首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of sexual differentiation of the brain on catecholamine content in the corpus striatum and limbic system was studied. Our results suggest that circulating ovary hormones during the critical period play an important role in the sexual differentiation of dopaminergic neurons in the corpus striatum and limbic system. Absence of androgenic steroids in the critical period leads to permanent alterations in the DA content of the limbic system in the male rat. Gonadectomy does not significantly alter NA levels in either of the two studied brain areas.  相似文献   

2.
3.
Concentrations of acetylcholine and the monoaminergic neurotransmitters dopamine, serotonin and their respective metabolites 3,4-dihydroxyphenylacetic acid (DOPAC), 4-hydroxy-3-methoxyphenylacetic acid (HVA), 5-hydroxyindolacetic acid (5-HIAA) and choline were simultaneously determined in the corpus striatum of rats after 15 min. complete cerebral ischemia (CCI) and in different intervals (1, 24, 48, 72, 96 hours) of postischemic cerebral reperfusion. Results were compared to respective sham-operated control animals. After 15 min. CCI acetylcholine concentration decreased to 15%, and dopamine concentration to 56% of the control values. The metabolite levels of DOPAC decreased to 40% and HVA to 64% of the control values. Acetylcholine, dopamine, serotonin and choline concentrations were not changed significantly after reperfusion. The metabolites HVA and 5-HIAA showed their maximum increases after 1 and 24 hours of reperfusion, additionally HVA was decreased both, after 72 and 96 hours of reperfusion. The data indicate that surprisingly little permanent damage could be caused by a 15 min. ischemia in the striatum. Tissue levels of the neurotransmitters appeared differentially altered but similarly regulated during ischemia and subsequent recirculation. Acetylcholine and dopamin levels decreased profoundly during ischemia. However, acetylcholine levels could be compensated rapidly during reperfusion, whereas the dopaminergic system showed a long-lasting change in its turnover rate. Although serotonin levels were unaffected by CCI, there was an increase of its presumed turnover rate during reperfusion.  相似文献   

4.
Abstract— Drugs possessing (chlorpromazine, haloperidol, clozapine, thioridazine and sulpiride) or lacking (benzoctamine and perlapine) antipsychotic activity were compared with respect to their ability to enhance x-methyl-p-tyrosine-induced dopamine disappearance from the mesolimbic area and corpus striutum of rat brain. In addition, their effects on the endogenous concentrations of homovanillic (HVA) and 3.4-dihydroxyphenylacetic (DOPAC) acids in these two brain areas were determined. Some of the drugs enhanced dopamine disappearance in the mesolimbic area more than in the striatum. The most active in this respect were sulpiride. perlapine and chlorpromazine. By contrast, haloperidol was slightly more active in the striatum than in the mesolimbic area. None of the drugs was more efficient in elevating HVA levels in the mesolimbic area than in the striatum. However, there were large differences in the relative extent of the HVA increases in the two regions. Benzoctamine, perlapine and chlorpromazine increased HVA concentrations in the mesolimbic area nearly as much as in the striatum. Thioridazine and haloperidol, however, elevated striatal HVA much more effectively. Haloperidol and clozapine increased the DOPAC concentration in both areas to about the same extent. The other drugs were more active in the striatum. The largest difference between both regions was shown by chlorpromazine. Perlapine and benzoctamine, both lacking antipsychotic activity, produced much larger increases of HVA than of DOPAC. This is in contrast to the results obtained with true neuroleptics and may reflect an involvement of release phenomena in the action of these two drugs on dopamine metabolism. These results suggest that a preferential increase of dopamine turnover in the mesolimbic area is not necessarily linked to a better ratio of antipsychotic activity vs. extrapyramidal side effects. Moreover, an antiacetylcholine component of dopamine receptor blocking drugs does not seem to be a prerequisite for preferential activity on dopamine turnover in the mesolimbic system.  相似文献   

