首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was carried out to examine the effects of the meiosis-activating C(29) sterol, 4,4-dimethyl-5 alpha-cholesta-8,14, 24-trien-3 beta-ol (FF-MAS), on mouse oocyte maturation in vitro. Cumulus cell-enclosed oocytes (CEO) and denuded oocytes (DO) from hormonally primed, immature mice were cultured 17-18 h in minimum essential medium (MEM) containing 4 mM hypoxanthine plus increasing concentrations of FF-MAS. The sterol induced maturation in DO with an optimal concentration of 3 microg/ml but was without effect in CEO, even at concentrations as high as 10 microg/ml. Some stimulation of maturation in hypoxanthine-arrested CEO was observed when MEM was replaced by MEMalpha. Interestingly, the sterol suppressed the maturation of hypoxanthine-arrested CEO in MEM upon removal of glucose from the medium. FF-MAS also failed to induce maturation in DO when meiotic arrest was maintained with dibutyryl cAMP (dbcAMP). The rate of maturation in FF-MAS-stimulated, hypoxanthine-arrested DO was slow, as more than 6 h of culture elapsed before significant meiotic induction was observed, and this response required the continued presence of the sterol. Although the oocyte took up radiolabeled lanosterol, such accumulation was restricted by the presence of cumulus cells. In addition, lanosterol failed to augment FSH-induced maturation and was even inhibitory at a high concentration. Moreover, the downstream metabolite, cholesterol, augmented the inhibitory action of dbcAMP on maturation in both CEO and DO. Two inhibitors of 14 alpha-demethylase, ketoconazole, and 14 alpha-ethyl-5 alpha-cholest-7-ene-3 beta, 15 alpha-diol that can suppress FF-MAS production from lanosterol failed to block consistently FSH-induced maturation. These results confirm the stimulatory action of FF-MAS on hypoxanthine-arrested DO but do not support a universal meiosis-inducing function for this sterol.  相似文献   

2.
Zona-free oocytes of the mouse were inseminated at prometaphase I or metaphase I of meiotic maturation in vitro, and the behavior of the sperm nuclei within the oocyte cytoplasm was examined. If the oocytes were penetrated by up to three sperm, maturation continued during subsequent incubation and became arrested at metaphase II. Meanwhile, each sperm nucleus underwent the following changes. First, the chromatin became slightly dispersed. By 6 h after insemination, this dispersed chromatin had become coalesced into a small mass, from which short chromosomal arms later became projected. Between 12 and 18 h after insemination, each mass of chromatin became resolved into 20 discrete metaphase chromosomes. In contrast, if oocytes were penetrated by four to six sperm, oocyte meiosis was arrested at metaphase I, and each sperm nucleus was transformed into a small mass of chromatin rather than into metaphase chromosomes. If oocytes were penetrated by more than six sperm, the maternal chromosomes became either decondensed or pycnotic, and the sperm nuclei were transformed into larger masses of chromatin. As control experiments, immature and fully mature metaphase II oocytes were inseminated. In the immature oocytes, which were kept immature by exposure to dibutyryl cyclic AMP, no morphological changes in the sperm nucleus were observed. On the other hand, in the fully mature oocytes, which were activated by sperm penetration, the sperm nucleus was transformed into the male pronucleus. Therefore, the cytoplasm of the maturing oocyte develops an activity that can transform the highly condensed chromatin of the sperm into metaphase chromosomes. However, the capacity of an oocyte is limited, such that it can transform a maximum of three sperm nuclei into metaphase chromosomes. Furthermore, the presence of more than six sperm causes a loss of the ability of the oocyte to maintain the maternal chromosomes in a metaphase state.  相似文献   

