首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple locus sequence typing (MLST) was undertaken to extend the genetic characterization of 29 isolates of Bacillus cereus and Bacillus thuringiensis previously characterized in terms of presence/absence of sequences encoding virulence factors and via variable number tandem repeat (VNTR). Additional analysis involved polymerase chain reaction for the presence of sequences (be, cytK, inA, pag, lef, cya and cap), encoding putative virulence factors, not investigated in the earlier study. MLST analysis ascribed novel and unique sequence types to each of the isolates. A phylogenetic tree was constructed from a single sequence of 2,838 bp of concatenated loci sequences. The strains were not monophyletic by analysis of any specific housekeeping gene or virulence characteristic. No clear association in relation to source of isolation or to genotypic profile based on the presence or absence of putative virulence genes could be identified. Comparison of VNTR profiling with MLST data suggested a correlation between these two methods of genetic analysis. In common with the majority of previous studies, MLST was unable to provide clarification of the basis for pathogenicity among members of the B. cereus complex. Nevertheless, our application of MLST served to reinforce the notion that B. cereus and B. thuringiensis should be considered as the same species.  相似文献   

2.
The introduction of multilocus sequence typing (MLST) for strain characterization provided the first sequence-based approach for genotyping many fungi, leading to reproducible, reliable, and exchangeable data. A MLST scheme based on the analysis of six housekeeping genes was developed for genotyping Geotrichum candidum. The scheme was first developed using 18 isolates for which the complete sequences of the alanyl-tRNA synthetase (ALA1), pyruvate kinase (CDC19), acetyl-coA acetyltransferase (ERG10), glutaminyl-tRNA synthase (GLN4), phosphoglucoisomerase (PGI1), and phosphoglucomutase (PGM2) housekeeping genes were determined. Multiple sequence alignments of these genes were used to define a set of loci showing, as closely as possible, the same phylogenetic resolution level as complete gene sequences. This scheme was subsequently validated with 22 additional isolates from dairy and non-dairy sources. Overall, 58 polymorphic sites were indexed among 3,009 nucleotides analyzed. Depending on the loci, four to eight alleles were detected, generating 17 different sequence types, of which ten were represented by a single strain. MLST analysis suggested a predominantly clonal population for the 40?G. candidum isolates. Phylogenetic analysis of the concatenated sequences revealed a distantly related group of four isolates. Interestingly, this group diverged with respect to internal transcribed spacers 1 (ITS1), 5.8S, and ITS2 analysis. The reproducibility of the MLST approach was compared to random amplification of microsatellites by PCR (RAM-PCR), a gel profiling method previously proposed for G. candidum strain typing. Our results found MLST differentiation to be more efficient than RAM-PCR, and MLST also offered a non-ambiguous, unique language, permitting data exchange and evolutionary inference.  相似文献   

3.
Population biology of Haemophilus influenzae can be studied by multilocus sequence typing (MLST), and isolates are assigned sequence types (STs) based on nucleotide sequence variations in seven housekeeping genes, including fucK. However, the ST cannot be assigned if one of the housekeeping genes is absent or cannot be detected by the current protocol. Occasionally, strains of H. influenzae have been reported to lack the fucK gene. In this study, we examined the prevalence of this mutation among our collection of H. influenzae isolates. Of the 704 isolates studied, including 282 encapsulated and 422 nonencapsulated isolates, nine were not typeable by MLST owing to failure to detect the fucK gene. All nine fucK-negative isolates were nonencapsulated and belonged to various biotypes. DNA sequencing of the fucose operon region confirmed complete deletion of genes in the operon in seven of the nine isolates, while in the remaining two isolates, some of the genes were found intact or in parts. The significance of these findings is discussed.  相似文献   