5.
Effects of Perinatal Vitamin B6 Deficiency on Dopaminergic Neurochemistry   总被引:2,自引:1,他引:1  
Long-Evans dams were fed either a vitamin B6-deficient or a control diet from day 13-14 of gestation and throughout lactation. A control pair-fed group was also included because of differences in food intake between vitamin B6-deficient and control ad libitum dams. The progeny of vitamin B6-deficient dams had all the classic symptoms of B6 deficiency. These included weight loss, ataxia, tremor, and epileptic seizures. Concentrations of the neurotransmitter dopamine (DA), and its metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), as well as D-2 dopamine receptor binding, 3,4-dihydroxyphenylalanine (DOPA) decarboxylase activity, and vitamin B6 levels were measured in the corpus striatum of progeny at 7, 14, and 18 days after birth. Striatal DA and HVA levels were significantly decreased in B6-deficient animals when compared to ad libitum or pair-fed controls. Daily injections of vitamin B6 to deprived animals from the 14th to 18th day after birth improved the abnormal movement and normalized the concentration of DA but not of HVA in corpus striatum. Striatal D-2 dopamine receptor binding using [3H]spiperone as ligand was significantly reduced in 18-day-old animals as compared to ad libitum and pair-fed controls. No significant differences were found at 14 days. The administration of vitamin B6 to deprived animals did not raise the level of D-2 receptor binding during the period of observation. Scatchard plots indicated that the differences in binding were due to changes in receptor number and not in KD. Corpus striatum DOPA decarboxylase activity with and without the addition of exogenous pyridoxal phosphate was significantly reduced in 14- and 18-day-old animals when compared to pair-fed controls.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Abstract— The effect of amantadine on the rate of dopamine synthesis in rat corpus striatum was determined by three methods. (1) Measuring the rate of decline of endogenous dopamine following inhibition of synthesis with a-methyltyrosine (α-MT); (2) Measuring the rate of conversion of [3,5-3H]tyrosine to 3H-labelled catechols under conditions of an initial rate; and (3) measuring the levels of homovanillic acid (HVA), the principal metabolite of brain dopamine. Endogenous dopamine levels were 68-1 n-mole/g with a control synthesis rate of about 21 n-mole/g/h as determined using either α-MT or [3,5-3H]tyrosine. Amantadine had no effect on synthesis at doses up to 100 mg/kg using α-MT and [3,5-3H]tyrosine. HVA levels were unaffected after 30 mg/kg drug, but were elevated 48%(P < 005) after 100 mg/kg of drug. By contrast apomorphine reduced and haloperidol increased synthesis as determined by all three methods. It is concluded that amantadine has no marked effect on dopamine synthesis in rat corpus striatum.  相似文献   

7.
The effect of indomethacin 3 mg/kg on levels of homovanillic acid (HVA), 4-hydroxy-3-methoxy phenyl ethylene glycol (HMPG) and 5-hydroxy indol acetic acid (5HIAA) was studied in rat striatum and olfactory tubercle with and without pretreatment with morphine 10 mg/kg. Indomethacin caused a small decrease in resting levels of HVA in striatum but not in olfactory tubercle. No effects were seen on resting or morphine induced changes in the levels of these monoamine metabolites. Likewise indomethacin 20 mg/kg failed to alter the elevation of HVA induced by chlorpromazine 15 mg/kg or the decrease of HVA induced by apomorphine (1--10 mg/kg) in the rat striatum. Our results do not support a major role for endogenous prostaglandins in the modulation of monoamine neurotransmission in the rat brain.  相似文献   

8.
The effect of indomethacin 3 mg/kg on levels of homovanillic acid (HVA), 4-hydroxy-3-methoxy phenyl ethylene glycol (HMPG) and 5-hydroxy indol acetic acid (5HIAA) was studied in rat striatum and olfactory tubercle with and without pretreatment with morphine 10 mg/kg. Indomethacin caused a small decrease in resting levels of HVA in striatum but not in olfactory tubercle. No effects were seen on resting or morphine induced changes in the levels of these monoamine metabolites. Likewise indomethacin 20 mg/kg failed to alter the elevation of HVA induced by chlorpromazine 15 mg/kg or the decrease of HVA induced by apomorphine (1–10 mg/kg) in the rat striatum. Our results do not support a major role for endogenous prostaglandins in the modulation of monoamine neurotransmission in the rat brain.  相似文献   

