首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The shear stresses derived from blood flow regulate many aspects of vascular and immunobiology. In vitro studies on the shear stress‐mediated mechanobiology of endothelial cells have been carried out using systems analogous to the cone‐and‐plate viscometer in which a rotating, low‐angle cone applies fluid shear stress to cells grown on an underlying, flat culture surface. We recently developed a device that could perform high‐throughput studies on shear‐mediated mechanobiology through the rotation of cone‐tipped shafts in a standard 96‐well culture plate. Here, we present a model of the three‐dimensional flow within the culture wells with a rotating, cone‐tipped shaft. Using this model we examined the effects of modifying the design parameters of the system to allow the device to create a variety of flow profiles. We first examined the case of steady‐state flow with the shaft rotating at constant angular velocity. By varying the angular velocity and distance of the cone from the underlying plate we were able to create flow profiles with controlled shear stress gradients in the radial direction within the plate. These findings indicate that both linear and non‐linear spatial distributions in shear stress can be created across the bottom of the culture plate. In the transition and “parallel shaft” regions of the system, the angular velocities needed to provide high levels of physiological shear stress (5 Pa) created intermediate Reynolds number Taylor‐Couette flow. In some cases, this led to the development of a flow regime in which stable helical vortices were created within the well. We also examined the system under oscillatory and pulsatile motion of the shaft and demonstrated minimal time lag between the rotation of the cone and the shear stress on the cell culture surface. Biotechnol. Bioeng. 2013; 110: 1782–1793. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
Endothelial cells, covering the inner surface of vessels and the heart, are permanently exposed to fluid flow, which affects the endothelial structure and the function. The response of endothelial cells to fluid shear stress is frequently investigated in cone-plate systems. For this type of device, we performed an analytical and numerical analysis of the steady, laminar, three-dimensional flow of a Newtonian fluid at low Reynolds numbers. Unsteady oscillating and pulsating flow was studied numerically by taking the geometry of a corresponding experimental setup into account. Our investigation provides detailed information with regard to shear-stress distribution at the plate as well as secondary flow. We show that: (i) there is a region on the plate where shear stress is almost constant and an analytical approach can be applied with high accuracy; (ii) detailed information about the flow in a real cone-plate device can only be obtained by numerical simulations; (iii) the pulsating flow is quasi-stationary; and (iv) there is a time lag on the order of 10(-3) s between cone rotation and shear stress generated on the plate.  相似文献   

3.
比较了笼罩、水盆、盘式粘胶诱捕器对烟田棉铃虫的诱捕效果。结果表明,3种诱捕器的诱蛾量变化趋势基本一致,其中笼罩诱捕器的诱蛾量最大,显著高于另外两种诱捕器,且诱捕效果比较稳定。水盆、盘式粘胶诱捕器诱蛾量差异不显著。笼罩诱捕器更适用于烟田棉铃虫成虫的防治及监测。  相似文献   

4.
Estimation of disruption of animal cells by laminar shear stress   总被引:1,自引:0,他引:1  
Using mechanical cell properties measured by micromanipulation, and a model of cell distortion in laminar flow fields, a method has been developed for predicting disruption of animal cells by laminar shear stresses. Predictions of the model were compared with measured losses of cell number and viability of TB/C3 murine hybridomas sheared in a cone and plate viscometer at shear rates up to 3950 s(-1), and shear stresses up to 600 Nm(-2), achieved by enhancement of viscosity with dextran. In all cases, the experimental, results and predictions were within 30%. Such excellent agreement suggests it might be possible to use micromanipulation measurements of animal cell mechanical properties to predict cell damage in more complex flow fields, such as those in bioreactors. (c) 1992 John Wiley & Sons, Inc.  相似文献   

5.
In the threespine stickleback Gasterosteus aculeatus model system, phenotypes are often classified into three morphs according to lateral plate number. Morph identity has been shown to be largely genetically determined, but substantial within‐morph variation in plate number exists. In this study, we test whether plate number has a plastic component in response to salinity in the low‐plated morph using a split‐clutch experiment where families were split in two, one half raised in water at 0 and the other at 30 ppt salt. We find a small salinity‐induced plastic effect on plate number in an unexpected direction, opposite to what we predicted: Fish raised in freshwater on average have slightly more plates than fish raised in saltwater. Our results confirm that heritability of plate number is high. Additionally, we find that variance in plate number at the family level can be predicted from other family level traits, which might indicate that epistatic interactions play a role in creating the observed pattern of lateral plate number variation.  相似文献   

