首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The potential for the use of woody biomass in poly-β-hydroxyalkanoate (PHA) biosynthesis is reviewed. Based on previously cited work indicating incorporation of xylose or levulinic acid (LA) into PHAs by several bacterial strains, we have initiated a study for exploring bioconversion of forest resources to technically relevant copolymers. Initially, PHA was synthesized in shake-flask cultures of Burkholderia cepacia grown on 2.2% (w/v) xylose, periodically amended with varying concentrations of levulinic acid [0.07–0.67% (w/v)]. Yields of poly(β-hydroxybutyrate-co-β-hydroxyvalerate) [P(3HB-co-3HV)] from 1.3 to 4.2 g/l were obtained and could be modulated to contain from 1.0 to 61 mol% 3-hydroxyvalerate (3HV), as determined by 1H and 13C NMR analyses. No evidence for either the 3HB or 4HV monomers was found. Characterization of these P(3HB-co-3HV) samples, which ranged in molecular mass (viscometric, M v) from 511–919 kDa, by differential scanning calorimetry and thermogravimetric analyses (TGA) provided data which were in agreement for previously reported P(3HB-co-3HV) copolymers. For these samples, it was noted that melting temperature (T m) and glass transition temperature (T g) decreased as a function of 3HVcontent, with T m demonstrating a pseudoeutectic profile as a function of mol% 3HV content. In order to extend these findings to the use of hemicellulosic process streams as an inexpensive carbon source, a detoxification procedure involving sequential overliming and activated charcoal treatments was developed. Two such detoxified process hydrolysates (NREL CF: aspen and CESF: maple) were each fermented with appropriate LA supplementation. For the NREL CF hydrolysate-based cultures amended with 0.25–0.5% LA, P(3HB-co-3HV) yields, PHA contents (PHA as percent of dry biomass), and mol% 3HV compositions of 2.0 g/l, 40% (w/w), and 16–52 mol% were obtained, respectively. Similarly, the CESF hydrolysate-based shake-flask cultures yielded 1.6 g/l PHA, 39% (w/w) PHA contents, and 4–67 mol% 3HV compositions. These data are comparable to copolymer yields and cellular contents reported for hexose plus levulinic acid-based shake-flask cultures, as reported using Alcaligenes eutrophus and Pseudomonas putida. However, our findings presage a conceivable alternative, forestry-based biorefinery approach for the production of value-added biodegradable PHA polymers. Specifically, this review describes the current and potential utilization of lignocellulosic process streams as platform precursors to PHA polymers including hemicellulosic hydrolysates, residual cellulose-derived levulinic acid, tall oil fatty acids (Kraft pulping residual), and lignin-derived aromatics.  相似文献   

2.
Several important properties of poly(3-hydroxybutyric-co-3-hydroxyvaleric acids) (P(3HB-co-3HV) depend mainly on the HV unit fraction of the copolymer. Sequential and simultaneous feeding of glucose and valerate were employed to produce P(3HB-co-3HV) in a fed-batch culture of Ralstonia eutropha, and the effects of feeding models on the cell growth, 3HV unit fraction, and copolymer productivity have been investigated. The sequential feeding of glucose and then valerate resulted in a cell density of 110.2 g/L, 3HV unit fraction of 62.7 mol %, and copolymer productivity of 0.56 g/(L.h), while the latter simultaneous feeding strategy never achieved the 3HV fraction of P(3HB-co-3HV) higher than 50%. A nuclear magnetic resonance study confirmed that the production of random copolymer P(3HB-co-3HV) with high 3HV unit fraction was possible even with sequential feeding of glucose and valerate.  相似文献   

3.
In this study, the enhancement of photosynthetic PHA production was achieved using the highly active mutants of PHA synthase created by the in vitro evolutionally techniques. The wild-type and mutated PHA synthase genes from Aeromonas caviae were introduced into Arabidopsis thaliana together with the NADPH-dependent acetoacetyl-CoA reductase gene from Ralstonia eutropha. Expression of the highly active mutated PHA synthase genes, N149S and D171G, led to an 8-10-fold increase in PHA content in the T1 transgenic Arabidopsis, compared to plants harboring the wild-type PHA synthase gene. In homozygous T2 progenies, PHA content was further increased up to 6.1 mg/g cell dry weight. GC/MS analysis of the purified PHA from the transformants revealed that these PHAs were poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] copolymers consisting of 0.2-0.8 mol % 3HV. The monomer composition of the P(3HB-co-3HV) copolymers synthesized by the wild-type and mutated PHA synthases reflected the substrate specificities observed in Escherichia coli. These results indicate that in vitro evolved PHA synthases can enhance the productivity of PHA and regulate the monomer composition in transgenic plants.  相似文献   

