首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most enolases are homodimers. There are a few that are octamers, with the eight subunits arranged as a tetramer of dimers. These dimers have the same basic fold and same subunit interactions as are found in the dimeric enolases. The dissociation of the octameric enolase from S. pyogenes was examined, using NaClO4, a weak chaotrope, to perturb the quaternary structure. Dissociation was monitored by sedimentation velocity. NaClO4 dissociated the octamer into inactive monomers. There was no indication that dissociation of the octamer into monomers proceeded via formation of significant amounts of dimer or any other intermediate species. Two mutations at the dimer-dimer interface, F137L and E363G, were introduced in order to destabilize the octameric structure. The double mutant was more easily dissociated than was the wild type. Dissociation could also be produced by other salts, including tetramethylammonium chloride (TMACl) or by increasing pH. In all cases, no significant amounts of dimers or other intermediates were formed. Weakening one interface in this protein weakened the other interface as well. Although enolases from most organisms are dimers, the dimeric form of the S. pyogenes enzyme appears to be unstable.  相似文献   

2.
The recombinant amidase from the hyperthermophylic archaeon Sulfolobus solfataricus (SSAM) a signature amidase, was cloned, purified and characterized. The enzyme is active on a large number of aliphatic and aromatic amides over the temperature range 60-95 degrees C and at pH values between 4.0 and 9.5, with an optimum at pH 5.0. The recombinant enzyme is in the form of a dimer of about 110 kD that reversibly associates into an octamer in a pH-dependent reaction. The pH dependence of the state of association was studied using gel permeation chromatography, analytical ultracentrifugation and dynamic light scattering techniques. At pH 7.0 all three techniques show the presence of two species, in about equal amounts, which is compatible with the existence of a dimeric and an octameric form. In decreasing pH, the dimers formed the octameric species and in increasing pH, the octameric species was converted to dimers. Above pH 8.0, only dimers were present, below pH 3.0 only octamers were present. The association of dimers into octamers decreased in non-polar solvents and increased with temperature. A mutant (Y41C) was obtained that did not show this behavior.  相似文献   

3.
Electron micrographs of negatively stained and metal-shadowed mitochondrial creatine kinase (Mi-CK) molecules purified as described by Schlegel et al. (Schlegel, J., Zurbriggen, B., Wegmann, E., Wyss, M., Eppenberger, H. M., and Wallimann, T. (1988) J. Biol Chem. 263, 16942-16953) revealed a homogeneous population (greater than or equal to 95%) of distinctly sized square-shaped, octameric particles with a side length of 10 nm that frequently exhibited a pronounced 4-fold axis of symmetry. The cube-like molecules consist of four dimers that are arranged around a stain-accumulating central cavity of 2.5-3 nm in diameter. This interpretation is supported by single particle averaging including correlation analysis by computer. Upon prolonged storage or high dilution, the cube-like octamers tended to dissociate into "banana-shaped" dimers. Sedimentation velocity and sedimentation equilibrium experiments yielded an s value of 12.8-13.5 S and an Mr of 328,000 +/- 25,000 for the octameric cubes. An s value of 5.0 S and a Mr of 83,000 +/- 8,000 was found under conditions which revealed banana-shaped dimers. These dimers proved to be very stable, as their dissociation into monomers of 45 kDa (s value = 2.0 S) required 6 M guanidine HCl. Thus, the oligomeric structures observed in the electron microscope are identified as Mi-CK dimers (banana-shaped structures) and cubical Mi-CK octamers assembled from four Mi-CK dimers. The octameric nature of native Mi-CK and the formation of Mi-CK dimers were confirmed by direct mass measurements of individual molecules by scanning transmission electron microscopy yielding a molecular mass of 340 +/- 55 kDa for the octamer and 89 +/- 27 kDa for the dimer. A structural model of Mi-CK octamers and the possible interaction with ATP/ADP-translocator molecules as well as with the outer mitochondrial membrane is proposed. The implications with respect to the physiological function of Mi-CK as an energy-channeling molecule at the producing side of the phosphoryl creatine shuttle are discussed.  相似文献   