3.
Bovine oocytes at the germinal vesicle stage were inseminated in Brackett & Oliphant's medium with bovine serum albumin, caffeine and heparin. Eight hours after insemination, oocytes were transferred into tissue culture medium-199 containing 10% fetal calf serum and cultured for 5-40 h at 39 degrees C in 5% CO2 in air. The proportions of unpenetrated and penetrated oocytes reaching metaphase II increased as the time of examination increased, reaching 70 and 65% 40 h after transfer, respectively. When oocytes were penetrated by more than four spermatozoa, meiotic maturation was greatly retarded. Sperm nuclei were decondensed in most (81%) penetrated oocytes 5 h after transfer. The decondensed sperm nuclei were recondensed and then transformed to metaphase chromosomes which were morphologically compacted at first but became slightly dispersed later. The formation of the metaphase chromosomes was observed in 86% of penetrated oocytes examined 40 h after transfer, and occurred in all metaphase II oocytes at that time. In oocytes penetrated by more than nine spermatozoa, no such transformation of sperm nuclei was observed. Well-developed male and female pro-nuclei were observed in only three (6%) of 51 oocytes penetrated 40 h after transfer.  相似文献   

4.
We show that in contrast to metaphase II oocytes, metaphase I oocytes cannot be activated by fusion with the zygote. Fusion of metaphase I oocytes with G2 zygotes was followed by premature chromosome condensation, with 60% of the hybrids becoming arrested at metaphase I, the remainder progressing and arresting at metaphase II. Hybrids of metaphase I oocytes and M-phase zygotes underwent accelerated maturation, but all arrested at metaphase II. In both cases the arrest could be overcome by treatment with the parthenogenetic activators ethanol and cycloheximide. We discuss these findings in relation to the possibility that the metaphase I oocyte contains cytostatic factor activity that is activated by its zygotic partner. Alternatively, the G2 zygote may provide an inhibitor of anaphase, normally never present in the metaphase I oocyte and which is absent from the M-phase zygote.  相似文献   

5.
6.
Reduced atmospheric oxygen concentration is beneficial to embryo development; however, optimal oxygen concentration for oocyte maturation remains undetermined. Likewise, there is no consensus of appropriate medium supplementation during maturation. The objective of this study was to determine whether oxygen tension (20% or 5% O2) and epidermal growth factor (EGF) affect oocyte metabolism and subsequent embryo development. Cumulus-oocyte complexes (COCs) were collected from 28-day-old equine chorionic gonadotropin (eCG) primed or unprimed F1 (C57BL/6xCBA) mice. COCs were matured in defined medium in one of four groups: 20% O2, 20% O2 + EGF, 5% O2, 5% O2 + EGF. In vivo matured COCs were also collected for analysis. COCs from unprimed mice, matured in 5% O2 +/- EGF or 20% O2 + EGF had higher metabolic rates than COCs matured in 20% O2 (P < 0.05). COCs from primed mice had higher metabolic rates when matured in the presence of EGF, regardless of oxygen tension (P < 0.01). Oxygen uptake and mitochondrial membrane potential were higher for in vivo matured oocytes and oocytes matured under 5% O2 compared to oocytes matured under 20% O2 (P < 0.05). Blastocyst formation was not different between maturation groups (primed or unprimed); however, embryo cell numbers were 20-45% significantly higher when COCs were matured at 5% O2 (P < 0.05). Results suggest that oocytes matured in physiological concentrations of oxygen have improved development and metabolic activity, more closely resembling in vivo maturation. These findings have implications for oocyte maturation in both clinical and research laboratories.  相似文献   

