首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
"Reduced minus oxidized" difference extinction coefficients Deltavarepsilon in the alpha-bands of Cyt b559 and Cyt c550 were determined by using functionally and structurally well-characterized PS II core complexes from the thermophilic cyanobacterium Thermosynechococcus elongatus. Values of 25.1+/-1.0 mM(-1) cm(-1) and 27.0+/-1.0 mM(-1) cm(-1) were obtained for Cyt b559 and Cyt c550, respectively. Anaerobic redox titrations covering the wide range from -250 up to +450 mV revealed that the heme groups of both Cyt b559 and Cyt c550 exhibit homogenous redox properties in the sample preparation used, with E(m) values at pH 6.5 of 244+/-11 mV and -94+/-21 mV, respectively. No HP form of Cyt b559 could be detected. Experiments performed on PS II membrane fragments of higher plants where the content of the high potential form of Cyt b559 was varied by special treatments (pH, heat) have shown that the alpha-band extinction of Cyt b559 does not depend on the redox form of the heme group. Based on the results of this study the Cyt b559/PSII stoichiometry is inferred to be 1:1 not only in thermophilic cyanobacteria as known from the crystal structure but also in PSII of plants. Possible interrelationships between the structure of the Q(B) site and the microenvironment of the heme group of Cyt b559 are discussed.  相似文献   

2.
Ishikita H  Knapp EW 《FEBS letters》2005,579(14):3190-3194
Cytochrome c550 (cyt c550) from photosystem II (PSII) exists in the PSII-bound form but can be released from PSII by treatment with divalent cations or Tris, yielding the isolated form. We calculated heme redox potentials (Em) based on the crystal structures of cyt c550 by solving the Poisson-Boltzmann equation. In the isolated form, the calculated Em are -240 mV at pH 6.0 and -352 mV at pH 9.0. This pH-dependence is predominantly due to deprotonation of the heme-propionic group near Asn-49. In the PSII-bound form, the calculated E(m) was up-shifted by 160 mV versus the isolated form due to a conformational change of protein backbone, yielding Em=-84 mV.  相似文献   

3.
Cytochrome c(550) (cyt c(550)) is a component of photosystem II (PSII) from cyanobacteria, red algae, and some other eukaryotic algae. Its physiological role remains unclear. In the present work, measurements of the midpoint redox potential (E(m)) were performed using intact PSII core complexes preparations from a histidine-tagged PSII mutant strain of the thermophilic cyanobacterium Thermosynechococcus (T.) elongatus. When redox titrations were done in the absence of redox mediators, an E(m) value of +200 mV was obtained for cyt c(550). This value is ~300 mV more positive than that previously measured in the presence of mediators (E(m) = -80 mV). The shift from the high potential form (E(m) = +200 mV) to the low potential form (E(m) = -80 mV) of cyt c(550) is attributed to conformational changes, triggered by the reduction of a component of PSII that is sequestered and out of equilibrium with the medium, most likely the Mn(4)Ca cluster. This reduction can occur when reduced low potential redox mediators are present or under highly reducing conditions even in the absence of mediators. Based on these observations, it is suggested that the E(m) of +200 mV obtained without mediators could be the physiological redox potential of the cyt c(550) in PSII. This value opens the possibility of a redox function for cyt c(550) in PSII.  相似文献   

4.
Cytochrome c(550) is one of the extrinsic Photosystem II subunits in cyanobacteria and red algae. To study the possible role of the heme of the cytochrome c(550) we constructed two mutants of Thermosynechococcus elongatus in which the residue His-92, the sixth ligand of the heme, was replaced by a Met or a Cys in order to modify the redox properties of the heme. The H92M and H92C mutations changed the midpoint redox potential of the heme in the isolated cytochrome by +125 mV and -30 mV, respectively, compared with the wild type. The binding-induced increase of the redox potential observed in the wild type and the H92C mutant was absent in the H92M mutant. Both modified cytochromes were more easily detachable from the Photosystem II compared with the wild type. The Photosystem II activity in cells was not modified by the mutations suggesting that the redox potential of the cytochrome c(550) is not important for Photosystem II activity under normal growth conditions. A mutant lacking the cytochrome c(550) was also constructed. It showed a lowered affinity for Cl(-) and Ca(2+) as reported earlier for the cytochrome c(550)-less Synechocystis 6803 mutant, but it showed a shorter lived S(2)Q(B)(-) state, rather than a stabilized S(2) state and rapid deactivation of the enzyme in the dark, which were characteristic of the Synechocystis mutant. It is suggested that the latter effects may be caused by loss (or weaker binding) of the other extrinsic proteins rather than a direct effect of the absence of the cytochrome c(550).  相似文献   