6.
Mechanical forces are known to affect the biomechanical properties of native and engineered cardiovascular tissue. In particular, shear stress that results from the relative motion of heart valve leaflets with respect to the blood flow is one important component of their mechanical environment in vivo. Although different types of bioreactors have been designed to subject cells to shear stress, devices to expose biological tissue are few. In an effort to address this issue, the aim of this study was to design an ex vivo tissue culture system to characterize the biological response of heart valve leaflets subjected to a well-defined steady or time-varying shear stress environment. The novel apparatus was designed based on a cone-and-plate viscometer. The device characteristics were defined to limit the secondary flow effects inherent to this particular geometry. The determination of the operating conditions producing the desired shear stress profile was streamlined using a computational fluid dynamic (CFD) model validated with laser Doppler velocimetry. The novel ex vivo tissue culture system was validated in terms of its capability to reproduce a desired cone rotation and to maintain sterile conditions. The CFD results demonstrated that a cone angle of 0.5 deg, a cone radius of 40 mm, and a gap of 0.2 mm between the cone apex and the plate could limit radial secondary flow effects. The novel cone-and-plate permits to expose nine tissue specimens to an identical shear stress waveform. The whole setup is capable of accommodating four cone-and-plate systems, thus concomitantly subjecting 36 tissue samples to desired shear stress condition. The innovative design enables the tissue specimens to be flush mounted in the plate in order to limit flow perturbations caused by the tissue thickness. The device is capable of producing shear stress rates of up to 650 dyn cm(-2) s(-1) (i.e., maximum shear stress rate experienced by the ventricular surface of an aortic valve leaflet) and was shown to maintain tissue under sterile conditions for 120 h. The novel ex vivo tissue culture system constitutes a valuable tool toward elucidating heart valve mechanobiology. Ultimately, this knowledge will permit the production of functional tissue engineered heart valves, and a better understanding of heart valve biology and disease progression.  相似文献   

7.
Growth cone behavior and production of traction force   总被引:11,自引:9,他引:2       下载免费PDF全文
《The Journal of cell biology》1990,111(5):1949-1957
The growth cone must push its substrate rearward via some traction force in order to propel itself forward. To determine which growth cone behaviors produce traction force, we observed chick sensory growth cones under conditions in which force production was accommodated by movement of obstacles in the environment, namely, neurites of other sensory neurons or glass fibers. The movements of these obstacles occurred via three, different, stereotyped growth cone behaviors: (a) filopodial contractions, (b) smooth rearward movement on the dorsal surface of the growth cone, and (c) interactions with ruffling lamellipodia. More than 70% of the obstacle movements were caused by filopodial contractions in which the obstacle attached at the extreme distal end of a filopodium and moved only as the filopodium changed its extension. Filopodial contractions were characterized by frequent changes of obstacle velocity and direction. Contraction of a single filopodium is estimated to exert 50-90 microdyn of force, which can account for the pull exerted by chick sensory growth cones. Importantly, all five cases of growth cones growing over the top of obstacle neurites (i.e., geometry that mimics the usual growth cone/substrate interaction), were of the filopodial contraction type. Some 25% of obstacle movements occurred by a smooth backward movement along the top surface of growth cones. Both the appearance and rate of movements were similar to that reported for retrograde flow of cortical actin near the dorsal growth cone surface. Although these retrograde flow movements also exerted enough force to account for growth cone pulling, we did not observe such movements on ventral growth cone surfaces. Occasionally obstacles were moved by interaction with ruffling lamellipodia. However, we obtained no evidence for attachment of the obstacles to ruffling lamellipodia or for directed obstacle movements by this mechanism. These data suggest that chick sensory growth cones move forward by contractile activity of filopodia, i.e., isometric contraction on a rigid substrate. Our data argue against retrograde flow of actin producing traction force.  相似文献   

8.
We present a theoretical and experimental analysis of the effects of nonlinear flow in a cone-plate viscometer. The analysis predicts that flow in the viscometer is a function of two parameters, the Reynolds number and the cone angle. Nonlinear flow occurs at high shear rates and causes spatial variations in wall shear stress, collision frequency, interparticle forces and attachment times within the viscometer. We examined the effect of these features on cellular adhesion kinetics. Based on recent data (Taylor, A. D., S. Neelamegham, J. D. Hellums, et al. 1996. Biophys. J. 71:3488-3500), we modeled neutrophil homotypic aggregation as a process that is integrin-limited at low shear and selectin-limited at high shear. Our calculations suggest that selectin and integrin on-rates lie in the order of 10(-2)-10(-4)/s. They also indicate that secondary flow causes positional variations in adhesion efficiency in the viscometer, and that the overall efficiency is dependent not only on the shear rate, but also the sample volume and the cone angle. Experiments performed with isolated neutrophils confirmed these predictions. In these experiments, enhancing secondary flow by increasing the sample volume from 100 to 1000 microl at 1500/s for a 2 degrees cone caused up to an approximately 45% drop in adhesion efficiency. Our results suggest that secondary flow may significantly influence cellular aggregation, platelet activation, and endothelial cell mechanotransduction measurements made in the viscometer over the range of conditions applied in typical biological studies.  相似文献   