7.
Fully grown oocytes of most laboratory mice progress without interruption from the germinal vesicle (GV) stage to metaphase II, where meiosis is arrested until fertilization. In contrast, many oocytes of strain LT mice arrest precociously at metaphase I and often undergo subsequent spontaneous parthenogenetic activation. Cytostatic factor (CSF), which prevents the degradation of cyclin B and maintains high maturation-promoting factor (MPF) activity, is required for maintenance of metaphase I-arrest in LT oocytes, similar to its requirement for maintaining metaphase II-arrest in normal oocytes. However, CSF does not instigate metaphase I-arrest since a temporary metaphase I-arrest occurs in MOS-null LT oocytes. This paper addresses the mechanism(s) that may instigate metaphase I-arrest and tests the hypothesis that there may be one or more defects in LT oocytes that delay their acquisition of competence to trigger the cascade of processes that normally drive entry into and progression through anaphase I. To test this hypothesis, MPF activity was artificially abrogated by treating oocytes with a general protein kinase inhibitor, 6-DMAP, at various times during the progression of meiosis I. This allowed a comparison of the time at which LT and normal oocytes become competent to undergo the metaphase I/anaphase transition even if oocytes were arrested at metaphase I when 6-DMAP-treatment was begun. There were no differences between LT and control oocytes in the kinetics of MPF suppression by 6-DMAP. However, it was found that LT oocytes do not acquire competence to undergo the metaphase I/anaphase transition in response to 6-DMAP until 50-60 min after normal oocytes. A similar delay was observed in strain CX8-4 oocytes, which also have a high incidence of metaphase I-arrest, but not in strain CX8-11 oocytes, which exhibit a low incidence of metaphase I-arrest. MOS-null LT oocytes also exhibit a delay in acquisition of competence to undergo the metaphase I/anaphase transition. Thus, a delay in competence to undergo the metaphase I/anaphase transition in response to 6-DMAP-treatment correlates with metaphase I-arrest. It is therefore hypothesized that the observed delay in acquisition of competence to enter anaphase I may instigate the sustained metaphase I-arrest in LT oocytes by allowing CSF activity to rise to a level that prevents cyclin B degradation and maintains high MPF activity before anaphase can be initiated by normal triggering mechanisms.  相似文献   

8.
Culture systems for oocytes are essential for the experimental analysis of the basic mechanisms of oocyte development and, moreover, they will eventually find wide application in agriculture, the clinic, and wildlife preservation. Here, progress in mouse oocyte growth and development in vitro using oocyte-granulosa cell complexes from preantral follicles is reviewed. Oocyte-granulosa cell complexes were isolated from preantral (secondary) follicles of 12 day old mice, grown in vitro for 10 days, then matured and fertilized in vitro. The developmental competence of these oocytes was compared with oocytes grown in vivo and isolated from 22 day old mice, then matured and fertilized in vitro. In vitro-grown oocytes did not achieve the same size as their in vivo-grown counterparts. However, when oocytes were grown in medium containing fetal bovine serum, their preimplantation developmental competence was equivalent to that of in vivo-grown oocytes. Surprisingly, more blastocysts per animal were produced when oocytes were grown in vitro than in vivo. There was no correlation between oocyte size and either preimplantation developmental competence or number of cells per blastocyst. Oocytes grown in serum-free medium did not achieve the same developmental competence as oocytes grown in medium supplemented with serum. Lastly, the health status as an adult of the only animal born after complete oocyte development in vitro is described and discussed.  相似文献   

9.
Sun F  Handel MA 《Chromosoma》2008,117(5):471-485
The meiotic prophase I to metaphase I transition (G2/MI) involves disassembly of synaptonemal complex (SC), chromatin condensation, and final compaction of morphologically distinct MI bivalent chromosomes. Control of these processes is poorly understood. The G2/MI transition was experimentally induced in mouse pachytene spermatocytes by okadaic acid (OA), and kinetic analysis revealed that disassembly of the central element of the SC occurred very rapidly after OA treatment, before histone H3 phosphorylation on Ser10. These events were followed by relocalization of SYCP3 and final condensation of bivalents. Enzymatic control of these G2/MI transition events was studied using small molecule inhibitors: butyrolactone I (BLI), an inhibitor of cyclin-dependent kinases (CDKs) and ZM447439 (ZM), an inhibitor of aurora kinases (AURKs). The formation of highly condensed MI bivalents and disassembly of the SC are regulated by both CDKs and AURKs. AURKs also mediate phosphorylation of histone H3 in meiosis. However, neither BLI nor ZM inhibited disassembly of the central element of the SC. Thus, despite evidence that the metaphase promoting factor is a universal regulator of the onset of cell division, desynapsis, the first and key step of the G2/MI transition, occurs independently of BLI-sensitive CDKs and ZM-sensitive AURKs.  相似文献   