5.
This report describes a protocol to incorporate isotopically labelled aromatic amino acids into the proteins of the thermophilic cyanobacterium Thermosynechoccus elongatus. By using the EPR signal of the two redox active tyrosines of Photosystem II, Tyr(D)(*) and Tyr(Z)(*), as spectroscopic probes it is shown that labelled tyrosines can be incorporated with a high yield in this cyanobacterium. The production of a fully (13)C- or (2)H-labelled enzyme is also described.  相似文献   

6.
A detailed analysis of the properties of cytochrome b(559) (Cyt b(559)) in photosystem II (PS II) preparations with different degrees of structural complexity is presented. It reveals that (i) D1-D2-Cyt b(559) complexes either in solubilized form or incorporated into liposomes contain only one type of Cyt b(559) with E(m) values of 60 +/- 5 and 100 +/- 10 mV, respectively, at pH 6.8; (ii) in oxygen-evolving solubilized PS II core complexes Cyt b(559) exists predominantly (>85%) as an LP form with an E(m,7) of 125 +/- 10 mV and a minor fraction with an E(m,7) of -150 +/- 15 mV; (iii) in oxygen-evolving PS II membrane fragments three different redox forms are discernible with E(m) values of 390 +/- 15 mV (HP form), 230 +/- 20 mV (IP form), and 105 +/- 25 mV (LP form) and relative amplitudes of 58, 24, and 18%, respectively, at pH 7.3; (iv) the E(m) values are almost pH-independent between pH 6 and 9.5 in all sample types except D1-D2-Cyt b(559) complexes incorporated into liposomes with a slope of -29 mV/pH unit, when the pH increases from 6 to 9.5 (IP and LP form in PS II membrane fragments possibly within a restricted range from pH 6.5 to 8); (v) at pH >8 the HP Cyt b(559) progressively converts to the IP form with increasing pH; (vi) the reduced-minus-oxidized optical difference spectra of Cyt b(559) are very similar in the lambda range of 360-700 nm for all types except for the HP form which exhibits pronounced differences in the Soret band; and (vii) PS II membrane fragments and core complexes are inferred to contain about two Cyt b(559) hemes per PS II. Possible implications of conformational changes near the heme group and spin state transitions of the iron are discussed.  相似文献   

7.
The PsbQ-like protein, termed CyanoQ, found in the cyanobacterium Synechocystis sp. PCC 6803 is thought to bind to the lumenal surface of photosystem II (PSII), helping to shield the Mn4CaO5 oxygen-evolving cluster. CyanoQ is, however, absent from the crystal structures of PSII isolated from thermophilic cyanobacteria raising the possibility that the association of CyanoQ with PSII might not be a conserved feature. Here, we show that CyanoQ (encoded by tll2057) is indeed expressed in the thermophilic cyanobacterium Thermosynechococcus elongatus and provide evidence in support of its assignment as a lipoprotein. Using an immunochemical approach, we show that CyanoQ co-purifies with PSII and is actually present in highly pure PSII samples used to generate PSII crystals. The absence of CyanoQ in the final crystal structure is possibly due to detachment of CyanoQ during crystallisation or its presence in sub-stoichiometric amounts. In contrast, the PsbP homologue, CyanoP, is severely depleted in isolated PSII complexes. We have also determined the crystal structure of CyanoQ from T. elongatus to a resolution of 1.6 Å. It lacks bound metal ions and contains a four-helix up-down bundle similar to the ones found in Synechocystis CyanoQ and spinach PsbQ. However, the N-terminal region and extensive lysine patch that are thought to be important for binding of PsbQ to PSII are not conserved in T. elongatus CyanoQ.  相似文献   