4.
A novel copolymer that consisted of 3-hydroxyvalerate and 4-hydroxybutyrate, P(3HV-co-4HB), was synthesized in Hydrogenophaga pseudoflava by growing it in media containing gamma-valerolactone and gamma-butyrolactone as a carbon source. The monomer ratio in the copolymer was changed by altering the feed ratio of the two lactones. The cultivation technique was composed of three steps: the first-step for high cell production in Luria-Bertani medium, the second-step for intracellular degrading removal of poly(3-hydroxybutyrate) (P(3HB)), which was formed in the first step, by culturing the cells in carbon-source-free medium, and the final step for accumulation of P(3HV-co-4HB) in a mixed lactone medium. All the P(3HV-co-4HB) copolymers contained less than 1 mol % of 3HB unit. These copolymers were characterized by NMR spectroscopy, differential scanning calorimetry, wide-angle X-ray diffraction, and first-order kinetic analysis of intracellular degradation. The copolymer with an approximately equal ratio of the comonomers was found amorphous. The NMR microstructural analysis showed that the copolymers contained appreciable amounts of 3HV-rich or 4HB-rich chains. The (13)C NMR splitting patterns associated with the four carbons in the 4HB unit of P(3HV-co-4HB) bear close resemblance to those observed in the 4HB unit of P(3HB-co-4HB). The signals arising from the carbons in the 3HV unit of P(3HV-co-4HB) split in a manner similar to those in the 3HB unit of P(3HB-co-4HB). Thus the sequences were assigned by comparing the NMR splittings for P(3HV-co-4HB) with those for P(3HB-co-4HB) and P(3HB-co-3HV). The sequence assignment was further checked by comparing the signal intensities before and after degradation of the copolymers. This was considered reasonable because the H. pseudoflava intracellular PHA depolymerase is more specific to the 3HV unit than to the 4HB unit, which was also confirmed by the higher degradation rate constant for the 3HV unit in the first-order kinetic analysis.  相似文献   

5.
对Alcaligenes eutrophus进行高密度培养,研究表明在发酵过程中进行有效控制,可以较大幅度地提高3-羟基丁酸和3-羟基戊酸共聚物[P(3HB-co-3HV)]的生产强度。实验中选择使用限氮的方法积累P(3HB-co-3HV),分别采用丙酸和戊酸为3HV前体,对摇瓶种子生长状态,停氮时机对菌体生产P(3HB-co-3HV)的影响以及补酸(3HV前体)策略进行了研究,在6.6L罐中,以葡萄糖为碳源,以丙酸为3HV前体培养50h,细胞干重,PHA产量,PHA含量分别达到149.9g/L,149.9g/L,83.3%(其中3HV组分占PHA的12.4mol%),生产强度达到2.50(g.h^-1.L^-1);以戊酸为3HV前体培养45h,细胞干重,PHA产量,PHA含量分别达到160.2g/L,119.0g/L,74.2%(其中3HV组分占PHA的17.7mol%)生产强度达到2.64(g.h^-1.L^-1)。  相似文献   

6.
AtoSC two-component system (TCS) upregulates the high-molecular weight poly-(R)-3-hydroxybutyrate (PHB) biosynthesis in recombinant phaCAB + Escherichia coli strains, with the Cupriavidus necator phaCAB operon. We report here that AtoSC upregulates also the copolymer P(3HB-co-3HV) biosynthesis in phaCAB + E. coli. Acetoacetate-induced AtoSC maximized P(3HB-co-3HV) to 1.27 g/l with a 3HV fraction of 25.5 % wt. and biopolymer content of 75 % w/w in a time-dependent process. The atoSC locus deletion in the ?atoSC strains resulted in 4.5-fold P(3HB-co-3HV) reduction, while the 3HV fraction of the copolymer was restricted to only 6.4 % wt. The ?atoSC phenotype was restored by extrachromosomal introduction of AtoSC. Deletion of the atoDAEB operon triggered a significant decrease in P(3HB-co-3HV) synthesis and 3HV content in ?atoDAEB strains. However, the acetoacetate-induced AtoSC in those strains increased P(3HB-co-3HV) to 0.8 g/l with 21 % 3HV, while AtoC or AtoS expression increased P(3HB-co-3HV) synthesis 3.6- or 2.4-fold, respectively, upon acetoacetate. Complementation of the ?atoDAEB phenotype was achieved by the extrachromosomal introduction of the atoSCDAEB regulon. Individual inhibition of β-oxidation and mainly fatty acid biosynthesis pathways by acrylic acid or cerulenin, respectively, reduced P(3HB-co-3HV) biosynthesis. Under those conditions, introduction of atoSC or atoSCDAEB regulon was capable of upregulating biopolymer accumulation. Concurrent inhibition of both the fatty acid metabolic pathways eliminated P(3HB-co-3HV) production. P(3HB-co-3HV) upregulation in phaCAB + E. coli by AtoSC signaling through atoDAEB operon and its participation in the fatty acids metabolism interplay provide additional perceptions of AtoSC critical involvement in E. coli regulatory processes towards biotechnologically improved polyhydroxyalkanoates biosynthesis.  相似文献   