10.
11.
Follicle-Stimulating Hormone (FSH) at a wide range of doses is routinely added to culture media during in vitro maturation (IVM) of oocytes, but the effects on oocyte health are unclear. The suggestion that superovulation may cause aneuploidy and fetal abnormalities prompted us to study the potential role of FSH in the genesis of chromosomal abnormalities during meiosis I. Mouse cumulus-oocyte complexes (COCs) isolated from the antral follicles of unprimed, sexually immature B6CBF1 mice were cultured in increasing concentrations of FSH. Following culture, matured oocytes were isolated, spread, stained with DAPI, and the numbers of chromosomes counted. Significantly increased aneuploidy, arising during the first meiotic division, was observed in metaphase II oocytes matured in higher concentrations of FSH (> or =20 ng/ml). The effect of FSH on spindle morphology and chromosome alignment during metaphase I was then explored using immunocytochemistry and three-dimensional reconstruction of confocal sections. High FSH had no effect on gross spindle morphology but did alter chromosome congression during prometaphase and metaphase, with the spread of chromosomes across the spindle at this time being significantly greater in oocytes cultured in 2000 ng/ml compared with 2 ng/ml FSH. Analysis of three-dimensional reconstructions of spindles in oocytes matured in 2000 ng/ml FSH shows that chromosomes are more scattered and farther apart than they are following maturation in 2 ng/ml FSH. These results demonstrate that exposure to high levels of FSH during IVM can accelerate nuclear maturation and induce chromosomal abnormalities and highlights the importance of the judicious use of FSH during IVM.  相似文献   

12.
As an assisted reproduction technology, vitrification has been widely used for oocyte and embryo cryopreservation. Many studies have indicated that vitrification affects ultrastructure, gene expression, and epigenetic status. However, it is still controversial whether oocyte vitrification could induce DNA damage in metaphase II (MII) oocytes and the resulting early embryos. This study determined whether mouse oocytes vitrification induce DNA damage in MII oocytes and the resulting preimplantation embryos, and causes for vitrification‐induced DNA damage. The effects of oocyte vitrification on reactive oxygen species (ROS) levels, γ‐H2AX accumulation, apoptosis, early embryonic development, and the expression of DNA damage‐related genes in early embryos derived by in vitro fertilization were examined. The results indicated that vitrification significantly increased the number of γ‐H2AX foci in zygotes and two‐cell embryos. Trp53bp1 was upregulated in zygotes, two‐cell embryos and four‐cell embryos in the vitrified group, and Brca1 was increased in two‐cell embryos after vitrification. Vitrification also increased the ROS levels in MII oocytes, zygotes, and two‐cell embryos and the apoptotic rate in blastocysts. Resveratrol (3,5,4′‐trihydroxystilbene) treatment decreased the ROS levels and the accumulation of γ‐H2AX foci in zygotes and two‐cell embryos and the apoptotic rate in blastocysts after vitrification. Overall, vitrification‐induced abnormal ROS generation, γ‐H2AX accumulation, an increase in the apoptotic rate and the disruption of early embryonic development. Resveratrol treatment could decrease ROS levels, γ‐H2AX accumulation, and the apoptotic rate and improve early embryonic development. Vitrification‐associated γ‐H2AX accumulation is at least partially due to abnormal ROS generation.  相似文献   