4.
We investigated the genetic relationships between serotypeable pneumococci and nonserotypeable presumptive pneumococci using multilocus sequence typing (MLST) and partial sequencing of the pneumolysin gene (ply). Among 121 nonserotypeable presumptive pneumococci from Finland, we identified isolates of three classes: those with sequence types (STs) identical to those of serotypeable pneumococci, suggesting authentic pneumococci in which capsular expression had been downregulated or lost; isolates that clustered among serotypeable pneumococci on a tree based on the concatenated sequences of the MLST loci but which had STs that differed from those of serotypeable pneumococci in the MLST database; and a more diverse collection of isolates that did not cluster with serotypeable pneumococci. The latter isolates typically had sequences at all seven MLST loci that were 5 to 10% divergent from those of authentic pneumococci and also had distinct and divergent ply alleles. These isolates are proposed to be distinct from pneumococci but cannot be resolved from them by optochin susceptibility, bile solubility, or the presence of the ply gene. Complete resolution of pneumococci from the related but distinct population is problematic, as recombination between them was evident, and a few isolates of each population possessed alleles at one or occasionally more MLST loci from the other population. However, a tree based on the concatenated sequences of the MLST loci in most cases unambiguously distinguished whether a nonserotypeable isolate was or was not a pneumococcus, and the sequence of the ply gene fragment was found to be useful to resolve difficult cases.  相似文献   

5.
Multilocus sequence typing (MLST) is a widely used approach for differentiating microbial isolates presenting many advantages such as easy access through online databases and straightforward interpretation. For the Fusarium solani species complex (FSSC), three gene regions have been widely used to investigate phylogenetic relationships at the interspecific level (ITS-nuLSU, EF1a, RPB2) and a nomenclature system has been proposed for the different known haplotypes. More recently, a MLST scheme was proposed for this species complex based on the polymorphisms of five housekeeping genes (ACC, ICL, GDP, MDP, SOD). Here, we compare the phylogenetic resolution and sequence discriminatory powers of these two sets of loci on 50 epidemiologically unrelated FSSC strains. Although the widely used gene set offers better phylogenetic resolution, the newly developed gene set is slightly better at discriminating isolates using a MLST method. A consensus scheme of eight loci is proposed for typing FSSC strains combining the advantages of the two previous gene sets and offering the best typing efficiency.  相似文献   

6.
Multi-Locus Sequence Typing (MLST) of Streptococcus pneumoniae is based on the sequence of seven housekeeping gene fragments. The analysis of MLST allelic profiles by eBURST allows the grouping of genetically related strains into Clonal Complexes (CCs) including those genotypes with a common descent from a predicted ancestor. However, the increasing use of MLST to characterize S. pneumoniae strains has led to the identification of a large number of new Sequence Types (STs) causing the merger of formerly distinct lineages into larger CCs. An example of this is the CC156, displaying a high level of complexity and including strains with allelic profiles differing in all seven of the MLST loci, capsular type and the presence of the Pilus Islet-1 (PI-1). Detailed analysis of the CC156 indicates that the identification of new STs, such as ST4945, induced the merging of formerly distinct clonal complexes. In order to discriminate the strain diversity within CC156, a recently developed typing schema, 96-MLST, was used to analyse 66 strains representative of 41 different STs. Analysis of allelic profiles by hierarchical clustering and a minimum spanning tree identified ten genetically distinct evolutionary lineages. Similar results were obtained by phylogenetic analysis on the concatenated sequences with different methods. The identified lineages are homogenous in capsular type and PI-1 presence. ST4945 strains were unequivocally assigned to one of the lineages. In conclusion, the identification of new STs through an exhaustive analysis of pneumococcal strains from various laboratories has highlighted that potentially unrelated subgroups can be grouped into a single CC by eBURST. The analysis of additional loci, such as those included in the 96-MLST schema, will be necessary to accurately discriminate the clonal evolution of the pneumococcal population.  相似文献   

7.
【目的】2株炭疽芽胞杆菌(Bacillus anthracis)17003-14和17003-32的多位点序列分型(Multilocussequence typing,MLST)研究。【方法】选取B.anthracis基因组7个常见管家基因位点glpF、gmk、ilvD、pta、pur、pycA和tpi进行PCR扩增、测序,与MLST数据库中的等位基因序列进行比对,确定菌株的序列型(sequence type,ST)。【结果】B.anthracis 17003-14和17003-32的等位基因编号分别为113、31、1、43、1、53、7和113、31、1、43、1、53、37,比对结果显示这2株细菌的等位基因编号组合未见报道。【结论】17003-14和17003-32为新ST菌株,已被MLST数据库确认,注册号(pubMLST id)分别为id-1053和id-1054。  相似文献   

