首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is important to understand the Amyloid fibril formation in view of numerous medical and biochemical aspects. Structural determination of amyloid fibril has been extensively studied using electron microscopy. Subsequently, solid state NMR spectroscopy has been realized to be the most important means to determine not only microscopic molecular structure but also macroscopic molecular packing. Molecular structure of amyloid fibril was first predicted to be parallel beta-sheet structure, and subsequently, was further refined for Abeta(1-40) to be cross beta-sheet with double layered in register parallel beta-sheet structure by using solid state NMR spectroscopy. On the other hand, anti-parallel beta-sheet structure has been reported to short fragments of Abeta-amyloid and other amyloid forming peptides. Kinetic study of amyloid fibril formation has been studied using a variety of methods, and two-step autocatalytic reaction mechanism used to explain fibril formation. Recently, stable intermediates or proto-fibrils have been observed by electron microscope (EM) images. Some of the intermediates have the same microscopic structure as the matured fibril and subsequently change to matured fibrils. Another important study on amyloid fibril formation is determination of the interaction with lipid membranes, since amyloid peptide are cleaved from amyloid precursor proteins in the membrane interface, and it is reported that amyloid lipid interaction is related to the cytotoxicity. Finally it is discussed how amyloid fibril formation can be inhibited. Firstly, properly designed compounds are reported to have inhibition ability of amyloid fibril formation by interacting with amyloid peptide. Secondly, it is revealed that site directed mutation can inhibit amyloid fibril formation. These inhibitors were developed by knowing the fibril structure determined by solid state NMR.  相似文献   

2.
It is important to understand the Amyloid fibril formation in view of numerous medical and biochemical aspects. Structural determination of amyloid fibril has been extensively studied using electron microscopy. Subsequently, solid state NMR spectroscopy has been realized to be the most important means to determine not only microscopic molecular structure but also macroscopic molecular packing. Molecular structure of amyloid fibril was first predicted to be parallel β-sheet structure, and subsequently, was further refined for Aβ(1-40) to be cross β-sheet with double layered in register parallel β-sheet structure by using solid state NMR spectroscopy. On the other hand, anti-parallel β-sheet structure has been reported to short fragments of Aβ-amyloid and other amyloid forming peptides. Kinetic study of amyloid fibril formation has been studied using a variety of methods, and two-step autocatalytic reaction mechanism used to explain fibril formation. Recently, stable intermediates or proto-fibrils have been observed by electron microscope (EM) images. Some of the intermediates have the same microscopic structure as the matured fibril and subsequently change to matured fibrils. Another important study on amyloid fibril formation is determination of the interaction with lipid membranes, since amyloid peptide are cleaved from amyloid precursor proteins in the membrane interface, and it is reported that amyloid lipid interaction is related to the cytotoxicity. Finally it is discussed how amyloid fibril formation can be inhibited. Firstly, properly designed compounds are reported to have inhibition ability of amyloid fibril formation by interacting with amyloid peptide. Secondly, it is revealed that site directed mutation can inhibit amyloid fibril formation. These inhibitors were developed by knowing the fibril structure determined by solid state NMR.  相似文献   

3.
Molecular mobility and phase structure of biodegradable poly(butylene succinate) (PBS) and poly(butylene succinate-co-20 mol % butylene adipate) [P(BS-co-20 mol % BA)] have been investigated by high-resolution solid-state (13)C NMR. For both samples, two components with different (13)C spin-lattice relaxation time (T(1C)) values have been observed in the crystalline region. The crystalline component with shorter T(1C) value is assignable to the interface near amorphous phase. The crystalline component with longer T(1C) value is ascribed to the inside of the crystalline region. On the basis of T(1C), it has been concluded that the BA units are not included in the crystalline region of P(BS-co-20 mol % BA). Molecular mobility and higher-ordered structure of amorphous phase have been also compared between the melt and solid state. Variable-temperature high-resolution (13)C NMR measurements for the amorphous phase have revealed the remarkable difference in dynamics and structure between the melt and solid state.  相似文献   