9.
In cell fusion and genetic recombination, although the activity of single cells is extremely important, there is no method to analyze single cell activity. Development of a quick analyzing method for single cell activity is desired in various fields. Dielectrophoresis (DEP) refers to the force exerted on the induced dipole moment of an uncharged dielectric and/or conductive particle by a nonuniform electric field. By applying DEP, we obtained experimentally a relationship between the cell activity and the dielectric property, Re[K(omega)], and examined how to evaluate the single cell activity by measuring Re[K(omega)] of a single cell. A cone and plate electrode geometry was adapted in order to achieve the feedback-controlled DEP levitation. The single cell is exposed to a nonuniform field induced by the cone and plate electrode, and a more polarizable cell is moved to the direction of the cone electrode by the DEP force. The cell settles in the position where the DEP force and gravity are balanced by controlling applied voltage. This settled position, measured on the center axis of the cone electrode, depended on the dielectric constant of the cell. From these results, the relationship between the specific growth rates in cell growth phase and the dielectric properties Re[K(omega)] was obtained. Furthermore, the effect on the cell activity of various stresses, such as concentration of carbon dioxide, temperature, etc., was examined.  相似文献   

10.
11.
A new type of liquid distribution system for expanded bed columns has been developed. The construction differs from traditional distribution designs by not having any small pores (like filters or distribution plates) in the flow path of the crude feedstock. A stirrer at the bottom of the column distributes the incoming feedstock. Due to the stirring, jet streams are prevented and a stable expanded bed is formed above a mixed zone. This article describes the new column design, and investigates the performance of the stirred distribution concept experimentally by measuring theoretical plate number and breakthrough profile. Furthermore, the possibilities of scaling up the concept will be discussed based on theoretical plate measurements.  相似文献   

12.
While the pore plates of some species of the Sphecoidea (Hymenoptera) rise above the antennal surface, those of other species are flush with it. Not all species possess pore plates. On the antennae of those species, which lack pore plates, small sensilla basiconica are found. The pore plates of Psenulus concolor were studied in detail. The cuticular apparatus rises above the antennal surface. Cuticular features are the encircling ledge and delicate cuticular ledges reinforcing the perforated plate, as well as a joint-like membrane that anchors the plate into the antennal cuticle. Each pore plate is associated with 9–23 sense cells and 4 envelope cells, the second of which is doubled. In very early developmental stages, however, supernumerary envelope cells are observed; they degenerate before the cuticulin layer is secreted. Envelope cell 1 secretes a temporary dendrite sheath, while the envelope cells 2–4 are responsible for the secretion of the cuticular apparatus.The morphology and the development of the small sensilla basiconica are described in Trypoxylon attenuatum. The curved sensillum pointing to the tip of the antenna is anchored by a joint-like membrane. About 15 sense cells innervate the sensillum. The number and the arrangement of the envelope cells resemble that of the sensilla placodea. During very early developmental stages, supernumerary envelope cells are also observed. They degenerate before the cuticle of the cone is secreted by the surviving envelope cells 2–4.  相似文献   

13.
We present a theoretical analysis of fluid flow and particle interactions in the cone-plate viscometer under conditions typically applied in biological studies. The analysis demonstrates that at higher shear rates, besides linear primary flow in the rotational direction, prominent non-linear secondary flow causes additional fluid circulation in the radial direction. Two parameters, the cone angle and Reynolds number, characterize flow in the viscometer over all ranges of shear rate. Our results indicate that secondary flow causes positional variations in: (i) the velocity gradient, (ii) the direction and magnitude of the wall shear stress at the plate surface, (iii) inter-particle collision frequency, (iv) magnitude and periodicity of normal and shear forces applied during particle-particle interactions, and (v) inter-particle attachment times. Thus, secondary flow may significantly influence cellular aggregation, platelet activation and endothelial cell mechanotransduction measurements. Besides cone-plate viscometers, this analysis methodology can also be extended to other experimental systems with complex non-linear flows.  相似文献   

