首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dephosphorylation kinetics of acid-stable phosphointermediates of (Na+ + K+)-ATPase from ox brain, ox kidney and pig kidney was studied at 0 degree C. Experiments performed on brain enzyme phosphorylated at 0 degree C in the presence of 20-600 mM Na+, 1 mM Mg2+ and 25 microM [gamma-32P]ATP show that irrespectively of the EP-pool composition, which is determined by Na+ concentration, all phosphoenzyme is either ADP- or K+-sensitive. After phosphorylation of kidney enzymes at 0 degree C with 1 mM Mg2+, 25 microM [gamma-32P]ATP and 150-1000 mM Na+ the amounts of ADP- and K+-sensitive phosphoenzymes were determined by addition of 1 mM ATP + 2.5 mM ADP or 1 mM ATP + 20 mM K+. Similarly to the previously reported results on brain enzyme, both types of dephosphorylation curves have a fast and a slow phase, so that also for kidney enzymes a slow decay of a part of the phosphoenzyme, up to 80% at 1000 mM Na+, after addition of 1 mM ATP + 20 mM K+ is observed. The results obtained with the kidney enzymes seem therefore to reinforce previous doubts about the role played by E1 approximately P(Na3) as intermediate of (Na+ + K+)-ATPase activity. Furthermore, for both kidney enzymes the sum of ADP- and K+-sensitive phosphoenzymes is greater than E tot. In experiments on brain enzyme an estimate of dissociation rate constant for the enzyme-ATP complex, k-1, is obtained. k-1 varies between 1 and 4 s-1 and seems to depend on the ligands present during formation of the complex. The highest values are found for enzyme-ATP complex formed in the presence of Na+ or Tris+. The results confirm the validity of the three-pool model in describing dephosphorylation kinetics of phosphointermediates of Na+-ATPase activity.  相似文献   

2.
31P NMR studies were undertaken to determine how potassium ion increases the cofactor affinity of Escherichia coli D-serine dehydratase, a model pyridoxal 5'-phosphate requiring enzyme that converts the growth inhibitor D-serine to pyruvate and ammonia. Potassium ion was shown to promote the appearance of a second upfield shifted cofactor 31P resonance at 4.0 ppm (pH 7.8, 25 degrees C), that increased in area at the expense of the resonance at 4.4 ppm observed in the absence of K+. Na+ antagonized the K+ promoted appearance of the second resonance. These observations suggest that K+ and Na+ stabilize conformational states that differ with respect to O-P-O bond angle, conformation, and/or hydrogen bonding of the phosphate group. An analysis of the dependence of the relative intensities of the two resonances on the K+ concentration yielded a value of ca. 10 mM for the equilibrium constant for dissociation of K+ from D-serine dehydratase. The chemical shift difference between the two resonances indicated that the K+-stabilized and Na+-stabilized forms of the enzyme interconvert at a frequency less than 16 s-1 at pH 7.8, 25 degrees C.  相似文献   

3.
Sodium and potassium ion-transport adenosine triphosphatase from dog kidney was incubated with 0.4-2 mM Ca2+ at 23 degrees C for more than 2 min in the absence of monovalent inorganic cations, cooled to 0 degrees C, and phosphorylated from 1 mM Pi with 2.4 mM MgCl2. The resultant phosphoenzyme resembled that obtained by incubating the enzyme with K+ in place of Ca2+ in six respects. It was concluded that Ca2+ can occupy the monovalent cation-binding center for K+. The rate constant for release of Ca2+ from the dephosphoenzyme at 0 degrees C was 0.17 s-1. The rate of release from the phosphoenzyme was at least 7-fold slower. Phosphorylation stabilized the binding of Ca2+ to the enzyme in contrast to its destabilization of the corresponding K X enzyme complex. K-sensitive phosphoenzyme did not respond to free Ca2+. Thus Ca2+ was not easily accepted by nor released from the phosphoenzyme and would not be an effective substrate for transport. A selective barrier against Ca2+ between the monovalent cation binding center and the extracellular solution is proposed. Release of calcium from the dephosphoenzyme yielded a conformation that was not phosphorylated from Pi. The enzyme changed the conformation of its center for phosphorylation before or at the same time that it changed the conformation of its center for ion transport.  相似文献   

