop extrusion is generated by an ATP-binding-induced engagement of the hinge and the globular domain of the SMC complex.  相似文献   

4.
Polymerization of fibrin, the primary structural protein of blood clots and thrombi, occurs through binding of knobs ‘A’ and ‘B’ in the central nodule of fibrin monomer to complementary holes ‘a’ and ‘b’ in the γ- and β-nodules, respectively, of another monomer. We characterized the A:a and B:b knob-hole interactions under varying solution conditions using molecular dynamics simulations of the structural models of fibrin(ogen) fragment D complexed with synthetic peptides GPRP (knob ‘A’ mimetic) and GHRP (knob ‘B’ mimetic). The strength of A:a and B:b knob-hole complexes was roughly equal, decreasing with pulling force; however, the dissociation kinetics were sensitive to variations in acidity (pH 5–7) and temperature (T = 25–37 °C). There were similar structural changes in holes ‘a’ and ‘b’ during forced dissociation of the knob-hole complexes: elongation of loop I, stretching of the interior region, and translocation of the moveable flap. The disruption of the knob-hole interactions was not an “all-or-none” transition as it occurred through distinct two-step or single step pathways with or without intermediate states. The knob-hole bonds were stronger, tighter, and more brittle at pH 7 than at pH 5. The B:b knob-hole bonds were weaker, looser, and more compliant than the A:a knob-hole bonds at pH 7 but stronger, tighter, and less compliant at pH 5. Surprisingly, the knob-hole bonds were stronger, not weaker, at elevated temperature (T = 37 °C) compared with T = 25 °C due to the helix-to-coil transition in loop I that helps stabilize the bonds. These results provide detailed qualitative and quantitative characteristics underlying the most significant non-covalent interactions involved in fibrin polymerization.  相似文献   

5.
6.
A small container of several to a few hundred µm3 (i.e. bacterial cells and eukaryotic nuclei) contains extremely long genomic DNA (i.e. mm and m long, respectively) in a highly organized fashion. To understand how such genomic architecture could be achieved, Escherichia coli nucleoids were subjected to structural analyses under atomic force microscopy, and found to change their structure dynamically during cell growth, i.e. the nucleoid structure in the stationary phase was more tightly compacted than in the log phase. However, in both log and stationary phases, a fundamental fibrous structure with a diameter of ~80 nm was found. In addition to this ‘80 nm fiber’, a thinner ‘40 nm fiber’ and a higher order ‘loop’ structure were identified in the log phase nucleoid. In the later growth phases, the nucleoid turned into a ‘coral reef structure’ that also possessed the 80 nm fiber units, and, finally, into a ‘tightly compacted nucleoid’ that was stable in a mild lysis buffer. Mutant analysis demonstrated that these tight compactions of the nucleoid required a protein, Dps. From these results and previously available information, we propose a structural model of the E.coli nucleoid.  相似文献   

7.
Human neutrophils are mediators of innate immunity and undergo dramatic shape changes at all stages of their functional life cycle. In this work, we quantified the forces associated with a neutrophil’s morphological transition from a nonadherent, quiescent sphere to its adherent and spread state. We did this by tracking, with high spatial and temporal resolution, the cell’s mechanical behavior during spreading on microfabricated post-array detectors printed with the extracellular matrix protein fibronectin. Two dominant mechanical regimes were observed: transient protrusion and steady-state contraction. During spreading, a wave of protrusive force (75 ± 8 pN/post) propagates radially outward from the cell center at a speed of 206 ± 28 nm/s. Once completed, the cells enter a sustained contractile state. Although post engagement during contraction was continuously varying, posts within the core of the contact zone were less contractile (−20 ± 10 pN/post) than those residing at the geometric perimeter (−106 ± 10 pN/post). The magnitude of the protrusive force was found to be unchanged in response to cytoskeletal inhibitors of lamellipodium formation and myosin II-mediated contractility. However, cytochalasin B, known to reduce cortical tension in neutrophils, slowed spreading velocity (61 ± 37 nm/s) without significantly reducing protrusive force. Relaxation of the actin cortical shell was a prerequisite for spreading on post arrays as demonstrated by stiffening in response to jasplakinolide and the abrogation of spreading. ROCK and myosin II inhibition reduced long-term contractility. Function blocking antibody studies revealed haptokinetic spreading was induced by β2 integrin ligation. Neutrophils were found to moderately invaginate the post arrays to a depth of ∼1 μm as measured from spinning disk confocal microscopy. Our work suggests a competition of adhesion energy, cortical tension, and the relaxation of cortical tension is at play at the onset of neutrophil spreading.  相似文献   