4.
Mitochondrial creatine kinase (MtCK) plays a central role in energy homeostasis within cells that display high and variable rates of ATP turnover. Vertebrate MtCKs exist primarily as octamers but readily dissociate into constituent dimers under a variety of circumstances. MtCK is an ancient protein that is also found in invertebrates including sponges, the most primitive of all multi-cellular animals. We have cloned, expressed, and purified one of these invertebrate MtCKs from a marine polychaete worm, Chaetopterus variopedatus (CVMtCK). Size exclusion chromatography and dynamic light scattering (DLS) were used to characterize oligomeric state in comparison with that of octameric chicken sarcomeric isoform (SarMtCK). At protein concentrations >1 mg/ml, CVMtCK was predominantly octameric (>90%). When diluted to 0.1 mg/ml, CVMtCK dissociated into dimers much more rapidly than SarMtCK when observed under identical conditions. The rate of dissociation for both MtCKs increased as temperature rose from 2 to 28 degrees C, and in CVMtCK, fell at higher incubation temperatures. The fraction of octameric CVMtCK at equilibrium increased with temperature and then fell. Temperature transition studies showed that octamers and dimers were rapidly interconvertible on a similar time scale. Importantly, when CVMtCK was converted to the transition state analog complex (TSAC), both size exclusion chromatography and DLS showed that there was minimal dissociation of octamers into dimers while SarMtCK octamers were highly unstable as the TSAC. These results clearly show distinct differences in octamer stability between CVMtCK and SarMtCK, which could impact function under physiological circumstances. Furthermore, the large yield of recombinant protein and high stability of CVMtCK in the TSAC suggest that this protein might be a good target for crystallization efforts.  相似文献   

5.
Phosphate extraction of mitochondrial creatine kinase (Mi-CK, EC 2.7.3.2) from freshly isolated intact mitochondria of chicken cardiac muscle, after short swelling in hypotonic medium, yielded more than 90% of octameric and only small amounts of dimeric Mi-CK as judged by fast protein liquid chromatography-gel permeation analysis of the supernatants immediately after extraction of the enzyme. In extraction buffer, octameric Mi-CK displayed a tendency to dissociate, albeit at a slow rate with a half-life of approximately 3-5 days, into stable dimers. Experiments with purified Mi-CK octamers or dimers, or defined mixtures thereof, incubated under identical conditions with Mi-CK-depleted mitoplasts revealed that both oligomeric forms of Mi-CK can rebind to mitoplasts. However, the association of Mi-CK was strongly pH-dependent and, in addition, octameric and dimeric Mi-CK showed different pH dependences of rebinding. Therefore, it was possible under certain pH conditions to rebind either both oligomeric forms or selectively the octamers only. Furthermore, evidence is presented that Mi-CK dimers partially form octamers upon rebinding to the inner membrane. The differential association of the two oligomeric Mi-CK forms with the inner mitochondrial membrane together with the dynamic equilibrium between octameric and dimeric Mi-CK (Schlegel, J., Zurbriggen, B., Wegmann, G., Wyss, M., Eppenberger, H.M., and Wallimann, T. (1988) J. Biol. Chem., 263, 16942-16953) suggest that both oligomeric forms are physiologically relevant. A change in the octamer to dimer ratio may influence the association behavior of Mi-CK in general and thus modulate mitochondrial energy flux as discussed in the phosphoryl creatine circuit model (Wallimann, T., Schnyder, T., Schlegel, J., Wyss, M., Wegmann, G., Rossi, A.-M., Hemmer, W., Eppenberger, H.M., and Quest, A.F.G. (1989) Prog. Clin. Biol. Res. 315, 159-176.  相似文献   