9.
Enhanced dopamine metabolism after small lesions in the midbrain of the rat   总被引:4,自引:0,他引:4  
The effect of midbrain lesions on the metabolism of dopamine (DA) in various regions of the rat brain was investigated. Small midbrain lesions produced an acute increase in the levels of the acidic metabolites homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) in the striatum. Elevated levels of HVA were also found in the nucleus accumbens, tuberculum olfactorium and the cerebral cortex. The levels of HVA in the substantia nigra remained unaffected. The acute effect in the striatum of a complete transection of the ascending DA-pathway consists in an initial decrease of the levels of the metabolites followed by gradual increase. The results indicate that dopaminergic neurons do not act in an uncoordinated fashion, and that rapidly acting compensatory mechanisms are able to modify the output of this system.  相似文献   

10.
Several studies have suggested that the concentration of thyrotropin releasing hormone (TRH) in the central nervous system (CNS) is influenced by the level of CNS activation. Hibernation in the ground squirrel and estivation in the lungfish result in region-specific decreases in TRH concentrations. Repeated electroconvulsive shock (ECS) and amygdaloid kindling have been shown to result in elevations of TRH in limbic brain regions. In the present study, limbic seizures induced by systemic administration of kainic acid resulted in substantial increases in the TRH content of posterior cortex and of dorsal and ventral hippocampus, and in moderate elevations in anterior cortex, amygdala/piriform cortex and corpus striatum. Maximal elevations in TRH were observed 2-4 days after kainic acid administration, and by 14 days TRH levels were similar to control values, with the exception of the dorsal hippocampus, which exhibited more prolonged elevations in TRH levels. Prior exposure to limbic seizure activity attenuated the magnitude of TRH elevation in response to a second administration of kainic acid in the posterior cortex but in no other region. These results indicate that seizure-related processes or events influence TRH systems in the CNS. Neuronal populations involved in limbic seizure induced damage may be involved in the modulation of posterior cortical TRH levels.  相似文献   

11.
Effects of acute and subacute cocaine administration on dopamine (DA) and its metabolites in striata and nucleus accumbens of nine week-old Wistar-Kyoto and spontaneously hypertensive rats were studied. Levels of DA,3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were determined by HPLC-EC. There were no differences in DA levels in striata and nucleus accumbens between control WKY and SHR. Levels of DA in two brain regions were unaffected in groups treated acutely with cocaine. Both strains showed a significant increase in striatal HVA 2 hr after cocaine injection. Seven day treatment declined DA levels in striatum of WKY and in nucleus accumbens of SHR. However, only WKY treated subacutely with cocaine showed significantly increased HVA either with or without changes in DOPAC in nucleus accumbens and striatum, respectively. Increased DOPAC/DA and HVA/DA ratios appeared only in striatum of WKY and in nucleus accumbens of SHR following subacute treatment. These results suggest that subacute cocaine administration affects DA levels in striata and nucleus accumbens differently between WKY and SHR.  相似文献   

12.
3-((±)-2-Carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) is an antagonist at the N-methyl-D-aspartate (NMDA) subtype of glutamate receptor. In the present study, levels of dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindolacetic acid (5-HIAA) were measured after intracerebroventricular injection of NMDA, CPP or both in rat striatum using a brain dialysis method. The injection of NMDA produced a significant increase in DOPAC level. HVA level was also increased by NMDA injection. The level of 5-HIAA was not affected by NMDA injection. The injection of CPP had no effect on DOPAC, HVA and 5-HIAA levels. The injection of CPP restrained the increase of DOPAC and HVA levels induced by NMDA injection. The results suggest that intracerebral injection of NMDA may increase dopamine release from rat striatum, but have no effect on serotonin release. Furthermore, CPP inhibits NMDA induced release of dopamine.  相似文献   