4.
7F0----5D0 excitation spectroscopy of Eu3+ has been used to study the catalytic Ca2+-binding site of pancreatic phospholipases A2. Eu3+ binds competitively with Ca2+ to the enzyme with retention of about 5% of the activity found with Ca2+. The dissociation constants for the Eu3+-enzyme complexes of bovine phospholipase A2 and porcine isophospholipase A2 are 0.22 mM and 0.16 mM, respectively. Results obtained with the porcine phospholipase A2 at neutral pH indicate aggregation of this enzyme at protein concentrations above 0.18 mM. The Eu3+ bound at the catalytic site of pancreatic phospholipase A2 is coordinated to four or five water molecules, which, in conjunction with binding constant data, suggests the involvement of two or three protein ligands. Addition of a monomeric substrate analogue to the enzyme-Eu3+ complex results in the loss of an additional water molecule from the first coordination sphere of the bound Eu3+. This result suggests an interaction between the negative charge of the polar head group of the substrate analogue and the Eu3+. Binding of the enzyme-Eu3+ complex to micelles results in a nearly complete dehydration of the Eu3+ bound to the catalytic center. In the phospholipase A2-Eu3+-micelle complex, only one H2O molecule is coordinated to Eu3+. This dehydration at the active site of phospholipase A2 in the protein-lipid complex can be an important reason for the enhanced activity of this enzyme at lipid-water interfaces.  相似文献   

5.
Adrenal cortex mitochondria prepared by a standard method do not exhibit malic enzyme activity. Addition of physiological concentrations of Ca2+ and Mg2+ enables these mitochondria to reduce added NADP+ by malate to form free NADPH. Half-maximum activation of the mitochondrial malic enzyme requires 0.3 mM Ca2+ and 1 mM Mg2+. Solubilized mitochondrial malic enzymes is independent of Ca2+ and has a K M of 0.2 mM for Mg2+. The Ca2+ effect is dependent on an initial period of active Ca2+ uptake which also causes other changes in respiratory properties similar to those observed with mitochondria from other tissues. After Ca2+ accumulation has taken place, free Ca2+, but not additional accumulation, is still required for malic enzyme activity. The requirement for Mg2+ can be met by Mn2+ (1 mM). This concentration of Mn2+ alone yielded only a slight activation of mitochondrial malic enzyme while higher concentrations of Mn2+ alone gave good activation of the mitochondrial malic enzy.e The NADPH generated by the Ca2+-Mg2+ activated malic enzyme effectively supports the 11beta-hydroxylation of deoxycorticosterone, whereas in the presence of malate, or malate plus Mg2+ but absence of Ca2+, the energy linked transhydrogenase supplies all the required NADPH. The activated malic enzyme appears to be more efficient than transhydrogenase in generating NADPH to support 11beta-hydroxylation. Cyanide and azide have been found to inhibit solubilized mitochondrial malic enzyme.  相似文献   

6.
A hydrophobic amine, (Z)-5-methyl-2-[2-(1-naphthyl)ethenyl]-4-piperidinopyridine (AU-1421), was examined as a probe of the K+ occlusion center of Na+/K(+)-ATPase. Treatment of the enzyme with AU-1421 at 37 degrees C and pH 7.0 produced irreversible inactivation of the enzyme. This inactivation was prevented, with simple competitive kinetics, by K+ or its congeners in the order of Tl+ greater than Rb+ greater than NH+4 greater than Cs+. The concentrations of these cations required for the protection, were consistent with the affinities for transport and ATPase activity. The apparent binding constant for K+ was calculated to be 0.03 mM, from the competition with AU-1421. This protection was cancelled by a high concentration of ATP or ADP. A high concentration of Na+ (Kd = 6.5-6.9 mM), as a substitute for K+, also prevented the inactivation by AU-1421. Thus, the enzyme was protected from AU-1421 when the occlusion center was occupied by a monovalent cation, irrespective of the enzyme conformation, E1 (Na(+)-bound form) or E2 (K(+)-bound form). On the other hand, the enzyme was most sensitive to AU-1421 in the presence of low concentration of Na+ (0.4-0.8 mM) or a high concentration of ATP. Tris, imidazole or choline, which favors the E1 state, also accelerated the inactivation by AU-1421. These suggest that AU-1421 reacts with the occlusion center through the E1 state.  相似文献   

7.
Studies on (K+ + H+)-ATPase III. Binding of adenylyl imidodiphosphate   总被引:1,自引:0,他引:1  
1. Adenylyl imidodiphosphate (AMPPNP) binds to (K+ + H+)-ATPase from pig gastric mucosa with a dissociation constant (Kd) of 50 microM for the AMPPNP-enzyme complex. 2. Monovalent cations reduce the amount of AMPPNP bound in the following order of effectiveness Tl+ greater than K+ greater than Rb+ greater than Cs+ greater than Na+, Li+, choline+. 3. AMPPNP binding to the enzyme has a pH optimum at pH 7.0--7.5 in the absence of added ions, which is shifted to pH 8 upon addition of MgCl2. 4. Cyclodiaminotetraacetic acid (CDTA, Tris salt) inhibits binding of AMPPNP. This inhibition is not due to chelation of Mg2+. It may be due to direct binding of CDTA to the enzyme or to removal of stabilizing cations other than Mg2+. 5. Binding curves determined in the presence of various concentrations of Mg2+ show that at low Mg2+ concentrations (less than 0.5 mM), the apparent number of binding sites is reduced, while at higher Mg2+ concentrations (greater than or equal to 0.5 mM), the binding of AMPPNP is inhibited in a competitive way. 6. From these observations it is concluded that the enzyme has two binding sites for AMPPNP and only one for Mg-AMPPNP (or two with strong anti-cooperativity), and that Mg2+ inhibits binding of Mg-AMPPNP. This finding is interpreted in terms of a model involving a dimeric form of the enzyme.  相似文献   