6.
Glutamine synthetase from ovine brain has been found to exist in vivo and in vitro as a Mn4E complex, where E is octameric enzyme [F. C. Wedler, R. B. Denman, and W. G. Roby (1982) Biochemistry 24, 6389-6396]. Previously observed anomolous effects of added metal ions and protein concentration on the observed specific activity in vitro can now be explained in terms of association-dissociation of the native octamer. In the absence of glycerol, added to stabilize the enzyme for long-term storage, activity decreases sharply below 4 micrograms/ml (20 nM octamer) in assay mixtures due to dissociation of octamer to tetramer and thence to inactive monomer. No dimeric species were detectable under any conditions. The octameric species Mn4EMn4 could be activated further by Mn(II) to form a species Mn4EMn4Mn8 that has a specific activity of ca. 900 U/mg in the transferase assay. Enzyme with one Mn(II)/subunit, Mn4EMn4, associated to octamers more extensively than Mn4E. At the low concentrations of enzyme at which the tetramer predominates, addition of substrates alone or in pairs caused partial reassociation to octamers, the most effective combinations being ATP and glutamate, ADP and L-glutamine, or ATP and L-methionine sulfoximine. Analysis of the data by the methods of Kurganov or Thomes and co-workers indicate that the tetramer/octamer equilibrium has a Kd value of ca. 2.5 X 10(-6) M, comparable to values calculated for other enzyme systems. The specific activities for octamer and monomer in the Mg(II)-dependent transferase assay were calculated to be 200 +/- 20 and 0 U/mg, respectively. Direct determination of the specific activity of pure tetramer is hampered by its substrate-promoted reassociation to octamer under assay conditions. Tetramers, produced by 2 M urea and then immobilized on CNBr-activated Sepharose 4B, exhibited a specific activity that was 86% of that of the identically treated octamers. This indicates a specific activity of ca. 172 (+/- 20) for tetramers in solution. Light-scattering experiments showed that, with 1.7-2.0 Mn(II) bound per subunit, the octameric enzyme octamers can associate further to an oligomeric species (Mn4EMn4Mn8)n, where n greater than or equal to 5. This oligomerization also was promoted strongly by lanthanide ions. Mg(II), however, caused only the association of tetramer to octamer.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Partial denaturation of the circular octameric bifunctional enzyme formiminotransferase-cyclodeaminase in increasing urea concentrations leads to sequential dissociation via dimers to inactive monomers. In potassium phosphate buffer, dissociation to dimers in 3 M urea coincides with loss of both activities and a major decrease in intensity of intrinsic tryptophan fluorescence. In the presence of folic acid, these dimers retain the deaminase activity, but with folylpolyglutamates, both activities are protected and the native octameric structure is retained. The protection profiles with polyglutamates are cooperative with a Hill coefficient greater than 2, suggesting that binding of more than one folylpolyglutamate per octamer is required to stabilize the native structure. In triethanolamine hydrochloride buffer, transferase-active dimers that retain the intrinsic tryptophan fluorescence can be obtained in 1 M urea and stabilized at higher urea concentration by the addition of glutamate. Deaminase-active dimers are obtained by the protection of folate in 3 M urea. Proteolysis of the two kinds of dimers by chymotrypsin leads to very different fragmentation patterns, indicating that they are structurally different. We propose that the two dimers retain different subunit-subunit interfaces, one of which is required for each activity. This suggests that the native octameric structure is required for expression of both activities and therefore for "channeling" of intermediates.  相似文献   

8.
Factors affecting the oligomeric structure of yeast external invertase   总被引:4,自引:0,他引:4  
It has been assumed that yeast external invertase is a dimer, with each subunit composed of a 60-kDa polypeptide chain. We now present evidence that at its optimal pH of 5.0, the predominant form of external invertase is an octamer with an average size of 8 X 10(5) Da. During ultracentrifugation the octamer dissociated to lower molecular weight forms, including a hexamer, tetramer, and dimer. All forms of the enzyme were shown to possess identical specific activities and to contain a similar carbohydrate to protein ratio. Although the monomer subunits (1 X 10(5) Da) were heterogenous in carbohydrate content, each subunit possessed nine oligosaccharide chains. When stained for protein and enzyme activity following sodium dodecyl sulfate-polyacrylamide gel electrophoresis, only the oligomeric form of the enzyme appeared to be active. Thus, on partially inactivating invertase with 4 M guanidine hydrochloride both octamer and monomer were evident on the gels but only the former was active. Similarly, incubating at pH 2.5 in the presence of sodium dodecyl sulfate yielded only inactive monomer. The monomer, unlike the active oligomeric aggregate, was unable to hydrolyze sucrose after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Consistent with the in vitro studies, freshly prepared yeast lysate was shown to contain the octameric species of external invertase as the major active form of this enzyme. From these studies and others which employed deglycosylated invertase, it is concluded that the carbohydrate component of external invertase contributes not only to stabilizing enzyme activity, but also to maintaining its oligomeric structure.  相似文献   