8.
“Reduced minus oxidized” difference extinction coefficients Δ? in the α-bands of Cyt b559 and Cyt c550 were determined by using functionally and structurally well-characterized PS II core complexes from the thermophilic cyanobacterium Thermosynechococcus elongatus. Values of 25.1 ± 1.0 mM−1 cm−1 and 27.0 ± 1.0 mM−1 cm−1 were obtained for Cyt b559 and Cyt c550, respectively. Anaerobic redox titrations covering the wide range from −250 up to +450 mV revealed that the heme groups of both Cyt b559 and Cyt c550 exhibit homogenous redox properties in the sample preparation used, with Em values at pH 6.5 of 244 ± 11 mV and −94 ± 21 mV, respectively. No HP form of Cyt b559 could be detected. Experiments performed on PS II membrane fragments of higher plants where the content of the high potential form of Cyt b559 was varied by special treatments (pH, heat) have shown that the α-band extinction of Cyt b559 does not depend on the redox form of the heme group. Based on the results of this study the Cyt b559/PSII stoichiometry is inferred to be 1:1 not only in thermophilic cyanobacteria as known from the crystal structure but also in PSII of plants. Possible interrelationships between the structure of the QB site and the microenvironment of the heme group of Cyt b559 are discussed.  相似文献   

9.
Photosystem I reaction centers of the cyanobacterium Thermosynechococcus elongatus have been investigated using single-molecule spectroscopy. Single-molecule fluorescence emission spectra reveal a new fluorescence band located at 745 nm. Fluorescence polarization spectroscopy and fluorescence autocorrelation analysis show that only a few chlorophylls are responsible for the photoemission from the Photosystem I trimer at low temperature. Intersystem crossing parameters of the red pool chlorophylls have been determined via fluorescence autocorrelation measurements. The triplet yield of the red chlorophylls is strongly reduced in comparison to chlorophyll a in solution. Strong quenching of the triplet state indicates that the red chlorophylls are located in close contact to carotenoids.  相似文献   

10.
The recent crystallographic structure at 3.0 A resolution of PSII from Thermosynechococcus elongatus has revealed a cavity in the protein which connects the membrane phase to the binding pocket of the secondary plastoquinone Q(B). The cavity may serve as a quinone diffusion pathway. By fluorescence methods, electron transfer at the donor and acceptor sides was investigated in the same membrane-free PSII core particle preparation from T. elongatus prior to and after crystallization; PSII membrane fragments from spinach were studied as a reference. The data suggest selective enrichment of those PSII centers in the crystal that are intact with respect to O(2) evolution at the manganese-calcium complex of water oxidation and with respect to the integrity of the quinone binding site. One and more functional quinone molecules (per PSII monomer) besides of Q(A) and Q(B) were found in the crystallized PSII. We propose that the extra quinones are located in the Q(B) cavity and serve as a PSII intrinsic pool of electron acceptors.  相似文献   

11.
Binding of herbicides to photosystem II inhibits the electron transfer from Q(A) to Q(B) due to competition of herbicides with plastoquinone bound at the Q(B) site. We investigated herbicide binding to monomeric and dimeric photosystem II core complexes (PSIIcc) isolated from Thermosynechococcus elongatus by a combination of different methods (isothermal titration and differential scanning calorimetry, CD spectroscopy and measurements of the oxygen evolution) yielding binding constants, enthalpies and stoichiometries for various herbicides as well as information regarding stabilization/destabilization of the complex. Herbicide binding to detergent-solubilized PSIIcc can be described by a model of single independent binding sites present on this important membrane protein. Interestingly, binding stoichiometries herbicide:PSIIcc are lower than 1:1 and vary depending on the herbicide under study. Strong binding herbicides such as terbutryn stabilize PSIIcc in thermal unfolding experiments and endothermically binding herbicides like ioxynil probably cause large structural changes accompanied with the binding process as shown by differential scanning calorimetry experiments of the unfolding reaction of PSIIcc monomer in the presence of ioxynil. In addition we studied the occupancy of the Q(B) sites with plastoquinone (PQ9) by measuring flash induced fluorescence relaxation yielding a possible explanation for the deviations of herbicide binding from a 1:1 herbicide/binding site model.  相似文献   

12.
DNA-binding proteins from starved cells (Dps proteins) protect bacteria primarily from oxidative damage. They are composed of 12 identical subunits assembled with 23-symmetry to form a compact cage-like structure known to be stable at temperatures > 70 degrees C and over a wide pH range. Thermosynechococcus elongatus Dps thermostability is increased dramatically relative to mesophilic Dps proteins. Hydrophobic interactions at the dimeric and trimeric interfaces called Dps-like are replaced by salt bridges and hydrogen bonds, a common strategy in thermophiles. Moreover, the buried surface area at the least-extended Dps-like interface is significantly increased. A peculiarity of T. elongatus Dps is the presence of a chloride ion coordinated with threefold symmetry-related arginine residues lining the opening of the Dps-like pore toward the internal cavity. T. elongatus Dps conserves the unusual intersubunit ferroxidase centre that allows the Dps protein family to oxidize Fe(II) with hydrogen peroxide, thereby inhibiting free radical production via Fenton chemistry. This catalytic property is of special importance in T. elongatus (which lacks the catalase gene) in the protection of DNA and photosystems I and II from hydrogen peroxide-mediated oxidative damage.  相似文献   

