首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ribosomal RNA (rRNA) genes of Drosophila melanogaster can undergo a disproportionate replication of their number. This occurs when the cluster of rRNA genes (rDNA) of one chromosome is maintained with a homologous chromosome that is completely or partially deficient in its rDNA. Under appropriate genetic conditions, it appears that disproportionate rDNA replication can be generated at the level of both somatic and germ line cells. In the latter case, mutants partially deficient for rDNA can increase their rRNA gene number to the wild type level and transmit this new genotype to successive generations.  相似文献   

2.

Background  

In mammals, there is evidence suggesting that methyl-CpG binding proteins may play a significant role in histone modification through their association with modification complexes that can deacetylate and/or methylate nucleosomes in the proximity of methylated DNA. We examined this idea for the X chromosome by studying histone modifications on the X chromosome in normal cells and in cells from patients with ICF syndrome (Immune deficiency, Centromeric region instability, and Facial anomalies syndrome). In normal cells the inactive X has characteristic silencing type histone modification patterns and the CpG islands of genes subject to X inactivation are hypermethylated. In ICF cells, however, genes subject to X inactivation are hypomethylated on the inactive X due to mutations in the DNA methyltransferase (DNMT3B) genes. Therefore, if DNA methylation is upstream of histone modification, the histones on the inactive X in ICF cells should not be modified to a silent form. In addition, we determined whether a specific methyl-CpG binding protein, MeCP2, is necessary for the inactive X histone modification pattern by studying Rett syndrome cells which are deficient in MeCP2 function.  相似文献   

3.
The histone genes of wild-type Drosophila melanogaster are reiterated 100–150 times per haploid genome and are located in the segment of chromosome 2 that corresponds to polytene bands 39D2-3 to E1-2. The influence of altered histone gene multiplicity on chromatin structure has been assayed by measuring modification of the gene inactivation associated with position effect variegation in genotypes bearing deletions of the 39D-E segment. The proportion of cells in which a variegating gene is active is increased in genotypes that are heterozygous for a deficiency that removes the histone gene complex. Deletions that remove segments adjacent to the histone gene complex have no effect on the expression of variegating genes. Suppression of position effect variegation associated with reduction of histone gene multiplicity applies to both X-linked and autosomal variegating genes. Position effects exerted by both autosomal and sex-chromosome heterochromatin were suppressible by deletions of the histone gene complex. The suppression was independent of the presence of the Y chromosome. A deficiency that deletes only the distal portion of the histone gene complex also has the ability to suppress position effect variegation. Duplication of the histone gene complex did not enhance position effect variegation. Deletion or duplication of the histone gene complex in the maternal genome had no effect on the extent of variegation in progeny whose histone gene multiplicity was normal. These results are discussed with respect to current knowledge of the organization of the histone gene complex and control of its expression.  相似文献   

4.
Whereas DNA methylation is essential for genomic imprinting, the importance of histone methylation in the allelic expression of imprinted genes is unclear. Imprinting control regions (ICRs), however, are marked by histone H3-K9 methylation on their DNA-methylated allele. In the placenta, the paternal silencing along the Kcnq1 domain on distal chromosome 7 also correlates with the presence of H3-K9 methylation, but imprinted repression at these genes is maintained independently of DNA methylation. To explore which histone methyltransferase (HMT) could mediate the allelic H3-K9 methylation on distal chromosome 7, and at ICRs, we generated mouse conceptuses deficient for the SET domain protein G9a. We found that in the embryo and placenta, the differential DNA methylation at ICRs and imprinted genes is maintained in the absence of G9a. Accordingly, in embryos, imprinted gene expression was unchanged at the domains analyzed, in spite of a global loss of H3-K9 dimethylation (H3K9me2). In contrast, the placenta-specific imprinting of genes on distal chromosome 7 is impaired in the absence of G9a, and this correlates with reduced levels of H3K9me2 and H3K9me3. These findings provide the first evidence for the involvement of an HMT and suggest that histone methylation contributes to imprinted gene repression in the trophoblast.  相似文献   