8.
The notoriously multi-resistant Staphylococcus haemolyticus is an emerging pathogen causing serious infections in immunocompromised patients. Defining the population structure is important to detect outbreaks and spread of antimicrobial resistant clones. Currently, the standard typing technique is pulsed-field gel electrophoresis (PFGE). In this study we describe novel molecular typing schemes for S. haemolyticus using multi locus sequence typing (MLST) and multi locus variable number of tandem repeats (VNTR) analysis. Seven housekeeping genes (MLST) and five VNTR loci (MLVF) were selected for the novel typing schemes. A panel of 45 human and veterinary S. haemolyticus isolates was investigated. The collection had diverse PFGE patterns (38 PFGE types) and was sampled over a 20 year-period from eight countries. MLST resolved 17 sequence types (Simpsons index of diversity [SID]=0.877) and MLVF resolved 14 repeat types (SID=0.831). We found a low sequence diversity. Phylogenetic analysis clustered the isolates in three (MLST) and one (MLVF) clonal complexes, respectively. Taken together, neither the MLST nor the MLVF scheme was suitable to resolve the population structure of this S. haemolyticus collection. Future MLVF and MLST schemes will benefit from addition of more variable core genome sequences identified by comparing different fully sequenced S. haemolyticus genomes.  相似文献   

9.

Background

Streptococcus dysgalactiae subspecies equisimilis (SDSE) is an emerging global pathogen that can colonize and infect humans. Although most SDSE isolates possess the Lancefield group G carbohydrate, a significant minority have the group C carbohydrate. Isolates are further sub-typed on the basis of differences within the emm gene. To gain a better understanding of their molecular epidemiology and evolutionary relationships, multilocus sequence typing (MLST) analysis was performed on SDSE isolates collected from Australia, Europe and North America.

Methodology/Principal Findings

The 178 SDSE isolates, representing 37 emm types, segregate into 80 distinct sequence types (STs) that form 17 clonal complexes (CCs). Eight STs recovered from all three continents account for >50% of the isolates. Thus, a small number of STs are highly prevalent and have a wide geographic distribution. Both ST and CC strongly correlate with group carbohydrate. In contrast, eleven STs were associated with >1 emm type, suggestive of recombinational replacements involving the emm gene; furthermore, 35% of the emm types are associated with genetically distant STs. Data also reveal a history of extensive inter- and intra-species recombination involving the housekeeping genes used for MLST. Sequence analysis of single locus variants identified through goeBURST indicates that genetic change mediated by recombination occurred ∼4.4 times more frequently than by point mutation.

Conclusions/Significance

A few genetic lineages with an intercontinental distribution dominate among SDSE causing infections in humans. The distinction between group C and G isolates reflects recent evolution, and no long-term genetic isolation between them was found. Lateral gene transfer and recombination involving housekeeping genes and the emm gene are important mechanisms driving genetic variability in the SDSE population.  相似文献   

10.
Nasal carriage of Staphylococcus aureus has long been hypothesized to be a major vector for the transmission of virulent strains throughout the community. To address this hypothesis, we have analyzed the relatedness between a cohort of nasal carriage strains and clinical isolates to understand better the genetic conformity therein. To assess the relatedness between nasal carriage and clinical isolates of S. aureus, a genetic association study was conducted using multilocus sequence typing (MLST) and typing of the hypervariable regions of clumping factor and fibronectin binding protein genes. At all loci analyzed, genetic associations between both nasal carriage and clinical isolates were observed. Computational analyses of MLST data indicate that nasal carriage and clinical isolates belong to the same genetic clusters (clades), despite differences in sequence type assignments. Genetic analyses of the hypervariable regions from the clumping factor and fibronectin binding protein genes revealed that not only do clinically relevant strains belong to identical genetic lineages as the nasal carriage isolates within our cohort, but they also exhibit 100% sequence similarity within these regions. The findings of this report indicate that strains of S. aureus being carried asymptomatically throughout the community via nasal colonization are genetically related to those responsible for high levels of morbidity and mortality.  相似文献   