13.
Female mice were given different dosages (0, 3.0, 7.5, 15.0, or 30 muCi/ml) of tritium in their drinking water continuously from 3 to 7 weeks of age to assess the effects on germ cell chromosomes. At 8-9 weeks of age, mice were superovulated and metaphase II oocytes were processed and C-banded for cytogenetic analyses. Chromatid acentric fragments were the only type of structural aberration detected, and their incidence was higher in controls than in any of the tritiated water (HTO) groups. Analysis of numerical chromosomal aberrations revealed that the incidence of hypoploid (N = 19) oocytes was higher in oocytes from mice who drank HTO as compared with controls. However, the effects of HTO upon aneuploidy induction was not definitive due to the increase the incidence of aberrations in mouse oocytes can be related to the low dose rate resulting from chronic HTO exposure and possibly death of tritium-damaged cells.  相似文献   

14.
Previous studies suggested that the transition from an incompetent to a competent meiotic state during the course of oogenesis in the mouse involved a G2/M-like cell cycle transition (Wickramasinghe et al, 1991. Dev. Biol. 143, 162). The present studies tested the hypothesis that centrosome phosphorylation, an event normally induced by MPF, is required for this developmental transition and the expression of meiotic competence in cultured growing mouse oocytes. Multiple fluorescence labeling techniques were used to evaluate centrosome number, phosphorylation status, and microtubule nucleating capacity in competent and incompetent oocytes. Experimental conditions were established for reversibly altering the phosphorylation status of the centrosomes and the effects of these treatments on meiotic resumption were examined. Phosphorylated centrosomes nucleating short microtubules were observed in competent oocytes, whereas nonphosphorylated centrosomes and interphase microtubule arrays were found in incompetent oocytes. Upon recovery from nocodazole-induced microtubule depolymerization, short microtubules formed from centrosomes in competent oocytes, whereas long microtubules reappear in the cytoplasm of incompetent oocytes. Perturbation of the phosphorylation state of oocytes with activators of protein kinase A or protein kinase C resulted in the formation of long interphase microtubules in competent oocytes while centrosome phosphorylation was maintained. Treatment of competent oocytes with the phosphorylation inhibitor 6-dimethylaminopurine also led to formation of long microtubules, although under these conditions centrosomes were dephosphorylated. When competent oocytes were treated simultaneously with puromycin and the phosphodiesterase inhibitor isobutyl methylxanthine (IBMX) for 6 hr, centrosomes became dephosphorylated; centrosomes were rephosphorylated when competent oocytes were further cultured in IBMX without puromycin. Conditions that induced centrosome dephosphorylation in competent oocytes resulted in the loss of the ability to express meiotic competence in culture, whereas maintenance of centrosome phosphorylation in these oocytes was correlated with the ability to resume meiosis. These results suggest that the G2/M transition that occurs when mouse oocytes progress from an incompetent to a competent state in vivo involves the phosphorylation of centrosomes and that the maintenance of centrosome phosphorylation is required for the in vitro expression of meiotic competence.  相似文献   

15.
The pesticide trichlorfon (TCF) has been implicated in human trisomy 21, and in errors in chromosome segregation at male meiosis II in the mouse. We previously provided evidence that TCF interferes with spindle integrity and cell-cycle control during murine oogenesis. To assess the aneugenic activity of TCF in oogenesis, we presently analysed maturation, spindle assembly, and chromosome constitution in mouse oocytes maturing in vitro in the presence of 50 or 100 microg/ml TCF for 16 h or in pulse-chase experiments. TCF stimulated maturation to meiosis II at 50 microg/ml, but arrested meiosis in some oocytes at 100 microg/ml. TCF at 100 microg/ml was aneugenic causing non-disjunction of homologous chromosomes at meiosis I, a significant increase of the hyperploidy rate at metaphase II, and a significant rise in the numbers of oocytes that contained a 'diploid' set of metaphase II chromosomes (dyads). TCF elevated the rate of precocious chromatid segregation (predivision) at 50 and 100 microg/ml. Pulse-chase experiments with 100 microg/ml TCF present during the first 7 h or the last 9 h of maturation in vitro did not affect meiotic progression and induced intermediate levels of hyperploidy at metaphase II. Exposure to > or =50 microg/ml TCF throughout maturation in vitro induced severe spindle aberrations at metaphase II, and over one-third of the oocytes failed to align all chromosomes at the spindle equator (congression failure). These observations suggest that exposure to high concentrations of TCF induces non-disjunction at meiosis I of oogenesis, while lower doses may preferentially cause errors in chromosome segregation at meiosis II due to disturbances in spindle function, and chromosome congression as well as precocious separation of chromatids prior to anaphase II. The data support evidence from other studies that TCF has to be regarded as a germ cell aneugen.  相似文献   