9.
Creatine kinase isoenzymes are very susceptible to free radical damage and are inactivated by superoxide radicals and peroxynitrite. In this study, we have analyzed the effects of peroxynitrite on enzymatic activity and octamer stability of the two human mitochondrial isoenzymes (ubiquitous mitochondrial creatine kinase (uMtCK) and sarcomeric mitochondrial creatine kinase (sMtCK)), as well as of chicken sMtCK, and identified the involved residues. Inactivation by peroxynitrite was concentration-dependent and similar for both types of MtCK isoenzymes. Because peroxynitrite did not lower the residual activity of a sMtCK mutant missing the active site cysteine (C278G), oxidation of this residue is sufficient to explain MtCK inactivation. Mass spectrometric analysis confirmed oxidation of Cys-278 and further revealed oxidation of the C-terminal Cys-358, possibly involved in MtCK/membrane interaction. Peroxynitrite also led to concentration-dependent dissociation of MtCK octamers into dimers. In this study, ubiquitous uMtCK was much more stable than sarcomeric sMtCK. Mass spectrometric analysis revealed chemical modifications in peptide Gly-263-Arg-271 located at the dimer/dimer interface, including oxidation of Met-267 and nitration of Trp-268 and/or Trp-264, the latter being a very critical residue for octamer stability. These data demonstrate that peroxynitrite affects the octameric state of MtCK and confirms human sMtCK as the generally more susceptible isoenzyme. The results provide a molecular explanation of how oxidative damage can lead to inactivation and decreased octamer/dimer ratio of MtCK, as seen in neurodegenerative diseases and heart pathology, respectively.  相似文献   

10.
Glutamine synthetase from ovine brain has been found to exist in vivo and in vitro as a Mn4E complex, where E is octameric enzyme [F. C. Wedler, R. B. Denman, and W. G. Roby (1982)Biochemistry24, 6389–6396]. Previously observed anomolous effects of added metal ions and protein concentration on the observed specific activity in vitro can now be explained in terms of association-dissociation of the native octamer. In the absence of glycerol, added to stabilize the enzyme for long-term storage, activity decreases sharply below 4 μg/ml (20 nm octamer) in assay mixtures due to dissociation of octamer to tetramer and thence to inactive monomer. No dimeric species were detectable under any conditions. The octameric species Mn4EMn4 could be activated further by Mn(II) to form a species Mn4EMn4Mn8 that has a specific activity of ca. 900 U/mg in the transferase assay. Enzyme with one Mn(II)/subunit, Mn4EMn4, associated to octamers more extensively than Mn4E. At the low concentrations of enzyme at which the tetramer predominates, addition of substrates alone or in pairs caused partial reassociation to octamers, the most effective combinations being ATP and glutamate, ADP and l-glutamine, or ATP and l-methionine sulfoximine. Analysis of the data by the methods of Kurganov or Thomes and co-workers indicate that the tetramer/octamer equilibrium has a Kd value of ca. 2.5 × 10?6m, comparable to values calculated for other enzyme systems. The specific activities for octamer and monomer in the Mg(II)-dependent transferase assay were calculated to be 200 ± 20 and 0 U/mg, respectively. Direct determination of the specific activity of pure tetramer is hampered by its substrate-promoted reassociation to octamer under assay conditions. Tetramers, produced by 2 m urea and then immobilized on CNBr-activated Sepharose 4B, exhibited a specific activity that was 86% of that of the identically treated octamers. This indicates a specific activity of ca. 172 (±20) for tetramers in solution. Light-scattering experiments showed that, with 1.7–2.0 Mn(II) bound per subunit, the octameric enzyme octamers can associate further to an oligomeric species (Mn4EMn4Mn8)n, where n? ? 5. This oligomerization also was promoted strongly by lanthanide ions. Mg(II), however, caused only the association of tetramer to octamer. Analysis of various stereochemical models for the interaction of subunit domains (assuming identical subunits) within tetramers, between tetramers in the octamers, and between octamers indicate that the data are most consistent with isologous, rather than heterologous, interactions to produce octamer. These analyses also predict that formation of oligomers from cubic octamers through weaker, Mn(II)-dependent interactions also are most likely to occur via isologous domains. The available electron micrographic evidence support these hypothetical models. Interactions within tetramers are stronger than those between tetramers, which are stronger than those between octamers.  相似文献   