11.
The present study proposed use of modified multilocus sequence typing (MLST) approach, for subspecies differentiation of Enterococcus faecalis isolates. We disgesed with SspI endonuclease product of amplification of three E. faecalis antigen-encoding genes (ace, encoding a collagen and laminin adhesin; efaA, encoding an endocarditis antigen; and salA, encoding a cell wall associated antigen) and one housekeeping gene (pyrC) of 32 E. faecalis isolates MLRA analysis of polymorphic regions of these four genes identified 23 distinct types 21.4 to 100% identity among the 32 isolates. Further studies are needed to evaluate the value of proposed method.  相似文献   

12.
天津地区气单胞菌分离株的鉴定与多位点序列分型   总被引:2,自引:0,他引:2  
[目的]研究气单胞菌菌株分类情况,并分析其致病性.[方法]采集环境样品和鱼类标本,分离并鉴定气单胞菌菌株,并运用多位点序列分型(Multilocus sequence typing,MLST)方法进行分类研究,利用PCR和测序方法分析毒力基因Aera、Hly、Aha1、GCAT和Nuc的分布.[结果]通过对分离菌株的16S rRNA基因进行分析,确认属于4种不同气单胞菌的7个分离株.发现所有菌株至少有1种毒力基因阳性,其中3株具有4种毒力基因.药物敏感实验显示,6株分离株对3种或3种以上抗菌素具有多重耐药性.最后,对看家基因gyrB、groL、gltA、metG、ppsA和recA进行分析,与MLST数据库中的等位基因序列比对,发现7株分离株均为新的不同的序列型(Sequence type,ST).[结论]气单胞菌具有较高的遗传多样性.  相似文献   

13.
The diversity of a collection of 21 bradyrhizobial isolates from Lima bean (Phaseolus lunatus L.) was assayed by molecular methods. Moderately high to high genetic diversity was revealed by multilocus enzyme electrophoresis (MLEE) analysis of seven enzyme loci and genomic fingerprints with ERIC and BOX primers. Two groups with differences in growth rate were found among the isolates and their differentiation as two divergent bradyrhizobial lineages was supported by PCR-RFLP of the rpoB gene and sequence analysis of the 16S rDNA and dnaK genes. Isolates with slow growth (SG) were identified as Bradyrhizobium yuanmingense, while extra-slow growing isolates (ESG) constitute a new lineage different from all described Bradyrhizobium species. Three distinct symbiotic genotypes were detected among Lima bean bradyrhizobia by PCR-RFLP and sequence analysis of the nifH and nodB genes. One genotype was found in the ESG lineage and two in B. yuanmingense. Another symbiotic genotype was detected in B. yuamingense isolated from Lespedeza plants. The identified bradyrhizobial lineages constitute sympatric species effectively nodulating Lima bean on the coast of Peru.  相似文献   

14.
The Gram-positive bacterium Propionibacterium acnes is a member of the normal human skin microbiota and is associated with various infections and clinical conditions. There is tentative evidence to suggest that certain lineages may be associated with disease and others with health. We recently described a multilocus sequence typing scheme (MLST) for P. acnes based on seven housekeeping genes (http://pubmlst.org/pacnes). We now describe an expanded eight gene version based on six housekeeping genes and two 'putative virulence' genes (eMLST) that provides improved high resolution typing (91eSTs from 285 isolates), and generates phylogenies congruent with those based on whole genome analysis. When compared with the nine gene MLST scheme developed at the University of Bath, UK, and utilised by researchers at Aarhus University, Denmark, the eMLST method offers greater resolution. Using the scheme, we examined 208 isolates from disparate clinical sources, and 77 isolates from healthy skin. Acne was predominately associated with type IA(1) clonal complexes CC1, CC3 and CC4; with eST1 and eST3 lineages being highly represented. In contrast, type IA(2) strains were recovered at a rate similar to type IB and II organisms. Ophthalmic infections were predominately associated with type IA(1) and IA(2) strains, while type IB and II were more frequently recovered from soft tissue and retrieved medical devices. Strains with rRNA mutations conferring resistance to antibiotics used in acne treatment were dominated by eST3, with some evidence for intercontinental spread. In contrast, despite its high association with acne, only a small number of resistant CC1 eSTs were identified. A number of eSTs were only recovered from healthy skin, particularly eSTs representing CC72 (type II) and CC77 (type III). Collectively our data lends support to the view that pathogenic versus truly commensal lineages of P. acnes may exist. This is likely to have important therapeutic and diagnostic implications.  相似文献   