16.
Mouse oocytes at metaphase I of meiotic maturation were treated with puromycin, which caused the condensed chromosomes to become decondensed to form an interphase nucleus. The chromosomes returned to a metaphase state 6.3 hr after the oocytes were transferred to puromycin-free medium [H. J. Clarke and Y. Masui (1983) Dev. Biol. 97, 291-301]. In contrast, the chromosomes of the puromycin-treated oocytes remained decondensed within the nucleus if dibutyryl cyclic AMP (dbcAMP) was included in the puromycin-free medium. This implies that dbcAMP inhibited the development of conditions in the oocytes that were required for the transition to metaphase. The chromosomes of puromycin-treated oocytes that were incubated for 7.5 hr in dbcAMP-containing medium returned to metaphase just 1.9 hr after transfer to dbcAMP-free medium. Therefore, the protein synthesis-dependent process that is required for the transition to metaphase could occur in the presence of dbcAMP. Fusion to metaphase II oocytes, or to puromycin-treated oocytes that had returned to metaphase, rapidly induced transition of the nuclei of dbcAMP-inhibited oocytes to metaphase, despite the presence of the inhibitor. These results suggest that the transition of nuclei to metaphase can be induced by a cytoplasmic factor that is present in metaphase oocytes, and that dbcAMP inhibits the development of this factor.  相似文献   

17.
Primary spermatocytes originating from prepubertal mouse testes were electrofused to metaphase II (MII)-stage oocytes, enucleated either by the conventional micromanipulation method or by chemical treatment with etoposide and cycloheximide. These experiments were followed by assessment of morphological changes in transferred nuclei using light microscopy, by chromosomal analyses and by screening of hybrids for the presence or absence of DNA synthesis using anti-bromodeoxyuridine antibody and immunofluorescence staining of the hybrids. The results show differences between the two types of ooplasts in susceptibility to activation stimuli. However, when activated, both types of ooplasts gave rise to hybrids of similar morphology. From 35.3% to 63% of activated hybrids originating from chemically or microsurgically enucleated oocytes, respectively, contained one large pronucleus in cytoplasm, 62% or 31.6% hybrids from those two groups, respectively, possessed two smaller pronuclei and a few contained three or four pronuclei. No DNA synthesis was detected in any hybrid containing one or more pronuclei. The chromosome spreads of hybrids with premature chromosome condensation (PCC) morphology (before activation) show that most of the hybrids had a diploid (2n) number of chromosomes. The nature and regularity of the cell division cycle in the hybrids are discussed.  相似文献   

18.
The interaction between nucleus and cytoplasm can be explored through nuclear transfer. We describe here another tool to investigate this interaction: MII meiotic apparatus transfer (MAT) between mouse oocytes. In this study, the MII oocyte meiotic apparatus or spindle from C57BL/6 mice, a black strain, was transferred into an enucleated metaphase oocyte from Kunming mouse, a white strain. The results showed that the enucleation rate by treating oocytes with 3% sucrose was 100%, but the electrofusion efficiency was very low, with only 17.6% of reconstructed karyoplast-recipient cytoplasm pairs fused. When the fused oocytes were exposed to spermatozoa from C57BL/6 mice, 9 of 11 (82%) were fertilised. Eight reconstructed embryos at 1- to 4-cell stages were transferred into the oviducts of two synchronously pregnant Kunming strain fosters and one delivered two normal C57BL/6 offspring. This study indicates that MII meiotic apparatus or spindle sustains normal structure and function after micromanipulation and electrofusion. MAT provides a model for further research on the application of this technique to assisted human reproduction.  相似文献   