13.
The effects of apomorphine (0.1-2.5 mg/kg) on release of endogenous dopamine and extracellular levels of 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the prefrontal cortex and the striatum were examined in vivo by a microdialysis method. Apomorphine significantly reduced release of dopamine and the extracellular levels of dopamine metabolites, DOPAC and HVA, not only in the striatum, but also in the prefrontal cortex. These findings indicate that dopamine autoreceptors modulate in vivo release of dopamine in the prefrontal cortex.  相似文献   

14.
Duan CL  Sun XH  Ji M  Yang H 《生理学报》2005,57(1):71-76
采用微透析和高效液相色谱一电化学(HPLC-ECD)技术研究了谷氨酸和MK-801对正常和帕金森模型人鼠纹状体内多巴胺代谢的影响。用微透析技术在大鼠纹状体内分别定位给以左旋多巴、L-谷氨酸和/或MK-801,同时收集透析液,用HPLC-ECD方法测定透析液中多巴胺代谢产物的浓度。微透析和HPL-ECD分析结果表明:纹状体内定位给以序旋多巴,正常大鼠和帕金森模型大鼠纹状体内多巴胺代谢产物的浓度均升高;纹状体内定位给以L-谷氨酸,可使正常大鼠纹状体内多巴胺代谢产物的浓度降低,但对帕金森火鼠模型纹状体内多巴胺代谢产物浓度的降低不显著;纹状体内定位给以MK-801,正常人鼠纹状体内多巴胺代谢产物的浓度升高:但对帕金森人鼠模型纹状体内多巴胺代谢产物浓度的升高不显著:纹状体内同时定位给以MK-80l和L-谷氨酸,可以有效防止L-谷氨酸所致正常人鼠纹状体内多巴胺代谢产物浓度的降低。结果提示,谷氦酸可以通过NMDA受体调节多巴胺的代谢。尽管非竞争性NMDA拈抗剂MK-801可以有效防止L-谷氨酸所敛正常人鼠纹状体内多巴胺代谢产物浓度的降低,但却不能有效地改善帕金森大鼠模型纹状体内多巴胺的代谢水平。因此存正常及帕金森病情况下,谷氮酸一多巴胺相互作用机制和MK-801改善帕金森病的机制还有待进一步研究。  相似文献   

15.
Metabolism of dopamine in striatum and the dopamine-dependent forms of behaviour of 6 inbred mice were studied. Interstrain significant differences were shown in the level of dopamine metabolite, homovanillic acid (HVA), as well as in locomotor activity and climbing produced by injection of dopamine agonist apomorphine. Significant negative correlation between the level of HVA in striatum and spontaneous locomotor activity was found. Different levels of HVA and significant behavioural differences were discovered in two similar strains--BALB/c and CC57BR. According to its behavioural characteristics, DBA/2 should also be considered among the most interesting.  相似文献   

16.
Previously, we found that the ancient Chinese remedy of Suanzaorentang was a promising anxiolytic drug (Chen and Hsieh, 1985; Chen and Hsieh, 1985a). We also found that Suanzaorentang decreased the turnover rate of central monoamines and central catecholaminergic activity (Hsieh, et al., 1986). In this study, we found that 5-hydroxytryptophan (5-HTP) induced decrease in locomotor activity was significantly antagonized by Suanzaorentang, p-chlorophenylalanine (p-CPA) induced increase in locomotor activity was significantly inhibited by Suanzaorentang, Suanzaorentang had no significant effects on baclofen, muscimol, aminooxyacetic acid (AOAA) and thiosemicarbazide induced changes in locomotor activity, Suanzaorentang significantly decreased vanillylmandelic acid (VMA) in striatum and hippocampus, homovanillic acid (HVA) in hippocampus and 5-hydroxyindol acetic acid (5-HIAA) in striatum and hypothalamus, Suanzaorentang significantly reversed the alpha-methyltyrosine (alpha-MT) produced decrease in DA concentrations in striatum and hippocampus, and (6) Suanzaorentang significantly reversed the p-CPA produced decrease in 5-HT concentrations on amygdala. These facts implied that Suanzaorentang might decrease the serotonergic activity but have no significant effect on GABAergic activity. The main locus of action might be in the limbic system.  相似文献   