15.
Pseudomonas syringae is a common foliar bacterium responsible for many important plant diseases. We studied the population structure and dynamics of the core genome of P. syringae via multilocus sequencing typing (MLST) of 60 strains, representing 21 pathovars and 2 nonpathogens, isolated from a variety of plant hosts. Seven housekeeping genes, dispersed around the P. syringae genome, were sequenced to obtain 400 to 500 nucleotides per gene. Forty unique sequence types were identified, with most strains falling into one of four major clades. Phylogenetic and maximum-likelihood analyses revealed a remarkable degree of congruence among the seven genes, indicating a common evolutionary history for the seven loci. MLST and population genetic analyses also found a very low level of recombination. Overall, mutation was found to be approximately four times more likely than recombination to change any single nucleotide. A skyline plot was used to study the demographic history of P. syringae. The species was found to have maintained a constant population size over time. Strains were also found to remain genetically homogeneous over many years, and when isolated from sites as widespread as the United States and Japan. An analysis of molecular variance found that host association explains only a small proportion of the total genetic variation in the sample. These analyses reveal that with respect to the core genome, P. syringae is a highly clonal and stable species that is endemic within plant populations, yet the genetic variation seen in these genes only weakly predicts host association.  相似文献   

16.

Background

Multilocus sequence typing (MLST) is a powerful and highly discriminatory method for analysing pathogen population structure and epidemiology. Trypanosoma cruzi, the protozoan agent of American trypanosomiasis (Chagas disease), has remarkable genetic and ecological diversity. A standardised MLST protocol that is suitable for assignment of T. cruzi isolates to genetic lineage and for higher resolution diversity studies has not been developed.

Methodology/Principal Findings

We have sequenced and diplotyped nine single copy housekeeping genes and assessed their value as part of a systematic MLST scheme for T. cruzi. A minimum panel of four MLST targets (Met-III, RB19, TcGPXII, and DHFR-TS) was shown to provide unambiguous assignment of isolates to the six known T. cruzi lineages (Discrete Typing Units, DTUs TcI-TcVI). In addition, we recommend six MLST targets (Met-II, Met-III, RB19, TcMPX, DHFR-TS, and TR) for more in depth diversity studies on the basis that diploid sequence typing (DST) with this expanded panel distinguished 38 out of 39 reference isolates. Phylogenetic analysis implies a subdivision between North and South American TcIV isolates. Single Nucleotide Polymorphism (SNP) data revealed high levels of heterozygosity among DTUs TcI, TcIII, TcIV and, for three targets, putative corresponding homozygous and heterozygous loci within DTUs TcI and TcIII. Furthermore, individual gene trees gave incongruent topologies at inter- and intra-DTU levels, inconsistent with a model of strict clonality.

Conclusions/Significance

We demonstrate the value of systematic MLST diplotyping for describing inter-DTU relationships and for higher resolution diversity studies of T. cruzi, including presence of recombination events. The high levels of heterozygosity will facilitate future population genetics analysis based on MLST haplotypes.  相似文献   