5.
Imprinted genes in mammals are often located in clusters whose imprinting is subject to long range regulation by cis-acting sequences known as imprinting centers (ICs). The mechanisms by which these ICs exert their effects is unknown. The Prader-Willi syndrome IC (PWS-IC) on human chromosome 15 and mouse chromosome 7 regulates imprinted gene expression bidirectionally within an approximately 2-megabase region and shows CpG methylation and histone H3 Lys-9 methylation in somatic cells specific for the maternal chromosome. Here we show that histone H3 Lys-9 methylation of the PWS-IC is reduced in mouse embryonic stem (ES) cells lacking the G9a histone H3 Lys-9/Lys-27 methyltransferase and that maintenance of CpG methylation of the PWS-IC in mouse ES cells requires the function of G9a. We show by RNA fluorescence in situ hybridization (FISH) that expression of Snrpn, an imprinted gene regulated by the PWS-IC, is biallelic in G9a -/- ES cells, indicating loss of imprinting. By contrast, Dnmt1 -/- ES cells lack CpG methylation of the PWS-IC but have normal levels of H3 Lys-9 methylation of the PWS-IC and show normal monoallelic Snrpn expression. Our results demonstrate a role for histone methylation in the maintenance of parent-specific CpG methylation of imprinting regulatory regions and suggest a possible role of histone methylation in establishment of these CpG methylation patterns.  相似文献   

6.
The sequences and organization of the histone genes in the histone gene cluster at the chromosomal marker D6S105 have been determined by analyzing the Centre d’étude du Polymorphisme Humain yeast artificial chromosome (YAC) 964f1. The insert of the YAC was subcloned in cosmids. In the established contig of the histone-gene-containing cosmids, 16 histone genes and 2 pseudogenes were identified: one H1 gene (H1.5), five H2A genes, four H2B genes and one pseudogene of H2B, three H3 genes, and three H4 genes plus one H4 pseudogene. The cluster extends about 80 kb with a nonordered arrangement of the histone genes. The dinucleotide repeat polymorphic marker D6S105 was localized at the telomeric end of this histone gene cluster. Almost all human histone genes isolated until now have been localized within this histone gene cluster and within the previously described region of histone genes, about 2 Mb telomeric of the newly described cluster or in a small group of histone genes on chromosome 1. We therefore conclude that the data presented here complete the set of human histone genes. This now allows the general organization of the human histone gene complement to be outlined on the basis of a compilation of all known histone gene clusters and solitary histone genes. Received: 30 June 1997 / Accepted: 3 September 1997  相似文献   

7.
The multigene family encoding the five classes of replication-dependent histones has been identified from the human and mouse genome sequence. The large cluster of histone genes, HIST1, on human chromosome 6 (6p21-p22) contains 55 histone genes, and Hist1 on mouse chromosome 13 contains 51 histone genes. There are two smaller clusters on human chromosome 1: HIST2 (at 1q21), which contains six genes, and HIST3 (at 1q42), which contains three histone genes. Orthologous Hist2 and Hist3 clusters are present on mouse chromosomes 3 and 11, respectively. The organization of the human and mouse histone genes in the HIST1 cluster is essentially identical. All of the histone H1 genes are in HIST1, which is spread over about 2 Mb. There are two large gaps (>250 kb each) within this cluster where there are no histone genes, but many other genes. Each of the histone genes encodes an mRNA that ends in a stemloop followed by a purine-rich region that is complementary to the 5' end of U7 snRNA. In addition to the histone genes on these clusters, only two other genes containing the stem-loop sequence were identified, a histone H4 gene on human chromosome 12 (mouse chromosome 6) and the previously described H2a.X gene located on human chromosome 11. Each of the 14 histone H4 genes encodes the same protein, and there are only three histone H3 proteins encoded by the 12 histone H3 genes in each species. In contrast, both the mouse and human H2a and H2b proteins consist of at least 10 non-allelic variants, making the complexity of the histone protein complement significantly greater than previously thought.  相似文献   

8.
Summary Human tumor cells, after x-irradiation during the G2 phase of the cell cycle, show an abnormally high frequency of persistent chromatid breaks and gaps resulting from deficient DNA repair. Addition of a single human chromosome 11 from normal fibroblasts by micro-cell fusion to cell lines from six different tumors resulted in efficient repair of the radiation-induced damage to the level in normal cells. For one of the cell lines, addition of the long arm of chromosome 11 was sufficient to restore repair efficiency. In four of the six tumor lines, restoration of efficient DNA repair by chromosome 11 was associated with tumor suppression in nude mice. These results suggest that chromosome 11 carries a DNA repair gene or genes that complement the repair deficiency of tumor cells and that this gene for at least one tumor is localized to the long arm.  相似文献   