14.
The fan-shaped array of filopodia is the first site of contact of a neuronal growth cone with molecules encountered during neuronal pathfinding. Filopodia are highly dynamic structures, and the “action radius” of a growth cone is strongly determined by the length and number of its filopodia. Since interactions of filopodia with instructive cues in the vicinity of the growth cone can have effects on growth cone morphology within minutes, it has to be assumed that a large part of the signaling underlying such morphological changes resides locally within the growth cone proper. In this study, we tested the hypothesis that two important growth cone parameters namely, the length and number of its filopodiaare regulated autonomously in the growth cone. We previously demonstrated in identified neurons from the snail Helisoma trivolvis that filopodial length and number are regulated by intracellular calcium. Here, we investigated filopodial dynamics and their regulation by the second-messenger calcium in growth cones which were physically isolated from their parent neuron by neurite transection. Our results show that isolated growth cones have longer but fewer filopodia than growth cones attached to their parent cell. These isolated growth cones, however, are fully capable of undergoing calcium-induced cytoskeletal changes, suggesting that the machinery necessary to perform changes in filopodial length and number is fully intrinsic to the growth cone proper. © 1998 John Wiley & Sons, Inc. J Neurobiol 34: 179–192, 1998  相似文献   

15.
The myosin family of motor proteins is implicated in mediating actin-based growth cone motility, but the roles of many myosins remain unclear. We previously implicated myosin 1c (M1c; formerly myosin I beta) in the retention of lamellipodia (Wang et al., 1996). Here we address the role of myosin II (MII) in chick dorsal root ganglion neuronal growth cone motility and the contribution of M1c and MII to retrograde F-actin flow using chromophore-assisted laser inactivation (CALI). CALI of MII reduced neurite outgrowth and growth cone area by 25%, suggesting a role for MII in lamellipodial expansion. Micro-CALI of MII caused a rapid reduction in local lamellipodial protrusion in growth cones with no effects on filopodial dynamics. This is opposite to micro-CALI of M1c, which caused an increase in lamellipodial protrusion. We used fiduciary beads (Forscher et al., 1992) to observe retrograde F-actin flow during the acute loss of M1c or MII. Micro-CALI of M1c reduced retrograde bead flow by 76%, whereas micro-CALI of MII or the MIIB isoform did not. Thus, M1c and MIIB serve opposite and nonredundant roles in regulating lamellipodial dynamics, and M1c activity is specifically required for retrograde F-actin flow.  相似文献   

16.
We previously described the use of a counter-rotating cone and plate rheoscope to measure the time and force dependence of break-up of doublets of sphered, swollen, and fixed red cells (SSRC) cross-linked by monoclonal IgM antibody. It has been shown that doublet break-up can occur by extraction of receptors from the membrane, rather than by antibody-antigen bond break-up, and is a stochastic process. We therefore prepared 4.62-microns carboxyl modified latex spheres with a covalently coupled synthetic blood group B antigen trisaccharide. Using a two-step carbodiimide process, ethylene diamine was covalently linked to the carboxyl modified latex spheres, and the trisaccharide, having an eight carbon spacer modified to bear a terminal carboxyl group, was linked to the ethylene diamine. Using these antigen spheres we carried out studies in Couette flow, in a transparent cone and plate rheoscope, of the shear-induced break-up of doublets cross-linked by monoclonal IgM anti-B antibody in 19% and 15% Dextran 40. As previously found with SSRC, over a range of normal force from 55 to 175 pN, there was a distribution in times to break-up. However, the fraction of antigen sphere doublets broken up, which increased from 0.08 to 0.43 at 75 pM IgM, and from 0.06 to 0.20 at 150 pM IgM, was significantly lower than that for the SSRC, where the fraction broken up at 150 pM IgM increased from 0.10 to 0.47. Thus, significantly higher forces were required to achieve the same degree of break-up for doublets of antigen-linked spheres than for SSRC. Computer simulation using a stochastic model of break-up showed that the differences between antigen sphere and SSRC doublet break-up were due to a change in bond character (the range and depth of the bond energy minimum) rather than to an increase in the number of bonds linking antigen-sphere doublets. This supports the notion that antibody-antigen bonds are ruptured in the case of antigen spheres, whereas antigen is able to be extracted from the membrane of SSRC, although changes of receptor substrate from cell to latex and the possibility of latex strand extraction from the microspheres are potential complicating factors.  相似文献   