13.
A model of heme–quinone redox interaction has been developed for cytochrome b559 in photosystem II. The quinone QC in the singly protonated form may function as an interacting quinone. The electrostatic effect between the charges on the heme iron of the cytochrome and QCH leads to appearance of three forms of the cytochrome with different redox potentials. A simple and effective mechanism of redox regulation of the electron transfer pathways in photosystem II is proposed.  相似文献   

14.
The active site for water oxidation in photosystem II (PSII) consists of a Mn4Ca cluster close to a redox-active tyrosine residue (TyrZ). The enzyme cycles through five sequential oxidation states (S0 to S4) in the water oxidation process. Earlier electron paramagnetic resonance (EPR) work showed that metalloradical states, probably arising from the Mn4 cluster interacting with TyrZ., can be trapped by illumination of the S0, S1 and S2 states at cryogenic temperatures. The EPR signals reported were attributed to S0TyrZ., S1TyrZ. and S2TyrZ., respectively. The equivalent states were examined here by EPR in PSII isolated from Thermosynechococcus elongatus with either Sr or Ca associated with the Mn4 cluster. In order to avoid spectral contributions from the second tyrosyl radical, TyrD., PSII was used in which Tyr160 of D2 was replaced by phenylalanine. We report that the metalloradical signals attributed to TyrZ. interacting with the Mn cluster in S0, S1, S2 and also probably the S3 states are all affected by the presence of Sr. Ca/Sr exchange also affects the non-haem iron which is situated approximately 44 A units away from the Ca site. This could relate to the earlier reported modulation of the potential of QA by the occupancy of the Ca site. It is also shown that in the S3 state both visible and near-infrared light are able to induce a similar Mn photochemistry.  相似文献   

15.
The determination of the structure of PSII at high resolution is required in order to fully understand its reaction mechanisms. Two-dimensional crystals of purified highly active Synechococcus elongatus PSII dimers were obtained by in vitro reconstitution. Images of these crystals were recorded by electron cryo-microscopy, and their analysis revealed they belong to the two-sided plane group p22(1)2(1), with unit cell parameters a = 121 A, b = 333 A, and alpha = 90 degrees. From these crystals, a projection map was calculated to a resolution of approximately 16 A. The reliability of this projection map is confirmed by its close agreement with the recently presented three-dimensional model of the same complex obtained by X-ray crystallography. Comparison of the projection map of the Synechococcus elongatus PSII complex with data obtained by electron crystallography of the spinach PSII core dimer reveals a similar organization of the main transmembrane subunits. However, some differences in density distribution between the cyanobacterial and higher plant PSII complexes exist, especially in the outer region of the complex between CP43 and cytochrome b(559) and adjacent to the B-helix of the D1 protein. These differences are discussed in terms of the number and organization of some of the PSII low molecular weight subunits.  相似文献   

16.
The redox and acid/base states and midpoint potentials of cytochrome b-559 have been determined in oxygen-evolving photosystem II (PS II) particles at room temperature in the pH range from 6.5 to 8.5. At pH 7.5 the fresh PS II particles present about 2/3 of their cytochrome b-559 in its reduced and protonated (non-auto-oxidizable) high-potential form and about 1/3 in its oxidized and non-protonated low-potential form. Potentiometric reductive titration shows that the protonated high-potential couple is pH-independent (E'0, + 380 mV), whereas the low-potential couple is non-protonated and pH-independent above pH 7.6 (E'0, pH greater than 7.6, + 140 mV), but becomes pH-dependent below this pH, with a slope of -72 mV/pH unit. Moreover, evidence is presented that in PS II particles cytochrome b-559 can cycle, according to its established redox and acid/base properties, as an energy transducer at two alternate midpoint potentials and at two alternate pKa values. Red light absorbed by PS II induces reduction of cytochrome b-559 in these particles at room temperature, the reaction being completely blocked by dichlorophenyldimethylurea.  相似文献   