4.
This paper deals with the nuclear magnetic resonance characterization of a soluble derivative (melanin free acid) of Sepia melanin obtained by a peroxidative treatment of the parent (insoluble) species. High resolution 13C and 15N solid state NMR spectroscopies allow the assessment of the chemical changes occurring in the macromolecule upon solubilization. 1H and 13C NMR solution spectra are discussed in light of the results obtained from the solid state spectra. Furthermore, the coordination properties of melanin have been investigated through 27Al NMR spectroscopy and proton relaxation enhancement studies of the paramagnetic gadolinium complex of melanin free acid. Through these experiments it has been possible to evaluate the molecular reorientational time tau R (and from it an estimated molecular weight close to 20 KDa) and the strength of the metal-macromolecule interaction.  相似文献   

5.
In magic angle spinning solid state NMR experiments the potential of heteronuclear (1)H decoupling employing a continuous train of adiabatic inversion pulses has been assessed via numerical simulations and experimental measurements. It is shown that, with a (1)H RF field strength of approximately 100 kHz that is typically available in MAS NMR probes, it is possible to achieve efficient adiabatic (1)H decoupling at low magic angle spinning frequencies. It is pointed out that in the presence of H (1) inhomogeneities it will be advantageous to employ adiabatic decoupling in MAS solid state NMR experiments.  相似文献   

6.
The synthetic octapeptide peptide T (ASTTTNYT) has been shown to interfere with binding of the HIV-1 envelope glycoprotein gp120 to the chemokine receptor R5, thus preventing viral infection. This study investigated the degree of conformational order of two analogs of peptide T, one biologically active (D-Ala peptide T amide) and one inactive (D-Ala, D-Tyr peptide T amide) using nuclear magnetic resonance (NMR) spectroscopy in an aqueous environment, both in solution and in the frozen solid state. Standard solution NMR techniques such as DQFCOSY, HMQC, ROESY and inversion recovery measurements have been utilized to characterize these peptides. Solid state NMR experiments were likewise employed to study the peptides in a frozen glycerol:water mixture. The NMR results indicate that the monomeric form of both peptide T analogs have considerable conformational heterogeneity. Solid state NMR studies indicate aggregation of D-Ala peptide T, possibly into a beta-sheet structure, at concentrations higher than 10 mM.  相似文献   

7.
A series of terminally blocked dipeptides containing C-terminal N-phosphonomethylglycine (glyphosate, an extremely effective non-selective post-emergence herbicide) have been synthesized by a solution method. The presence of their two conformers, cis (syn) and trans (anti), was shown in solutions by NMR spectroscopy. Molecular structures of the peptides were also determined in the solid state by X-ray diffraction. The attempts for the selective and total removal of the groups protecting amino, carboxylic and phosphonate functions were in many cases unsuccessful due to the formation of cyclic structures and breakage of the phosphorus-to-carbon bond.  相似文献   

8.
The structure of an adduct between guanine and the carcinogen acetylaminofluorene has been examined in the solid state by X-ray crystallography, and in solution by NMR techniques. The observed conformations have been compared with predictions from energy calculations and their relevance to models of adducts with DNA has been examined.  相似文献   

9.
This review covers current trends in studies of membrane amphiphiles and membrane proteins using both fast tumbling bicelles and magnetically aligned bicelle media for both solution state and solid state NMR. The fast tumbling bicelles provide a versatile biologically mimetic membrane model, which in many cases is preferable to micelles, both because of the range of lipids and amphiphiles that may be combined and because radius of curvature effects and strain effects common with micelles may be avoided. Drug and small molecule binding and partitioning studies should benefit from their application in fast tumbling bicelles, tailored to mimic specific membranes. A wide range of topology and immersion depth studies have been shown to be effective in fast tumbling bicelles, while residual dipolar couplings add another dimension to structure refinement possibilities, particularly for situations in which the peptide is uniformly labeled with 15N and 13C. Solid state NMR studies of polytopic transmembrane proteins demonstrate that it is possible to express, purify, and reconstitute membrane proteins, ranging in size from single transmembrane domains to seven-transmembrane GPCRs, into bicelles. The line widths and quality of the resulting 15NH dipole-15N chemical shift spectra demonstrate that there are no insurmountable obstacles to the study of large membrane proteins in magnetically aligned media.  相似文献   