8.
CRISPR (clustered regularly interspaced short palindromic repeat) systems provide bacteria and archaea with adaptive immunity to repel invasive genetic elements. Type I systems use ‘cascade’ [CRISPR-associated (Cas) complex for antiviral defence] ribonucleoprotein complexes to target invader DNA, by base pairing CRISPR RNA (crRNA) to protospacers. Cascade identifies PAMs (protospacer adjacent motifs) on invader DNA, triggering R-loop formation and subsequent DNA degradation by Cas3. Cas8 is a candidate PAM recognition factor in some cascades. We analysed Cas8 homologues from type IB CRISPR systems in archaea Haloferax volcanii (Hvo) and Methanothermobacter thermautotrophicus (Mth). Cas8 was essential for CRISPR interference in Hvo and purified Mth Cas8 protein responded to PAM sequence when binding to nucleic acids. Cas8 interacted physically with Cas5–Cas7–crRNA complex, stimulating binding to PAM containing substrates. Mutation of conserved Cas8 amino acid residues abolished interference in vivo and altered catalytic activity of Cas8 protein in vitro. This is experimental evidence that Cas8 is important for targeting Cascade to invader DNA.  相似文献   

9.
A DNA analysis platform called ‘Bead-array’ is presented and its features when used in hybridization detection are shown. In ‘Bead-array’, beads of 100-µm diameter are lined in a determined order in a capillary. Each bead is conjugated with DNA probes, and can be identified by its order in the capillary. This probe array is easily produced by just arraying beads conjugated with probes into the capillary in a fixed order. The hybridization is also easily completed by introducing samples (1–300 µl) into the capillary with reciprocal flow. For hybridization detection, as little as 1 amol of fluorescent-labeled oligo DNA was detected. The hybridization reaction was completed in 1 min irrespective of the amount of target DNA. When the number of target molecules was smaller than that of probe molecules on the bead, 10 fmol, almost all targets were captured on the bead. ‘Bead-array’ enables reliable and reproducible measurement of the target quantity. This rapid and sensitive platform seems very promising for various genetic testing tasks.  相似文献   

10.
Neutrophils release neutrophil extracellular traps (NETs) to capture and kill pathogens, but excessive NET release can damage the surrounding tissues. Myeloperoxidase (MPO) and neutrophil elastase (NE) are thought to be important in promoting histone depolymerization and DNA breakage in the nucleus. However, the detailed path by which MPO and NE enter the nucleus is unknown. In the present study, we observed that delayed fusion of azurophilic granules with the nuclear membrane 15–20 min after extracellular degranulation in activated neutrophils. In a subsequent experiment, we further demonstrated that this fusion leads to MPO entry into the nucleus and promotes nuclear histone depolymerization and DNA breakage, a process called ‘targeted nuclear degranulation’. This process can be effectively inhibited by dexamethasone and accompanied by the continuous low levels of MPO in the nucleus after PMA stimulation. Meanwhile, we found that ‘targeted nuclear degranulation’ is dependent on the CD44 translocation and subsequent redistribution of CD44 / ERM (Ezrin/Radixin/Moesin) / F‐actin complexes, which guides the movement of azurophilic granules towards the nucleus. Application of ERM phosphorylation inhibitors and importin activity inhibitors significantly reduced the complexes formation and redistribution. Taken together, these findings indicate for the first time that delayed ‘targeted nuclear degranulation’ after neutrophil activation is a key mechanism of NET formation. CD44/ERM/F‐actin complex mediates this process, which providing targets with promising prospects for the precise regulation of NET formation.  相似文献   

11.
Brown marmorated stink bug, Halyomorpha halys (Stål), (Hemiptera: Pentatomidae) is an invasive polyphagous agricultural and urban nuisance pest of Asian origin that is becoming widespread in North America and Europe. Despite the economic importance of pentatomid pests worldwide, their feeding behavior is poorly understood. Electronically monitored insect feeding (EMIF) technology is a useful tool in studies of feeding behavior of Hemiptera. Here we examined H. halys feeding behavior using an EMIF system designed for high throughput studies in environmental chambers. Our objectives were to quantify feeding activity by monitoring proboscis contacts with green beans, including labial dabbing and stylet penetration of the beans, which we collectively define as ‘probes’. We examined frequency and duration of ‘probes’ in field-collected H. halys over 48 hours and we determined how environmental conditions could affect diel and seasonal periodicity of ‘probing’ activity. We found differences in ‘probing’ activity between months when the assays were conducted. These differences in activity may have reflected different environmental conditions, and they also coincide with what is known about the phenology of H. halys. While a substantial number of ‘probes’ occurred during scotophase, including some of the longest mean ‘probe’ durations, activity was either lower or similar to ‘probing’ activity levels during photophase on average. We found that temperature had a significant impact on H. halys ‘probing’ behavior and may influence periodicity of activity. Our data suggest that the minimal temperature at which ‘probing’ of H. halys occurs is between 3.5 and 6.1°C (95% CI), and that ‘probing’ does not occur at temperatures above 26.5 to 29.6°C (95% CI). We estimated that the optimal temperature for ‘probing’ is between 16 and 17°C.  相似文献   