11.
The cDNA and deduced amino-acid sequences for dimeric and octameric isoforms of creatine kinase (CK) from a protostome, the polychaete Chaetopterus variopedatus, were elucidated and then analysed in the context of available vertebrate CK sequences and the recently determined crystal structure of chicken sarcomeric mitochondrial CK (MiCK). As protostomes last shared a common ancestor with vertebrates roughly 700 million years ago, observed conserved residues may serve to confirm or reject contemporary hypotheses about the roles of particular amino acids in functional/structural processes such as dimer/octamer formation and membrane binding. The isolated cDNA from the dimeric CK consisted of 1463 nucleotides with an open reading frame of 1116 nucleotides encoding a 372-amino-acid protein having a calculated molecular mass of 41.85 kDa. The percentage identity of C. variopedatus dimeric CK to vertebrate CK is as high as 69%. The octameric MiCK cDNA is composed of 1703 nucleotides with an open reading frame of 1227 nucleotides. The first 102 nucleotides of the open reading frame encode a 34-amino-acid leader peptide whereas the mature protein is composed of 375 amino acids with a calculated molecular mass of 42.17 kDa. The percentage identity of C. variopedatus MiCK to vertebrate CK is as high as 71%. This similarity is also evident in residues purported to be important in the structure and function of dimeric and octameric CK: (a) presence of seven basic amino acids in the C-terminal end thought to be important in binding of MiCK to membranes; (b) presence of a lysine residue (Lys110 in chicken MiCK) also thought to be involved in membrane binding; and (c) presence of a conserved tryptophan thought to be important in dimer stabilization which is present in all dimeric and octameric guanidino kinases. However, C. variopedatus MiCK lacks the N-terminal heptapeptide present in chicken MiCK, which is thought to mediate octamer stabilization. In contrast with vertebrate MiCK, polychaete octamers are very stable indicating that dimer binding into octamers may be mediated by additional and/or other residues. Phylogenetic analyses showed that both octamer and dimer evolved very early in the CK lineage, well before the divergence of deuterostomes and protostomes. These results indicate that the octamer is a primitive feature of CK rather than being a derived and advanced character.  相似文献   

12.
In most organisms, mitochondrial creatine kinase (MtCK) is present as dimers and octamers with the latter predominating under physiological conditions. An absolutely conserved tryptophan residue (Trp-264 in chicken sarcomeric MtCK) appears to play a key role in octamer stability. Recently, it has been shown that the sponge Tethya aurantia, a member of the most ancient group of living multi-cellular animals, expresses an obligate, dimeric MtCK that lacks this absolutely conserved tryptophan residue, instead possessing a tyrosine in this position. In the present study we confirm that the absolutely conserved tryptophan residue is lacking in other sponge MtCKs where it is instead substituted by histidine or asparagine. Site directed mutations of the Trp-264 in expression constructs of chicken sarcomeric MtCK and the octameric MtCK from the marine worm Chaetopterus destabilized the octameric quaternary structure producing only dimers. A Tyr-->Trp mutation in an expression construct of the Tethya MtCK construct failed to produce octamerization; Tyr-->His and Tyr-->Asn mutations also yielded dimers. These results, in conjunction with analysis of homology models of Chaetopterus and Tethya MtCKs, strongly support the view that while the absolutely conserved tryptophan residue is important in octamer stability, octamer formation involves a complex suite of interactions between a variety of residues.  相似文献   

13.
A recombinant geranylgeranyl diphosphate synthase (GGPS) was analysed to be a mixture of octamer, hexamer and dimer by gel filtration using a Superdex 200 column followed by the blue native polyacrylamide gel electrophoresis. The hexamer and dimer were each converted to an octamer by treating with dithiothreitol (DTT). When the recombinant GGPS was preliminarily treated with DTT and similarly analysed, octamer was predominantly detected with a trace amount of hexamer. The octameric form of GGPS was also supported by the cross-linking experiments with bis(sulfosuccinimidyl) suberate. The GGPS in an octameric form was active with a combination of farnesyl diphosphate and [1-(14)C]isopentenyl diphosphate. These results indicate that the active form of GGPS in the solution is an octamer rather than hexamer or dimer.  相似文献   