10.
Metal ion homeostasis is important for healthy cell function and is regulated by metal ion transporters and chaperones. To explore metal ion binding to membrane transport proteins we have used cadmium-113 as a solid state NMR probe of the Escherichia coli zinc exporter ZitB present in native membrane preparations. Competition experiments with other metal ions indicated that nickel and copper are also able to bind to this protein. Metal ion uptake studies were also performed using ZitB-reconstituted into proteoliposomes for a well established fluorescence assay. The results of both the solid state NMR and the uptake studies demonstrate that ZitB is potentially capable of transporting not only zinc but also cadmium, nickel and copper. The solid state NMR approach therefore offers great potential for defining the substrate spectrum of metal ion transporter proteins in their native membrane environments. Further, it should be useful for functional dissection of transporter mechanisms by facilitating the identification of functional residues by mutational studies.  相似文献   

11.
NMR spectroscopy has played a developing role in the study of polysaccharide structures for over 30 years. Many new bacterial polysaccharide repeat unit structures have recently been published as a result of the application of modern NMR techniques. NMR can also be used to elucidate the structures of both regular and heterogeneous polysaccharides from fungal and plant sources, as well as complex glycosaminoglycans of animal origin. In addition to covalent structure, conformation and dynamics of polysaccharides are susceptible to NMR analysis, both in solution and in the solid state. Improvements in NMR technology with potential applications to polysaccharide studies hold promise for the future.  相似文献   

12.
6-Ethynylferrocene-2,11-dithia[3.3]orthocyclophane has been prepared by cross-coupling 6-bromo-2,11-dithia[3.3]orthocyclophane to ethynylferrocene under Sonogashira conditions. The dynamic structure in solution of this potential ligand has been examined by variable temperature NMR whereas its solid state structure has been determined by X-ray diffraction studies. The electrochemical parameters of this cyclophane have also been examined.  相似文献   

13.
R Tabeta  H Sait? 《Biochemistry》1985,24(26):7696-7702
We recorded high-resolution 13C NMR spectra of the macrocyclic antibiotic ionophores valinomycin, nonactin, and tetranactin in the solid state by the cross-polarization-magic angle spinning (CP-MAS) method, in order to gain insight into the use of conformation-dependent 13C chemical shifts as a convenient means to delineate a conformational change induced by metal ion complexation. The 13C peak splittings in the solid state are consistent with the symmetry properties of the ionophores as revealed by X-ray diffraction: C2 symmetry in free tetranactin and S4 or S6 symmetry for a variety of metal complexes of nonactin and tetranactin or the K+ complex of valinomycin, respectively. Interestingly, many of the 13C NMR peaks of carbons in the skeletal backbones were significantly displaced (up to 8 ppm). The displacements of the peaks were explained by a conformational change as characterized by variations of torsion angles. Accordingly, we were able to obtain conformational features of Na+ and Cs+ complexes of valinomycin, for which X-ray diffraction data are unavailable, on the basis of the displacements of the 13C NMR peaks. Further, we discuss conformational features of these complexes in chloroform solution, with reference to those observed in the solid state.  相似文献   

14.
Given that solid-state NMR is being used for protein samples of increasing molecular weight and complexity, higher-dimensionality methods are likely to be more and more indispensable for unambiguous chemical shift assignments in the near future. In addition, solid-state NMR spectral properties are increasingly comparable with solution NMR, allowing adaptation of more sophisticated solution NMR strategies for the solid state in addition to the conventional methodology. Assessing first principles, here we demonstrate the application of automated projection spectroscopy for a micro-crystalline protein in the solid state.  相似文献   

15.
A chiral N,N-ligand based on glucose is able to recognise selectively one enantioface of a prochiral olefin in a trigonal Pt environment. NMR and X-ray studies have been carried out aiming to disclose the factors, which govern this unexpected result. The selectivity originates from the ability of the ligand to create a chiral pocket of C(2) symmetry, which is retained in both solution and solid state.  相似文献   