12.
CRISPR-Cas is a prokaryotic immune system built from capture and integration of invader DNA into CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) loci, termed ‘Adaptation’, which is dependent on Cas1 and Cas2 proteins. In Escherichia coli, Cascade-Cas3 degrades invader DNA to effect immunity, termed ‘Interference’. Adaptation can interact with interference (‘primed’), or is independent of it (‘naïve’). We demonstrate that primed adaptation requires the RecG helicase and PriA protein to be present. Genetic analysis of mutant phenotypes suggests that RecG is needed to dissipate R-loops at blocked replication forks. Additionally, we identify that DNA polymerase I is important for both primed and naive adaptation, and that RecB is needed for naïve adaptation. Purified Cas1-Cas2 protein shows specificity for binding to and nicking forked DNA within single strand gaps, and collapsing forks into DNA duplexes. The data suggest that different genome stability systems interact with primed or naïve adaptation when responding to blocked or collapsed invader DNA replication. In this model, RecG and Cas3 proteins respond to invader DNA replication forks that are blocked by Cascade interference, enabling DNA capture. RecBCD targets DNA ends at collapsed forks, enabling DNA capture without interference. DNA polymerase I is proposed to fill DNA gaps during spacer integration.  相似文献   

13.
14.
15.
The Smc5/6 complex plays an essential role in the resolution of recombination intermediates formed during mitosis or meiosis, or as a result of the cellular response to replication stress. It also functions as a restriction factor preventing viral replication. Here, we report the cryogenic EM (cryo-EM) structure of the six-subunit budding yeast Smc5/6 holo-complex, reconstituted from recombinant proteins expressed in insect cells – providing both an architectural overview of the entire complex and an understanding of how the Nse1/3/4 subcomplex binds to the hetero-dimeric SMC protein core. In addition, we demonstrate that a region within the head domain of Smc5, equivalent to the ‘W-loop’ of Smc4 or ‘F-loop’ of Smc1, mediates an important interaction with Nse1. Notably, mutations that alter the surface-charge profile of the region of Nse1 which accepts the Smc5-loop, lead to a slow-growth phenotype and a global reduction in the chromatin-associated fraction of the Smc5/6 complex, as judged by single molecule localisation microscopy experiments in live yeast. Moreover, when taken together, our data indicates functional equivalence between the structurally unrelated KITE and HAWK accessory subunits associated with SMC complexes.  相似文献   

16.
Several studies have shown that human topoisomerase I (htopoI) cleaves in the vicinity of various DNA lesions and thereby forms covalent intermediates known as ‘cleavage complexes’. Such complexes are detrimental to cells if they are not repaired. Therefore, it is generally accepted that repair pathways must exist for such lesions. We have demonstrated that a htopoI cleavage complex can be recognized by a second topoisomerase I molecule and thereby perform a so-called htopoI ‘double cleavage’ in vitro. In addition, we found that the double cleavage reaction was stimulated by p53. Here we show that the double cleavage reaction results in the removal of the original htopoI cleavage complex and the generation of a single-stranded gap of ~13 nt. This gap supports a sequence-dependent DNA recombination reaction mediated by the second htopoI molecule. Furthermore, we show that p53 strongly stimulates the recombination reaction. We suggest that this reaction may represent a novel p53-dependent topoisomerase I-induced recombination repair (TIRR) pathway for htopoI cleavage complexes.  相似文献   

17.
DNA segment exchange by site-specific serine recombinases (SRs) is thought to proceed by rigid-body rotation of the two halves of the synaptic complex, following the cleavages that create the two pairs of exchangeable ends. It remains unresolved how the amount of rotation occurring between cleavage and religation is controlled. We report single-DNA experiments for Bxb1 integrase, a model SR, where dynamics of individual synapses were observed, using relaxation of supercoiling to report on cleavage and rotation events. Relaxation events often consist of multiple rotations, with the number of rotations per relaxation event and rotation velocity sensitive to DNA sequence at the center of the recombination crossover site, torsional stress and salt concentration. Bulk and single-DNA experiments indicate that the thermodynamic stability of the annealed, but cleaved, crossover sites controls ligation efficiency of recombinant and parental synaptic complexes, regulating the number of rotations during a breakage-religation cycle. The outcome is consistent with a ‘controlled rotation’ model analogous to that observed for type IB topoisomerases, with religation probability varying in accord with DNA base-pairing free energies at the crossover site. Significantly, we find no evidence for a special regulatory mechanism favoring ligation and product release after a single 180° rotation.  相似文献   