7.
Fermentation strategies for production of high concentrations of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] with different 3-hydroxyvalerate (3HV) fractions by recombinant Escherichia coli harboring the Alcaligenes latus polyhydroxyalkanoate biosynthesis genes were developed. Fed-batch cultures of recombinant E. coli with the pH-stat feeding strategy facilitated production of high concentrations and high contents of P(3HB-co-3HV) in a chemically defined medium. When a feeding solution was added in order to increase the glucose and propionic acid concentrations to 20 g/liter and 20 mM, respectively, after each feeding, a cell dry weight of 120.3 g/liter and a relatively low P(3HB-co-3HV) content, 42.5 wt%, were obtained. Accumulation of a high residual concentration of propionic acid in the medium was the reason for the low P(3HB-co-3HV) content. An acetic acid induction strategy was used to stimulate the uptake and utilization of propionic acid. When a fed-batch culture and this strategy were used, we obtained a cell concentration, a P(3HB-co-3HV) concentration, a P(3HB-co-3HV) content, and a 3HV fraction of 141.9 g/liter, 88.1 g/liter, 62.1 wt%, and 15.3 mol%, respectively. When an improved nutrient feeding strategy, acetic acid induction, and oleic acid supplementation were used, we obtained a cell concentration, a P(3HB-co-3HV) concentration, a P(3HB-co-3HV) content, and a 3HV fraction of 203.1 g/liter, 158.8 g/liter, 78.2 wt%, and 10.6 mol%, respectively; this resulted in a high level of productivity, 2.88 g of P(3HB-co-3HV)/liter-h.  相似文献   

8.
Pseudomonas sp EL-2 was cultivated to produce poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] from a structurally unrelated carbon source, glucose, by a fed-batch culture technique. Variation of the carbon to nitrogen (C/N) ratio of the medium produced optimal P(3HB-co-3HV) production at a C/N ratio of 95. Production of P(3HB-co-3HV) was favored by a dissolved oxygen tension of 40%. A maximum biomass concentration of 38 g L−1 containing 53% P(3HB-co-3HV) was achieved after 45 h of cultivation. This corresponds to a volumetric productivity of 0.84 g L−1 h−1. The copolymer contained 7.5 mol% 3-hydroxyvalerate. Journal of Industrial Microbiology & Biotechnology (2000) 24, 36–40. Received 28 January 1999/ Accepted in revised form 11 September 1999  相似文献   

9.
The ability of Azotobacter chroococcum strain 7B, producer of poly(3-hydroxybutyrate) (PHB), to synthesize its copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3HV)) was studied. It was demonstrated, for the first time, that A. chroococcum strain 7B was able to synthesize P(3HB-co-3HV) with various molar rates of HV in the polymer chain when cultivated on medium with sucrose and carboxylic acids as precursors of HV elements in the PHB chain, namely, valeric (13.1–21.6 mol %), propanoic (3.1 mol %), and hexanoic (2.1 mol %) acids. Qualitative and functional differences between PHB and P(3HB-co-3HV) were demonstrated by example of the release kinetic of methyl red from films made of synthesized polymers. Maximal HV incorporation into the polymer chain (28.8mol %) was recorded when the nutrient medium was supplemented with 0.1% peptone on the background of 20 mM valerate. These results suggest that that the studied strain can be regarded as a potential producer of not only PHB but also P(3HB-co-3HV).  相似文献   