16.
The structure and bonding properties of a number of closely related tetraphenyltin- and triphenyltin chloride compounds have been studied by the 119Sn Mössbauer effect and multinuclear NMR spectroscopy. The comparison of liquid and solid state 13C and 119Sn NMR spectra and of glassy solution matrix and neat solid state Mössbauer spectra provides information about the extent of intermolecular association effects in these compounds. The results indicate that all materials with the exception of (p-CF3Ph)3SnCl are adequately described as monomeric solids with tetrahedral geometry around the metal atom. For the latter compound spectroscopic evidence for the presence of a five-coordinated tin species is presented.  相似文献   

17.
Starch is subjected to chemical treatments such as cross-linking or hydroxypropylation to meet the material requirements for food uses or controlled release in the pharmaceutical industries. In this work, two types of cross-linking formulations have been employed for the preparation of high amylose starch for use as an excipient for sustained drug release. The structural differences and chain dynamics of the modified starches in the dry and hydrated states have been compared by the use of variable contact time cross polarization-magic angle spinning solid state (13)C NMR spectroscopy.  相似文献   

18.
We report solid state nuclear magnetic resonance (NMR) measurements that probe the supramolecular organization of beta-sheets in the cross-beta motif of amyloid fibrils formed by residues 11-25 of the beta-amyloid peptide associated with Alzheimer's disease (Abeta(11-25)). Fibrils were prepared at pH 7.4 and pH 2.4. The solid state NMR data indicate that the central hydrophobic segment of Abeta(11-25) (sequence LVFFA) adopts a beta-strand conformation and participates in antiparallel beta-sheets at both pH values, but that the registry of intermolecular hydrogen bonds is pH-dependent. Moreover, both registries determined for Abeta(11-25) fibrils are different from the hydrogen bond registry in the antiparallel beta-sheets of Abeta(16-22) fibrils at pH 7.4 determined in earlier solid state NMR studies. In all three cases, the hydrogen bond registry is highly ordered, with no detectable "registry-shift" defects. These results suggest that the supramolecular organization of beta-sheets in amyloid fibrils is determined by a sensitive balance of multiple side-chain-side-chain interactions. Recent structural models for Abeta(11-25) fibrils based on X-ray fiber diffraction data are inconsistent with the solid state NMR data at both pH values.  相似文献   

19.
P V LoGrasso  F Moll  rd    T A Cross 《Biophysical journal》1988,54(2):259-267
Reconstituted lipid bilayers of dimyristoylphosphatidylcholine (DMPC) and gramicidin A' have been prepared by cosolubilizing gramicidin and DMPC in one of three organic solvent systems followed by vacuum drying and hydration. The conformational state of gramicidin as characterized by 23Na NMR, circular dichroism, and solid state 15N NMR is dependent upon the cosolubilizing solvent system. In particular, two conformational states are described; a state in which Na+ has minimal interactions with the polypeptide, referred to as a nonchannel state, and a state in which Na+ interacts very strongly with the polypeptide, referred to as the channel state. Both of these conformations are intimately associated with the hydrophobic core of the lipid bilayer. Furthermore, both of these states are stable in the bilayer at neutral pH and at a temperature above the bilayer phase transition temperature. These results with gramicidin suggest that the conformation of membrane proteins may be dictated by the conformation before membrane insertion and may be dependent upon the mechanism by which the insertion is accomplished.  相似文献   

20.
We have proposed solid state NMR (SSNMR) of sedimented solutes as a novel approach to sample preparation for biomolecular SSNMR without crystallization or other sample manipulations. The biomolecules are confined by high gravity—obtained by centrifugal forces either directly in a SSNMR rotor or in a ultracentrifugal device—into a hydrated non-crystalline solid suitable for SSNMR investigations. When gravity is removed, the sample reverts to solution and can be treated as any solution NMR sample. We here describe a simple web tool to calculate the relevant parameters for the success of the experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号