9.
10.
The chromosomes of the invasive black-pigmy mussel (Xenostrobus securis (Lmk. 1819)) were analyzed by means of 4',6-diamidino-2-phenylindole (DAPI) / propidium iodide (PI) and chromomycin A3 (CMA) / DAPI fluorescence staining and fluorescent in situ hybridization using major rDNA, 5S rDNA, core histone genes, linker histone genes, and telomeric sequences as probes. The diploid chromosome number in this species is 2n = 30. The karyotype is composed of seven metacentric, one meta/submetacentric, and seven submetacentric chromosome pairs. Telomeric sequences appear at both ends of every single chromosome. Major rDNA clusters appear near the centromeres on chromosome pairs 1 and 3 and are associated with bright CMA fluorescence and dull DAPI fluorescence. This species shows five 5S rDNA clusters close to the centromeres on four chromosome pairs (2, 5, 6, and 8). Three of the four core histone gene clusters map to centromeric positions on chromosome pairs 7, 10, and 13. The fourth core histone gene cluster occupies a terminal position on chromosome pair 8, also bearing a 5S rDNA cluster. The two linker histone gene clusters are close to the centromeres on chromosome pairs 12 and 14. Therefore, the use of these probes allows the unequivocal identification of 11 of the 15 chromosome pairs that compose the karyotype of X. securis.  相似文献   

11.
The uni linkage group (ULG) of Chlamydomonas reinhardtii contains many genes involved in the basal body-flagellar system. Recent evidence suggests that the corresponding uni chromosome is located in close proximity to the basal body complex. In the course of studies into its molecular organization, we have found a cluster of four histone genes on the ULG. The genes are arranged as divergently-transcribed pairs: H3-H4 and H2B-H2A. Genomic sequencing reveals that these genes lack introns and contain characteristic 3' palindromes similar to those of animals. The predicted amino acid sequences are highly conserved across species, with greatest similarities to the histone genes of Volvox. Southern analysis shows that each histone gene is present in 15-20 copies in Chlamydomonas and suggests a dispersed genomic organization. Northern analysis of mitotically-synchronized cells shows that, like the replication-dependent histones of higher eukaryotes, Chlamydomonas histone genes are expressed during S-phase. Using a gene-specific probe on Northern blots, we provide evidence that the ULG H4 gene is regulated in the same manner as other Chlamydomonas histone genes. Finally, micrococcal nuclease protection experiments show that the uni chromosome itself associates with histone proteins and displays a conventional nucleosomal banding pattern.  相似文献   

12.
A solitary histone H3 gene encoding a novel H3 protein sequence has been isolated. This H3 gene maps to chromosome 1 (1g42), whereas we have shown previously that the majority of the human histone genes form a large cluster on chromosome 6 (6p21.3). In addition, a small cluster has been described at 1q21. The clustered histone genes are expressed during the S-phase of the cell cycle, hence their definition as replication-dependent histone genes. In contrast, expression of replacement histone genes is essentially cell-cycle independent; they are solitary genes and map outside the major clusters. The newly described H3 gene maps outside all known histone gene clusters and varies by four amino acid residues from the consensus mammalian H3 structure. In contrast to other solitary histone genes, this human H3 gene shows the consensus promoter and 3 flanking portions that are typical for replication-dependent genes.  相似文献   

13.
14.
15.
16.
Plants produce female gametes through mitotic division in the multicellular, meioticolly reduced (haploid) megagametophyte phase. In flowering plants, the megagametophyte is the embryo sac; female gametogenesis or megagametogenesis comprises the ontogeny of the embryo sac. As a step toward understanding the role of embryo sac-expressed genes in megagametogenesis, development of normal, haploid embryo sacs in maize was compared with development of embryo sacs deficient for various small, cytologically defined chromosomal regions. This analysis allowed us to screen 18% of the maize genome, including most of chromosome arms 1L and 3L, for phenotypes due specifically to deletion of essential, embryo sac-expressed genes. Confocal laser scanning microscopy of whole developing embryo sacs confirmed that normal megagameto-genesis in maize is of the highly stereotyped, bipolar Polygonum type common to most flowering plants examined to date. Deficiency embryo sac phenotypes were grouped into three classes, suggesting each deficient region contained one or more of at least three basic types of haploid-expressed gene functions. In the first group, three chromosome regions contained genes required for progression beyond early, free-nuclear stages of embryo sac development. Maintaining synchrony between events at the two poles of the embryo sac required genes located within two deficiencies. Finally, three chromosome regions harbored loci required for generation of normal cellular patterns typical of megagametogenesis. This analysis demonstrates that the embryo sac first requires postmeiotic gene expression at least as early as the first postmeiotic mitosis. Furthermore, our data show that a variety of distinct, genetically separable programs require embryo sac-expressed gene products during megagametogenesis, and suggest the nature of some of those developmental mechanisms. © 1995 Wiley-Liss, Inc.  相似文献   