10.
Fermentation strategies for production of high concentrations of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] with different 3-hydroxyvalerate (3HV) fractions by recombinant Escherichia coli harboring the Alcaligenes latus polyhydroxyalkanoate biosynthesis genes were developed. Fed-batch cultures of recombinant E. coli with the pH-stat feeding strategy facilitated production of high concentrations and high contents of P(3HB-co-3HV) in a chemically defined medium. When a feeding solution was added in order to increase the glucose and propionic acid concentrations to 20 g/liter and 20 mM, respectively, after each feeding, a cell dry weight of 120.3 g/liter and a relatively low P(3HB-co-3HV) content, 42.5 wt%, were obtained. Accumulation of a high residual concentration of propionic acid in the medium was the reason for the low P(3HB-co-3HV) content. An acetic acid induction strategy was used to stimulate the uptake and utilization of propionic acid. When a fed-batch culture and this strategy were used, we obtained a cell concentration, a P(3HB-co-3HV) concentration, a P(3HB-co-3HV) content, and a 3HV fraction of 141.9 g/liter, 88.1 g/liter, 62.1 wt%, and 15.3 mol%, respectively. When an improved nutrient feeding strategy, acetic acid induction, and oleic acid supplementation were used, we obtained a cell concentration, a P(3HB-co-3HV) concentration, a P(3HB-co-3HV) content, and a 3HV fraction of 203.1 g/liter, 158.8 g/liter, 78.2 wt%, and 10.6 mol%, respectively; this resulted in a high level of productivity, 2.88 g of P(3HB-co-3HV)/liter-h.  相似文献   

11.
In support of programs to identify polyhydroxyalkanoates with improved materials properties, we report on our efforts to characterize the mechanical and thermal properties of copolyesters of 3-hydroxybutyrate (3HB) and 3-hydroxyhexanoate (3HHx). The copolyesters, having molar fraction of 3HHx ranging from 2.5 to 35 mol % and average molecular weights ranging from 1.15 x 10(5) to 6.65 x 10(5), were produced by fermentation using Aeromonas hydrophila and a recombinant strain of Pseudomonas putida GPp104. The polymers were chloroform extracted and characterized by solution-state and solid-state nuclear magnetic resonance (NMR) spectroscopy and a variety of mechanical and thermal tests. Solution-state (1)H NMR data were used to determine polymer composition-of-matter, while solution-state (13)C NMR data provided polymer-sequence information. Solvent fractionation and NMR spectroscopic characterization of these polymers showed that polymers containing up to 9.5 mol % 3HHx had a Bernoullian compositional distribution. By contrast, polymers containing more than 9.5 mol % 3HHx had a bimodal polymer composition. Solvent fractionation of these 3HHx-rich polyesters produced two polymer fractions, each of which was again consistent with Bernoullian polymerization statistics. Solid-state NMR relaxation experiments provided insight into aging in poly(3HB-co-3HHx) copolymers, demonstrating increased polymer-chain motion with increasing 3HHx content. The elongation-to-break ratio in the polyesters increased with increasing molar fraction of 3HHx monomers. Aging properties of the poly(3HB-co-3HHx) copolymers were very similar to copolymers of 3HB and 3-hydroxyvalerate (3HV). However, poly(3HB-co-3HHx) exhibited increased activation energy to thermal degradation with increasing 3HHx content.  相似文献   

12.
Manna A  Paul AK 《Biodegradation》2000,11(5):323-329
Poly(3-hydroxybutyrate) [P(3HB)] test-pieces prepared from the polymer produced by Azotobacter chroococcum were degraded in natural environments like soil, water, compost and sewage sludge incubated under laboratory conditions. Degradation in terms of % weight loss of the polymer was maximum (45%) in sewage sludge after 200 days of incubation at 30°C. The P(3HB)-degrading bacterial cultures (36) isolated from degraded test-pieces showed different degrees of degradation in polymer overlayer method. The extent of P(3HB) degradation increases up to 12 days of incubation and was maximum at 30°C for majority of the cultures. For most efficient cultures the optimum concentration of P(3HB) for degradation was 0.3% (w/v). Supplementation of soluble carbon sources like glucose, fructose and arabinose reduced the degradation while it was almost unaffected with lactose. Though the cultures degraded P(3HB) significantly, they were comparatively less efficient in utilizing copolymer of 3-hydroxybutyrate and 3-hydroxyvalerate [P(3HB-co-3HV)].  相似文献   