18.
The European black fly Simulium (Simulium) colombaschense (Scopoli), once responsible for as many as 22,000 livestock deaths per year, is chromosomally mapped, permitting its evolutionary relationships and pest drivers to be inferred. The species is 12 fixed inversions removed from the standard sequence of the subgenus Simulium. Three of these fixed inversions, 38 autosomal polymorphisms, and a complex set of 12 X and 6 Y chromosomes in 29 zygotic combinations uniquely characterize S. colombaschense and reveal 5 cytoforms: ‘A’ in the Danube watershed, ‘B’ in Italy’s Adige River, ‘C’ in the Aliakmonas River of Greece, ‘D’ in the Aoös drainage in Greece, and ‘E’ in the Belá River of Slovakia. ‘C’ and ‘D’ are reproductively isolated from one another, and ‘B’ is considered a cytotype of ‘A,’ the probable name bearer of colombaschense. The species status of ‘E’ cannot be determined without additional collections. Three derived polytene sequences, based on outgroup comparisons, place S. colombaschense in a clade of species composed of the S. jenningsi, S. malyschevi, and S. reptans species groups. Only cytoforms ‘A’ and ‘B’ are pests. Within the Simuliidae, pest status is reached through one of two principal pathways, both of which promote the production of large populations of blood-seeking flies: (1) colonization of the world’s largest rivers (habitat specialization) or (2) colonization of multiple habitat types (habitat generalization). Evolutionary acquisition of the ability to colonize large rivers by an ancestor of the S. jenningsi-malyschevi-reptans clade set the scene for the pest status of S. colombaschense and other big-river members of the clade. In an ironic twist, the macrogenome of S. colombaschense reveals that the name associated with history’s worst simuliid pest represents a complex of species, two or more of which are nonpests potentially vulnerable to loss of their limited habitat.  相似文献   

19.
We evaluated the compaction tolerance of some warm-season turfgrasses under shade and sunlight conditions in Riyadh, Saudi Arabia. Hybrid bermudagrass, Cynodon dactylon, cultivars ‘Tifway’ and ‘Tifsport,’ seashore paspalum (Paspalum vaginatum) and its cultivar ‘Sea Isle 2000’ were used. The study area was divided into two sections: one was exposed to sunlight and the other was maintained under 70% shade using a green plastic grille. Turfgrasses were planted using “sods” in beds containing a mixture of sand, silt, and peat moss (4: 1: 1, v/v). The soil was compacted using a locally-made 250 kg cylindrical roll, passing four times over the grown turfgrasses for 3 days/week. The results showed that plant height, leaf area, grass quality and color were decreased by compaction in both the shade and sunlight areas. Plant height in the shaded area with or without compaction was higher than in the sunlight area. Under compaction, ‘Sea Isle 2000’ was the shortest: 8.8 cm in the sunlight and 14.3 cm in the shade. For grasses grown in sunlight, compaction decreased grass height, and height was lowest (4.0 cm) for paspalum ‘Sea Isle 2000’ in January. In the shaded area, paspalum turfgrass retained its high quality (4.0) in April, May, and June. In the sunlight area, the grass quality was highest (4.0) in ‘Sea Isle 2000’ and the lowest (3.0) in ‘Tifsport.’ Paspalum turfgrass showed a higher color degree (4) than bermudagrass (2.5) in April, May, and June. Compaction also led to a decline in leaf area and fresh and dry weights of all grown turfgrasses. The grass density was high for paspalum turfgrasses, indicating that their resistance to compaction was greater than bermudagrasses. It can be concluded that the best compaction and shade-tolerant turfgrasses are ‘Sea Isle 2000’ and seashore paspalum.  相似文献   

20.
Combining biophysical measurements on T4 bacteriophage replication complexes with detailed structural information can illuminate the molecular mechanisms of these ‘macromolecular machines’. Here we use the low energy circular dichroism (CD) and fluorescent properties of site-specifically introduced base analogues to map and quantify the equilibrium binding interactions of short (8 nts) ssDNA oligomers with gp32 monomers at single nucleotide resolution. We show that single gp32 molecules interact most directly and specifically near the 3′-end of these ssDNA oligomers, thus defining the polarity of gp32 binding with respect to the ssDNA lattice, and that only 2–3 nts are directly involved in this tight binding interaction. The loss of exciton coupling in the CD spectra of dimer 2-AP (2-aminopurine) probes at various positions in the ssDNA constructs, together with increases in fluorescence intensity, suggest that gp32 binding directly extends the sugar-phosphate backbone of this ssDNA oligomer, particularly at the 3′-end and facilitates base unstacking along the entire 8-mer lattice. These results provide a model (and ‘DNA map’) for the isolated gp32 binding to ssDNA targets, which serves as the nucleation step for the cooperative binding that occurs at transiently exposed ssDNA sequences within the functioning T4 DNA replication complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号