14.
Structure, assembly, and secretion of octameric invertase   总被引:15,自引:0,他引:15  
Yeast invertase forms a homo-octamer of core glycosylated subunits during assembly in the lumen of the endoplasmic reticulum. This form has been purified from mutant cells (sec18) in which transport of secreted proteins from the endoplasmic reticulum is blocked. No heterologous protein subunits are found in the purified material. Analysis of invertase derived from wild type cells or from mutant cells blocked at subsequent stages in secretion demonstrates that invertase remains a homo-octamer throughout the pathway even though the extent of subunit glycosylation increases. Purified octameric invertase is dissociated into dimer units that reassociate in the presence of polyethylene glycol. Negatively stained preparations show the dissociated enzyme as individual spheres, whereas octameric invertase appears as four associated spheres. Assembly of the octamer in vitro and in vivo is facilitated by the presence of N-linked carbohydrate. Selective release of dimeric glycosylated invertase from intact yeast cells suggests that oligomerization helps retain the enzyme in the periplasmic space.  相似文献   

15.
M A Nieto  E Palacián 《Biochemistry》1988,27(15):5635-5640
Treatment of nucleosomal particles and isolated core-histone octamers with dimethylmaleic anhydride, but not with acetic anhydride, is accompanied by a biphasic release of the two H2A.H2B dimers, the first dimer being more easily released than the second. With both kinds of particles, 50% of histones H2A and H2B are released for modification of approximately 35% of the histone amino groups. The similar behavior of nucleosomal particles and isolated core-histone octamers is consistent with the same structure of the histone octamer in the nucleosomal particle and in the free octamer in 2 M NaCl. The described release of H2A.H2B dimers allows the preparation of nucleosomal particles deficient in one H2A.H2B dimer and of the histone hexamers H2A.H2B.(H3.H4)2. For more extensive modifications, both reagents, acetic and dimethylmaleic anhydrides, cause the dissociation of nucleosomal particles with liberation of double-stranded DNA, which suggests that lysine amino groups are involved in the binding of histones to DNA. The modified nucleosomal particles are more sensitive to ionic strength than those untreated, and the presence of salt (NaCl) increases the extent of DNA release. The histones corresponding to the liberated DNA, except H2A and H2B released with dimethylmaleic anhydride, are apparently bound to the DNA-containing particles as extra histones.  相似文献   

16.
The three-dimensional structure of the lambda repressor C-terminal domain (CTD) has been determined at atomic resolution. In the crystal, the CTD forms a 2-fold symmetric tetramer that mediates cooperative binding of two repressor dimers to pairs of operator sites. Based upon this structure, a model was proposed for the structure of an octameric repressor that forms both in the presence and absence of DNA. Here, we have determined the structure of the lambda repressor CTD in three new crystal forms, under a wide variety of conditions. All crystals have essentially the same tetramer, confirming the results of the earlier study. One crystal form has two tetramers bound to form an octamer, which has the same overall architecture as the previously proposed model. An unexpected feature of the octamer in the crystal structure is a unique interaction at the tetramer-tetramer interface, formed by residues Gln209, Tyr210 and Pro211, which contact symmetry-equivalent residues from other subunits of the octamer. Interestingly, these residues are also located at the dimer-dimer interface, where the specific interactions are different. The structures thus indicate specific amino acid residues that, at least in principle, when altered could result in repressors that form tetramers but not octamers.  相似文献   

17.
Creatine kinase from pigeon breast muscle was obtained in a homogeneous (as evidenced from polyacrylamide gel SDS electrophoresis) state. The molecular mass of the enzyme monomer is 43,000. Ultracentrifugation in a sucrose density gradient and gel filtration revealed that the enzyme is present in solution as a mixture of two major forms, i.e., octamer and dimer, which differ in their activity. The decrease of ionic strength from 0.25 to 0.02 results in reversible dissociation of the octameric form. A temperature rise from 5 degrees to 20 degrees C or the nature of monovalent anions (e.g., Cl-, CH3COO-, NO3-) and cations (K+, Na+) present in the medium do not influence the distribution of oligomeric forms. At pH 6.0 the major form is represented by the octamer; its dissociation is caused by an increase of pH. The octamer dissociation occurs in a mixture of substrates of the creatine kinase reaction in the presence of Mg2+; no such dissociation is observed in the absence of Mg2+ and in the presence of each of the reaction substrates. The non-interacting pair of substrates--ADP and creatine--causes the dissociation of the octamer in the presence of nitrate ions but not acetate. It is concluded that the dissociating effect of substrates is due to the conformational changes of subunits during catalysis. At physiological concentrations of nucleotide substrates the degree of octamer dissociation depends on the ratio of creatine phosphate and creatine concentrations, as well as on the presence of chlorine and phosphate ions. A qualitative estimation of the rate of pH- and substrate-dependent dissociation of creatine kinase octamer revealed that under the given experimental conditions the pH-dependent dissociation is completed within hours, whereas the substrate-dependent one--within seconds or minutes. According to its properties, mitochondrial creatine kinase from pigeon breast muscle is close to its bovine heart counterpart; the observed differences were found to be quantitative.  相似文献   