13.
Lamellar thickening behavior of microbial polyesters, poly(3-hydroxybutyrate) [P(3HB)], poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] annealed at various temperatures was investigated to make sure of the occurrence of cocrystallization of both components. All the copolymers showed steep increases in melting points accompanied by partial melting as the annealing temperature increased up to just below the melting points. In contrast, long periods of P(3HB-co-7mol% 3HV) increased to twice, similar to those of P(3HB), with increasing annealing temperature up to just below the melting point, while long periods of P(3HB-co-7mol% 4HB) and P(3HB-co-92mol% 3HV) only increased up to one and a half times. Lattice indices of unit cell of the former crystal were increased slightly, while those of the latter crystal remained unchanged. These results imply that the P(3HB) crystal can occlude the 3HV component to some extent, but hardly includes the 4HB component, and P(3HV) crystal also excludes the 3HB component.  相似文献   

14.
The comonomer-unit compositional distributions have been investigated for bacterial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HH)] samples with 3HH unit content of 13.8, 18.0, 22.0, and 54.0 mol %. They were comonomer compositionally fractionated using chloroform/n-heptane mixed solvent at ambient temperature. The fractionation of P(3HB-co-18.0 mol %3HH) and P(3HB-co-22.0 mol % 3HH), which could not be carried out effectively at room temperature, were refractionated at 70 degrees C in the mixed solvent. Fractions with different 3HH unit content in a wide range (from 4.4 to 80.7 mol %) were obtained. By use of these fractions with narrow compositional distribution, the comonomer composition dependence of thermal properties was investigated by differential scanning calorimetry. The melting point (T(m)) and heat of fusion (DeltaH) decreased as the 3HH unit content increased in the range of low 3HH content (<40 mol %), while they increased as the 3HH unit content increased in the high 3HH content range (>70 mol %). The minimum T(m) and DeltaH values were found to exist at 3HH unit content of about 60 mol %. The glass transition temperature (T(g)) decreased linearly with the increase of 3HH unit content. The values of T(m), DeltaH, and T(g) of P(3HB-co-3HH)s were compared with those of poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(3-hydroxybutyrate-co-3-hydroxypropionate), and poly(3-hydroxybutyrate-co-4-hydroxybutyrate), and the effects of comonomer types on the thermal properties were revealed.  相似文献   

15.
The combination of plant oils and 3-hydroxyvalerate (3HV) precursors were evaluated for the biosynthesis of polyhydroxyalkanoate (PHA) copolymers containing 3HV monomers by Cupriavidus necator H16. Among various mixtures of plant oils and 3HV-precursors, the mixture of palm kernel oil and sodium propionate was suitable for the biosynthesis of high concentration of PHA (6.8gL(-1)) containing 7mol% of 3HV. The 3HV monomer composition can be regulated in the range of 0-23mol% by changing culture parameters such as the initial pH, and the nitrogen source and its concentration. PHA copolymers with high weight-average molecular weights (Mw) ranging from 1,400,000 to 3,100,000Da were successfully produced from mixtures of plant oils and 3HV-precursors. The mixture of plant oils and sodium propionate resulted in PHA copolymers with higher M(w) compared to the mixture of plant oils and sodium valerate. DSC analysis on the PHA containing 3HV monomers showed the presence of two distinct melting temperature (Tm), which indicated that the PHA synthesized might be a blend of P(3HB) and P(3HB-co-3HV). Sodium propionate appears to be the better precursor of 3HV than sodium valerate.  相似文献   

16.
Poly(3-hydroxybutyrate-co-38 mol%-3-hydroxyvalerate) [P(3HB-co-38mol%-3HV)] was produced by Cupriavidus sp. USMAA2-4 in the presence of oleic acid and 1-pentanol. Due to enormous production of empty fruit bunch (EFB) in the oil palm plantation and high production cost of P(3HB-co-3HV), oil palm EFB fibers were used for biocomposites preparation. In this study, maleic anhydride (MA) and benzoyl peroxide (DBPO) were used to improve the miscibility between P(3HB-co-3HV) and EFB fibers. Introduction of MA into P(3HB-co-3HV) backbone reduced the molecular weight and improved the thermal stability of P(3HB-co-3HV). Thermal stability of P(3HB-co-3HV)/EFB composites was shown to be comparable to that of commercial packaging product. Composites with 35% EFB fibers content have the highest tensile strength compared to 30% and 40%. P(3HB-co-3HV)/EFB blends showed less chemicals leached compared to commercial packaging.  相似文献   