19.
To test the hypothesis that oocytes require time to acquire developmental competence during meiotic arrest, we investigated the effects of butyrolactone I (BL I), a potent and specific inhibitor of cyclin-dependent kinase, on the developmental competence of bovine oocytes after in vitro fertilization (IVF) following release from meiotic arrest. In the present study, 4 culture conditions were used: addition of BSA or fetal bovine serum (FBS) under 2 oxygen tensions (5% vs. 20%) during meiotic arrest with 100-microM BL I. The developmental competence to the blastocyst stage was higher (P < 0.01) in oocytes that were arrested in FBS-supplemented medium under 5% O2 (37%) than in oocytes that were arrested under other conditions (5%-24%) or that matured directly following follicle aspiration (23%). The time course of nuclear maturation of BL I-treated oocytes was also examined. The results demonstrated that oocytes treated with BL I start germinal vesicle (GV) breakdown and reach the metaphase II stage 5.5-6.0 h earlier than nonarrested oocytes. The developmental rates to the blastocyst stage of BL I-treated oocytes matured for 15.5 and 21 h were higher (P < 0.05) than those of nontreated oocytes matured for 21 and 26.5 h, respectively. These results demonstrate that bovine immature oocytes, which were arrested at the GV stage with BL I in FBS-supplemented medium under low oxygen tension, acquire higher developmental competence during meiotic arrest.  相似文献   

20.
We report that parthenogenetic activation (pronuclear formation) is induced during in vitro culture of recently ovulated (13-14 hr post-hCG) mouse oocytes in pyruvate deficient medium. Pronuclear formation occurred when oocytes were cultured in medium containing 1/10X (Pyr-) or lower concentrations of pyruvate but failed to occur either in oocytes cultured in the presence of 0.47 mM (1X, Pyr+) or 1/2X pyruvate or in oocytes cultured in the absence of pyruvate but with cumulus cells. Pronuclear formation was evident within 8 hr of culture and completed by 16 hr and remained intact during continuous culture in Pyr- medium. Transfer of pronuclear oocytes to Pyr+ medium resulted in pronuclear membrane disassembly and further parthenogenetic development. A similar incidence of parthenogenetic activation occurred when recently ovulated oocytes were cultured in the presence of cycloheximide but not following ethanol or hyaluronidase treatment. However, both ethanol and hyaluronidase induced pronuclear formation in in vivo aged oocytes. Results suggest that the type of activation induced varies with the age of the oocyte and the nature of the stimulus. Amino acid uptake ([35S]methionine) by oocytes was unaffected by Pyr- culture whereas incorporation into protein was markedly inhibited. Gel electrophoretic analysis of labeled egg extracts revealed a marked inhibition of egg protein synthesis after 4 hr of culture in Pyr-. The occurrence of a cortical reaction was monitored by binding of fluorescent labeled lectin to the oocyte surface. A cortical reaction occurred in response to ethanol treatment of freshly ovulated and in vivo aged oocytes cultured in Pyr+ medium but not in pronucleate oocytes induced by Pyr- culture. Suppression of ethanol-induced cortical reaction by Pyr- culture was restored following transfer of oocytes to Pyr+ medium. Results demonstrate that nuclear events as well as plasma membrane events can be simply regulated by controlling the amount of energy substrate available to the germ cell. Effects of Pyr- culture in inducing pronuclear formation appear to be mediated in a large part via inhibition of protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号