17.
18.
In the cyanobacterium Thermosynechococcus elongatus BP-1, living in hot springs, the light environment directly regulates expression of genes that encode key components of the photosynthetic multi-subunit protein-pigment complex photosystem II (PSII). Light is not only essential as an energy source to power photosynthesis, but leads to formation of aggressive radicals which induce severe damage of protein subunits and organic cofactors. Photosynthetic organisms develop several protection mechanisms against this photo-damage, such as the differential expression of genes coding for the reaction center subunit D1 in PSlI. Testing the expression of the three different genes (psbAI, psbAII, psbAIII) coding for D1 in T. elongatus under culture conditions used for preparing the material used in crystallization of PSII showed that under these conditions only subunit PsbA1 is present. However, exposure to high-light intensity induced partial replacement of PsbA1 with PsbA3. Modeling of the variant amino acids of the three different D1 copies in the 3.0 A resolution crystal structure of PSII revealed that most of them are in the direct vicinity to redox-active cofactors of the electron transfer chain. Possible structural and mechanistic consequences for electron transfer are discussed.  相似文献   

19.
C A Buser  B A Diner  G W Brudvig 《Biochemistry》1992,31(46):11449-11459
Cytochrome b559 (cyt b559) is an intrinsic and essential component of the photosystem II (PSII) protein complex, but its function, stoichiometry, and electron-transfer kinetics in the physiological system are not well-defined. In this study, we have used flash-detection optical spectroscopy to measure the kinetics and yields of photooxidation and dark reduction of cyt b559 in untreated, O2-evolving PSII-enriched membranes at room temperature. The dark redox states of cyt b559 and the primary electron acceptor, QA, were determined over the pH range 5.0-8.5. Both the fraction of dark-oxidized cyt b559 and dark-reduced QA increased with increasing acidity. Consistent with these results, an acid-induced drop in pH from 8.5 to 4.9 in a dark-adapted sample caused the oxidation of cyt b559, indicating a shift in the redox state during the dark reequilibration. As expected from the dark redox state of cyt b559, the rate and extent of photooxidation of cyt b559 during continuous illumination decreased toward more acidic pH values. After a single, saturating flash, the rate of photooxidation of cyt b559 was of the same order of magnitude as the rate of S2QA- charge recombination. In untreated PSII samples at pH 8.0 with 42% of cyt b559 oxidized and 15% of QA reduced in the dark, 4.7% of one copy of cyt b559 was photooxidized after one flash with a t1/2 of 540 +/- 90 ms. On the basis of our previous work [Buser, C. A., Thompson, L. K., Diner, B. A., & Brudvig, G. W (1990) Biochemistry 29, 8977] and the data presented here, we conclude that Sn+1, YZ., and P680+ are in redox equilibrium and cyt b559 (and YD) are oxidized via P680+. After a period of illumination sufficient to fully reduce the plastoquinone pool, we also observed the pH-dependent dark reduction of photooxidized cyt b559, where the rate of reduction decreased with decreasing pH and was not observed at pH < 6.4. To determine the direct source of reductant to oxidized cyt b559, we studied the dark reduction of cyt b559 and the reduction of the PQ pool as a function of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) concentration. We find that DCMU inhibits the reduction of cyt b559 under conditions where the plastoquinone pool and QA are reduced. We conclude that QB-. (H+) or QBH2 is the most likely source of the electron required for the reduction of oxidized cyt b559.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Using a recently introduced electrophoresis system [Kashino et al. (2001) Electrophoresis 22: 1004], components of low-molecular-mass polypeptides were analyzed in detail in photosystem II (PSII) complexes isolated from a thermophilic cyanobacterium, Thermosynechococcus vulcanus (formerly, Synechococcus vulcanus). PsbE, the large subunit polypeptide of cytochrome b(559), showed an apparent molecular mass much lower than the expected one. The unusually large mobility could be attributed to the large intrinsic net electronic charge. All other Coomassie-stained polypeptides were identified by N-terminal sequencing. In addition to the well-known cyanobacterial PSII polypeptides, such as PsbE, F, H, I, L, M, U, V and X, the presence of PsbY, PsbZ and Psb27 was also confirmed in the isolated PSII complexes. Furthermore, the whole amino acid sequence was determined for the polypeptide which was known as PsbN. The whole amino acid sequence revealed that this polypeptide was identical to PsbTc which has been found in higher plants and green algae. These results strongly suggest that PsbN is not a member of the PSII complex. It is also shown that cyanobacteria have cytochrome b(559) in the high potential form as in higher plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号