17.
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate), poly(3HB-co-3HV), copolyesters with a variety of 3HV contents (ranging from 17 to 60 mol%) were produced by Alcaligenes sp. MT-16 grown on a medium containing glucose and levulinic acid in various ratios, and the effects of hydrophilicity and crystallinity on the degradability of the copolyesters were evaluated. Measurements of thermo-mechanical properties and Fourier-transform infrared spectroscopy in the attenuated total reflectance revealed that the hydrophilicity and crystallinity of poly(3HB-co-3HV) copolyesters decreased as 3HV content in the copolyester increased. When the prepared copolyester film samples were non-enzymatically hydrolysed in 0.01 N NaOH solution, the weights of all samples were found to have undergone no changes over a period of 20 weeks. In contrast, the copolyester film samples were degraded by the action of extracellular polyhydroxybutyrate depolymerase from Emericellopsis minima W2. The overall rate of weight loss was higher in the films containing higher amounts of 3HV, suggesting that the enzymatic degradation of the copolyester is more dependent on the crystallinity of the copolyester than on its hydrophilicity. Our results suggest that the degradability characteristics of poly(3HB-co-3HV) copolyesters, as well as their thermo-mechanical properties, are greatly influenced by the 3HV content in the copolyesters.  相似文献   

18.
The effects of agitation and aeration rates on copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] production by Azohydromonas lata MTCC 2311 using cane molasses supplemented with propionic acid in a bioreactor were investigated. The experiments were conducted in a three-level factorial design by varying the impeller (150-500 rev min(-1)) and aeration (0.5-1.5 vvm) rates. Further, the data were fitted to mathematical models [quadratic polynomial equation and artificial neural network (ANN)] and process variables were optimized by genetic algorithm-coupled models. ANN and hybrid ANN-GA were found superior for modeling and optimization of process variables, respectively. The maximum copolymer concentration of 7.45 g l(-1) with 21.50 mol% of 3HV was predicted at process variables: agitation speed, 287 rev min(-1); and aeration rate, 0.85 vvm, which upon validation gave 7.20 g l(-1) of P(3HB-co-3HV) with 21 mol% of 3HV with the prediction error (%) of 3.38 and 2.32, respectively. Agitation speed established a relative high importance of 72.19% than of aeration rate (27.80%) for copolymer accumulation. The volumetric gas-liquid mass transfer coefficient (k (L) a) was strongly affected by agitation and aeration rates. The highest P(3HB-co-3HV) productivity of 0.163 g l(-1) h(-1) was achieved at 0.17 s(-1) of k (L) a value. During the early phase of copolymer production process, 3HB monomers were accumulated, which were shifted to 3HV units (9-21%) during the cultivation period of 24-42 h. The enhancement of 7.5 and 34% were reported for P(3HB-co-3HV) production and 3HV content, respectively, by hybrid ANN-GA paradigm, which revealed the significant utilization of cane molasses for improved copolymer production.  相似文献   

19.
Summary A Pseudomonas sp. EL-2 strain capable of synthesizing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] was isolated from activated sludge. For simulation of P(3HB-co-3HV) production in the cells, deficiency of nutrients such as NH4 +, SO4 2- and Mg2+ was crucial and the maximum content of P(3HB-co-3HV) could reach 46% on NH4 +-deficient medium. This organism synthesized P(3HB-co-3HV) with 3HV monomer in the range from 1.9 to 49.3 mol% from unrelated single carbon sources such as glucose, fructose, propionate, or sorbitol. P(3HB-co-3HV)s containing a higher fraction of 3HV were produced by adding propionic acid to glucose medium.  相似文献   

20.
Summary Methylobacterium sp. KCTC 0048 isolated from soil, could synthesize a variety of copolyesters when secondary carbon substrates were added to nitrogen-limited cultures containing methanol as a major carbon and energy source. The copolyester of 3-hydroxy-butyrate and 3-hydroxyvalerate, P(3HB-co-3HV) accumulated when valeric acid, pentanol or heptanoic acid was added to the nitrogen-limited medium containing methanol. The copolyester of 3-hydroxybutyrate and 4-hydroxybutyrate, P(3HB-co-4HB) was synthesized from 4-hydroxybutyrate, 1,4-butanediol, or -butyrolactone, and the copolyester of 3-hydroxybutyrate and 3-hydroxypropionate (P(3HB-co-3HP)), from 3-hydroxypropionate as the secondary carbon substrates, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号