17.
Cytoplasmic dynein transports short microtubules down the axon in part by pushing against the actin cytoskeleton. Recent studies have suggested that comparable dynein-driven forces may impinge upon the longer microtubules within the axon. Here, we examined a potential role for these forces on axonal retraction and growth cone turning in neurons partially depleted of dynein heavy chain (DHC) by small interfering RNA. While DHC-depleted axons grew at normal rates, they retracted far more robustly in response to donors of nitric oxide than control axons, and their growth cones failed to efficiently turn in response to substrate borders. Live cell imaging of dynamic microtubule tips showed that microtubules in DHC-depleted growth cones were largely confined to the central zone, with very few extending into filopodia. Even under conditions of suppressed microtubule dynamics, DHC depletion impaired the capacity of microtubules to advance into the peripheral zone of the growth cone, indicating a direct role for dynein-driven forces on the distribution of the microtubules. These effects were all reversed by inhibition of myosin-II forces, which are known to underlie the retrograde flow of actin in the growth cone and the contractility of the cortical actin during axonal retraction. Our results are consistent with a model whereby dynein-driven forces enable microtubules to overcome myosin-II-driven forces, both in the axonal shaft and within the growth cone. These dynein-driven forces oppose the tendency of the axon to retract and permit microtubules to advance into the peripheral zone of the growth cone so that they can invade filopodia.  相似文献   

18.
The Chthamaloidea (Balanomorpha) present the most plesiomorphic characters in shell plates and cirri, mouthparts, and oral cone within the acorn barnacles (Thoracica: Sessilia). Due to their importance in understanding both the origin and diversification of the Balanomorpha, the evolution of the Chthamaloidea has been debated since Darwin's seminal monographs. Theories of morphological and ontogenetic evolution suggest that the group could have evolved multiple times from pedunculated relatives and that shell plate number diminished gradually (8→6→4) from an ancestral state with eight wall plates surrounded by whorls of small imbricating plates; but this hypothesis has never been subjected to a rigorous phylogenetic test. Here we used multilocus sequence data and extensive taxon sampling to build a comprehensive phylogeny of the Chthamaloidea as a basis for understanding their morphological evolution. Our maximum likelihood and Bayesian analyses separate the Catophragmidae (eight shell plates and imbricating plates) from the Chthamalidae (8-4 shell plates and no imbricating plates), but do no support a gradual reduction in shell plates (8→6→4). This suggests that evolution at the base of the Balanomorpha involved a considerable amount of homoplasy.  相似文献   

19.
The size of a colony on an agar plate is influenced by the number of colonies ( N ) on this plate. When N is small, colonies reach a larger size. The relationship between colonial surface and density of bacteria on agar plate was studied for nine bacterial and two yeast strains. A mathematical model describing the relationship between the logarithm base 10 of the number of colonies on the agar plate and the average colonial diameter was built. This model is shown to be adapted to most of the strains studied and could be a tool for media quality control.  相似文献   

20.
Ron W. Summers 《Ecography》2011,34(5):723-728
Food consumption by animals depends on functional and numerical responses, and particularly the latter for food specialists. Some birds and mammals are conifer seed specialists and are likely to exploit the varying seed production in different ways according to differences in dispersal capabilities. This in turn may determine which species is more likely to affect the evolution of cone morphology. This study examined the inter‐annual pattern of foraging on Scots pine Pinus sylvestris cones by crossbills Loxia spp. (highly dispersive) and red squirrels Sciurus vulgaris (weakly dispersive) over 16 yr in three stands of ancient native pines at Abernethy Forest in Highland Scotland. There were synchronous annual variations in cone production across the stands, and an indication of a three‐year cycle. The number of cones taken by crossbills was correlated with cone production, indicating a numerical response by the birds, up to a certain limit of cone production. By contrast, the number of cones taken by red squirrels was not correlated with cone production. Rather, the percentage of cones taken by squirrels was high when cone production was low, and low when production was high. There was also a long‐term decline in the number of cones taken by squirrels, suggesting a decline in squirrel numbers. Although a high percentage of cones was removed from some cohorts on some trees, either by crossbills (maximum of 94.8%) or red squirrels (100%), the mean percentage of cones taken by crossbills from trees was small, ranging from 3.7 to 17.1% across all cone cohorts. For red squirrels, mean values ranged from 0.1 to 46.1% across all cohorts. However, given that crossbills can track changes in cone production by rapid numerical responses (i.e. through migration), and take a larger percentage of cones from cohorts of high production (10.7%), compared with red squirrels (3.6%), crossbills may be more important in driving the evolution of cone morphology because future trees are more likely to come from cohorts of high cone production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号