17.
Phillips RL  Weber DF  Kleese RA  Wang SS 《Genetics》1974,77(2):285-297
Ribosomal gene compensation and magnification that might be detected on a whole-plant basis was not found in maize. Plants monosomic for chromosome 6 (the NOR chromosome) were compared with monosomic-8 and monosomic-10 plants, disomic sibs, and parental lines. Assuming no rDNA compensation, monosomic-6 plants showed approximately the decrease expected in rRNA cistron number. Monosomic-8 had a normal ribosomal gene number, while monosomic-10 showed a decrease; but further documentation is needed. Besides demonstrating the absence of gene compensation, the results document our previous conclusion that maize chromosome 6 carries DNA complementary to ribosomal RNA. Further documentation was provided from studies with trisomic chromosome 6 plants showing proportional increases in ribosomal gene number. Progeny of the monosomic plants crossed as males to a standard singlecross hybrid possessed expected ribosomal gene numbers suggesting the lack of ribosomal gene magnification.—The ragged (rgd) mutant of maize, suspected of being deficient in rRNA cistrons, had a normal number.  相似文献   

18.
The kinetochore, a multi-protein complex assembled on centromeric chromatin in mitosis, is essential for sister chromosome segregation. We show here that inhibition of histone deacetylation blocks mitotic progression at prometaphase in two human tumor cell lines by interfering with kinetochore assembly. Decreased amounts of hBUB1, CENP-F and the motor protein CENP-E were present on kinetochores of treated cells. These kinetochores failed to nucleate and inefficiently captured microtubules, resulting in activation of the mitotic checkpoint. Addition of histone deacetylase inhibitors prior to the end of S-phase resulted in decreased HP1-? on pericentromeric heterochromatin in S-phase and G2, decreased pericentromeric targeting of Aurora B kinase, resulting in decreased pre-mitotic phosphorylation of pericentromeric histone H3(S10) in G2, followed by assembly of deficient kinetochores in M-phase. HP1-?, Aurora B and the affected kinetochore proteins all were present at normal levels in treated cells; thus, effects of the inhibitors on mitotic progression do not seem to reflect changes in gene expression. In vitro kinase activity of Aurora B isolated from treated cells was unaffected. We propose that the increased presence in pericentromeric heterochromatin of histone H3 acetylated at K9 is responsible for the mitotic defects resulting from inhibition of histone deacetylation.  相似文献   

19.
Summary We have determined the number of histone structural genes in D. melanogaster heterozygotes for two different deficiencies of a histone locus in the 2d chromosome. the results indicate a possibility of histone genes increasing in number in the case of their deficiency through magnification and compensation, as has been shown for rRNA genes by other authors.  相似文献   

20.
Kanta H  Laprade L  Almutairi A  Pinto I 《Genetics》2006,173(1):435-450
Histones are essential for the compaction of DNA into chromatin and therefore participate in all chromosomal functions. Specific mutations in HTA1, one of the two Saccharomyces cerevisiae genes encoding histone H2A, have been previously shown to cause chromosome segregation defects, including an increase in ploidy associated with altered pericentromeric chromatin structure, suggesting a role for histone H2A in kinetochore function. To identify proteins that may interact with histone H2A in the control of ploidy and chromosome segregation, we performed a genetic screen for suppressors of the increase-in-ploidy phenotype associated with one of the H2A mutations. We identified five genes, HHT1, MKS1, HDA1, HDA2, and HDA3, four of which encode proteins directly connected to chromatin function: histone H3 and each of the three subunits of the Hda1 histone deacetylase complex. Our results show that Hda3 has functions distinct from Hda2 and Hda1 and that it is required for normal chromosome segregation and cell cycle progression. In addition, HDA3 shows genetic interactions with kinetochore components, emphasizing a role in centromere function, and all three Hda proteins show association with centromeric DNA. These findings suggest that the Hda1 deacetylase complex affects histone function at the centromere and that Hda3 has a distinctive participation in chromosome segregation. Moreover, these suppressors provide the basis for future studies regarding histone function in chromosome segregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号