18.
The P9-1 protein of Rice black streaked dwarf virus accumulates in viroplasm inclusions, which are structures that appear to play an important role in viral morphogenesis and are commonly found in viruses in the family Reoviridae. Crystallographic analysis of P9-1 revealed structural features that allow the protein to form dimers via hydrophobic interactions. Each dimer has carboxy-terminal regions, resembling arms, that extend to neighboring dimers, thereby uniting sets of four dimers via lateral hydrophobic interactions, to yield cylindrical octamers. The importance of these regions for the formation of viroplasm-like inclusions was confirmed by the absence of such inclusions when P9-1 was expressed without its carboxy-terminal arm. The octamers are vertically elongated cylinders resembling the structures formed by NSP2 of rotavirus, even though there are no significant similarities between the respective primary and secondary structures of the two proteins. Our results suggest that an octameric structure with an internal pore might be important for the functioning of the respective proteins in the events that occur in the viroplasm, which might include viral morphogenesis.  相似文献   

19.
MthK is a Ca2+-gated K+ channel from Methanobacterium autotrophicum. The crystal structure of the MthK channel in a Ca2+-bound open state was previously determined at 3.3 A and revealed an octameric gating ring composed of eight intracellular ligand-binding RCK (regulate the conductance of K+) domains. It was suggested that Ca2+ binding regulates the gating ring conformation, which in turn leads to the opening and closing of the channel. However, at 3.3 AA resolution, the molecular details of the structure are not well defined, and many of the conclusions drawn from that structure were hypothetical. Here we have presented high resolution structures of the MthK RCK domain with and without Ca2+ bound from three different crystals. These structures revealed a dimeric architecture of the RCK domain and allowed us to visualize the Ca2+ binding and protein-protein contacts at atomic detail. The dimerization of RCK domains is also conserved in other RCK-regulated K+ channels and transporters, suggesting that the RCK dimer serves as a basic unit in the gating ring assembly. A comparison of these dimer structures confirmed that the dimer interface is indeed flexible as suggested previously. However, the conformational change at the flexible interface is of an extent smaller than the previously hypothesized gating ring movement, and a reconstruction of these dimers into octamers by applying protein-protein contacts at the fixed interface did not generate enclosed gating rings. This indicated that there is a high probability that the previously defined fixed interface may not be fixed during channel gating. In addition to the structural studies, we have also carried out biochemical analyses and have shown that near physiological pH, isolated RCK domains form a stable octamer in solution, supporting the notion that the formation of octameric gating ring is a functionally relevant event in MthK gating. Additionally, our stability studies indicated that Ca2+ binding stabilizes the RCK domains in this octameric state.  相似文献   

20.
The combination of high-resolution tantalum/tungsten (Ta/W) shadowing at very low specimen temperature (-250 degrees C) under ultrahigh vacuum (less than 2 x 10(-9) mbar) with circular harmonic image averaging revealed details on the surface structure of mitochondrial creatine kinase (Mi-CK) molecules with a resolution less than 2.5 nm. Mi-CK octamers exhibit a cross-like surface depression dividing the square shaped projection of 10 x 10 nm into four equally sized subdomains, which correspond to the four dimers forming the octameric Mi-CK molecule. By a combination of positive staining (with uranyl acetate) and heavy metal shadowing, internal structures as well as the surface relief of Mi-CK were visualized at the same time at high resolution. Computational image analysis revealed only a single projection class of molecules, but the ability of Mi-CK to form linear filaments, as well as geometrical considerations concerning the formation of octamers by four equal, asymmetric dimers, suggest the existence of at least two distinct faces on the molecule. By image processing of Mi-CK filaments a side view of the octamer differing from the top-bottom projections of single molecules became evident showing a funnel-like access each form the top and bottom of the octamer connected by a central channel. The general structure of the Mi-CK octamer described here is relevant to the localization of the molecule at the inner-outer mitochondrial contact sites and to the function of Mi-CK as an "energy channeling" molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号