17.
Pseudomonas syringae is a common foliar bacterium responsible for many important plant diseases. We studied the population structure and dynamics of the core genome of P. syringae via multilocus sequencing typing (MLST) of 60 strains, representing 21 pathovars and 2 nonpathogens, isolated from a variety of plant hosts. Seven housekeeping genes, dispersed around the P. syringae genome, were sequenced to obtain 400 to 500 nucleotides per gene. Forty unique sequence types were identified, with most strains falling into one of four major clades. Phylogenetic and maximum-likelihood analyses revealed a remarkable degree of congruence among the seven genes, indicating a common evolutionary history for the seven loci. MLST and population genetic analyses also found a very low level of recombination. Overall, mutation was found to be approximately four times more likely than recombination to change any single nucleotide. A skyline plot was used to study the demographic history of P. syringae. The species was found to have maintained a constant population size over time. Strains were also found to remain genetically homogeneous over many years, and when isolated from sites as widespread as the United States and Japan. An analysis of molecular variance found that host association explains only a small proportion of the total genetic variation in the sample. These analyses reveal that with respect to the core genome, P. syringae is a highly clonal and stable species that is endemic within plant populations, yet the genetic variation seen in these genes only weakly predicts host association.  相似文献   

18.
Yersinia pseudotuberculosis is an enteric human pathogen but is widespread in the environment. Pathogenicity is determined by a number of virulence factors, including the virulence plasmid pYV, the high-pathogenicity island (HPI), and the Y. pseudotuberculosis-derived mitogen (YPM), a superantigen. The presence of the 3 virulence factors varies among Y. pseudotuberculosis isolates. We developed a multilocus sequence typing (MLST) scheme to address the population structure of Y. pseudotuberculosis and the evolution of its pathogenicity. The seven housekeeping genes selected for MLST were mdh, recA, sucA, fumC, aroC, pgi, and gyrB. An MLST analysis of 83 isolates of Y. pseudotuberculosis, representing 19 different serotypes and six different genetic groups, identified 61 sequence types (STs) and 12 clonal complexes. Out of 26 allelic changes that occurred in the 12 clonal complexes, 13 were mutational events while 13 were recombinational events, indicating that recombination and mutation contributed equally to the diversification of the clonal complexes. The isolates were separated into 2 distinctive clusters, A and B. Cluster A is the major cluster, with 53 STs (including Y. pestis strains), and is distributed worldwide, while cluster B is restricted to the Far East. The YPM gene is widely distributed on the phylogenetic tree, with ypmA in cluster A and ypmB in cluster B. pYV is present in cluster A only but is sporadically absent in some cluster A isolates. In contrast, an HPI is present only in a limited number of lineages and must be gained by lateral transfer. Three STs carry all 3 virulence factors and can be regarded as high-pathogenicity clones. Isolates from the same ST may not carry all 3 virulence factors, indicating frequent gain or loss of these factors. The differences in pathogenicity among Y. pseudotuberculosis strains are likely due to the variable presence and instability of the virulence factors.  相似文献   

19.
To probe the evolution and phylogeny of Listeria monocytogenes from defined host species and environments, L. monocytogenes isolates from human (n = 60) and animal (n = 30) listeriosis cases and food samples (n = 30) were randomly selected from a larger collection of isolates (n = 354) obtained in New York State between 1999 and 2001. Partial sequencing of four housekeeping genes (gap, prs, purM, and ribC), one stress response gene (sigB), and two virulence genes (actA and inlA) revealed between 11 (gap) and 33 (inlA) allelic types as well as 52 sequence types (unique combination of allelic types). actA, ribC, and purM demonstrated the highest levels of nucleotide diversity (pi > 0.05). actA and inlA as well as prs and the hypervariable housekeeping genes ribC and purM showed evidence of horizontal gene transfer and recombination. actA and inlA also showed evidence of positive selection at specific amino acid sites. Maximum likelihood phylogenies for all seven genes confirmed that L. monocytogenes contains two deeply separated evolutionary lineages. Lineage I was found to be highly clonal, while lineage II showed greater diversity and evidence of horizontal gene transfer. Allelic types were exclusive to lineages, except for a single gap allele, and nucleotide distance within lineages was much lower than that between lineages, suggesting that genetic exchange between lineages is rare. Our data show that (i) L. monocytogenes is a highly diverse species with at least two distinct phylogenetic lineages differing in their evolutionary history and population structure and (ii) horizontal gene transfer as well as positive selection contributed to the evolution of L. monocytogenes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号