17.
《Peptides》1986,7(5):877-884
The distribution of somatostatin (SRIF) was examined in normal human forebrain, using thick vibratome cut sections. The unlabeled antibody enzyme method of immunocytochemistry revealed a widespread distribution of SRIF immunoreactive neurons and fibers throughout the septum, diencephalon and corpus striatum. Within the septum SRIF neurons and fibers were observed in the medial and lateral septal nuclei, the nucleus of the diagonal band, the nucleus accumbens and the bed nucleus of the stria terminalis. SRIF neurons and fibers were found in several hypothalamic and anterior thalamic nuclei as well as all regions of the corpus striatum. An interesting collection of SRIF immunoreactive neurons and processes were observed forming a wide band extending anteriorly from the lateral preoptic area through the lateral hypothalamus and substantia innominata posteriorly. This report on the localization of immunoreactive SRIF in the human forebrain extends previous anatomical findings and lends morphological support to recent biochemical studies.  相似文献   

18.
Intracerebral dialysis was used with a specifically designed HPLC with electrochemical detection assay to monitor extracellular levels of endogenous 3,4-dihydroxyphenylethylamine (dopamine, DA) and its major metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), in brain regions of the halothane-anesthetized rat. Significant amounts of DA, DOPAC, and HVA were detected in control perfusates collected from striatum and n. accumbens whereas the medial prefrontal cortex showed lower monoamine levels. The ratio of DA in perfusate to DA in whole tissue suggests that in f. cortex, compared to n. accumbens and striatum, there is a greater amount of DA in the extracellular space relative to the intraneuronal DA content. The DOPAC/HVA ratio in control perfusates varied between regions in accordance with whole tissue measurements. This ratio was highest in n. accumbens and lowest in f. cortex. The monoamine oxidase inhibitor pargyline (100 mg/kg i.p.) caused an exponential decline in DOPAC, but not of HVA, in regional perfusates, an effect that was associated with an increase in DA. The data indicated a higher turnover of extracellular DOPAC in n. accumbens than in striatum and the lowest DOPAC turnover in f. cortex. The rate of decline in extracellular DA metabolite levels was slow compared to whole tissue measurements. In the perfusates there was no statistical correlation between basal amounts of DA in the perfusates and DOPAC and HVA levels or DOPAC turnover for any of the areas, indicating that measurement of DA metabolism in the brain under basal conditions does not provide a good index of DA release. In summary, this study shows clear regional differences in basal DA release and metabolite levels, metabolite patterns, and DOPAC turnover rates in rat brain in vivo.  相似文献   

19.
Postictal sexual drive levels induced by limbic discharges were studied in eight adult male cats. Although sexual drive was exclusively dependent upon the presence or absence of testosterone, the level or degree of drive was dependent on the relative amounts of circulating testosterone and catecholamines in addition to the bioelectric state of the testosterone-binding cells. The limbic discharge was thought to induce postictal hypersexuality by its propagated discharge, suppressing the association neocortex and simultaneously activating the sexual hormone-binding cells of the diencephalon. The dissociation of the neocortex from the diencephalon was considered as a functional postictal diaschisis. These postictal physiologic changes were thought to account for the irrational automatic behavior and memory loss characteristic of patients with psychomotor seizures.  相似文献   

20.
The aim of this study is to determine the effects of intrastriatal administration of MnCl2, on the extracellular levels of dopamine (DA) and metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in basal conditions and stimulated by depolarization with KCl and pargyline administration. Also, we studied the effect of MnCl2 on extracellular levels of l-Dopa in the presence of aromatic amino acid decarboxylase (AADC) inhibitor 3-hydroxybencilhydracine-HCl (NSD 1015). This study concluded that MnCl2, reduced the basal and K+-stimulated DA-release in striatum, without notably affecting the DOPAC and HVA levels. Intraperitoneal injection of pargyline increased striatal DA levels, decreasing DOPAC and HVA levels. The infusion of MnCl2 removed the increase in DA levels, without affecting DOPAC and HVA levels. Perfusion of NSD 1015 increased the extracellular levels of l-DOPA in striatum, and MnCl2 increased the effect of NSD1015 on l-Dopa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号