8.
1. Fluorescence measurements have shown that formycin triphosphate (FTP) or formycin diphosphate (FDP) bound to (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) in Na+-containing media can be displaced by the following ions (listed in order of effectiveness): Tl+, K+, Rb+, NH4+, Cs+. 2. The differences between the nucleotide affinities displayed by the enzyme in predominantly Na+ and predominantly K+ media in the absence of phosphorylation, are thought to reflect changes in enzyme conformation. These changes can therefore be monitored by observing the changes in fluorescence that accompany net binding or net release of formycin nucleotides. 3. The transition from a K+-bound form (E2-(K)) to an Na+-bound form (E1-Na) is remarkably slow at low nucleotide concentrations, but is accelerated if the nucleotide concentration is increased. This suggests that the binding of nucleotide to a low-affinity site on E2-(K) accelerates its conversion to E1-Na; it supports the hypothesis that during the normal working of the pump, ATP, acting at a low affinity site, accelerates the conversion of dephosphoenzyme, newly formed by K+-catalysed hydrolysis of E2P, to a form in which it can be phosphorylated in the presence of Na+. 4. The rate of the reverse transformation, E1-Na to E2-(K), varies roughly linearly with the K+ concentration up to the highest concentration at which the rate can be measured (15 mM). Since much lower concentrations of K+ are sufficient to displace the equilibrium to the K-form, we suggest that the sequence of events is: (i) combination of K+ with low affinity (probably internal) binding sites, followed by (ii) spontaneous conversion of the enzyme to a form, E2-(K), containing occluded K+. 5. Mg2+ or oligomycin slows the rate of conversion of E1-Na to E2-(K) but does not significantly affect the rate of conversion of E2-(K) to E1-Na. 6. In the light of these and previous findings, we propose a model for the sodium pump in which conformational changes alternate with trans-phosphorylations, and the inward and outward fluxes of both Na+ and K+ each involve the transfer of a phosphoryl group as well as a change in conformation between E1 and E2 forms of the enzyme or phosphoenzyme.  相似文献   

9.
The presence of a cation inhibitory site on the dephosphoform of the H+, K+ -ATPase was confirmed by comparing the effects of K+ and NH4+ on overall activity and on phosphorylation and dephosphorylation. Inhibition of ATPase activity was pronounced at high cation/ATP ratios, but NH4+ was much less effective. At 60 mM cation, although the ATPase activity was greater in the presence of NH4+ (17.1 mumol/mg.h) as compared to K+ (5.1 mumol/mg.h), dephosphorylation of preformed phosphoenzyme was faster with K+ (2101 min-1) than with NH4+ (1401 min-1). Increasing K+ concentrations at the cytosolic face of the enzyme, at constant ATP, decreased the rate of phosphorylation from 1343 to 360 min-1 at 25 mM K+. Increasing ATP concentrations in the presence of constant K+ concentrations accelerated ATPase activity and increased the steady-state phosphoenzyme level. Therefore, inhibition by cations was due to cation stabilization of a dephospho form of the enzyme at a cytosolically accessible cation-binding site. ATP promoted cation dissociation from this site. In ion-permeable vesicles, increasing K+ concentrations, at constant ATP, activated and then inhibited ATPase activity, with a K0.5(I) of 22 mM. In intact, ion-impermeable inside-out vesicles, in the presence of valinomycin, ATPase activity increased up to 175 mM K+. Collapse of this potential by the addition of the electrogenic protonophore 3,3',4', 5-tetrachlorosalicylanilide restored the K+ inhibition of ATPase activity. Thus, the cation inhibition of the ATPase activity appears to be voltage-sensitive; and hence, its connection to the voltage sensitivity of acid secretion demonstrated in intact gastric mucosa is discussed.  相似文献   

10.
K+ interactions with a rat brain (Na+ + K+)-dependent ATPase and the associated K+-dependent nitrophenyl phosphatase activity were examined. Classes of sites for K+ were distinguished, initially, on the basis of affinity estimated by kinetic analysis in terms of KO.5 (the concentration for half-maximal activation), and by K+-accelerated enzyme inactivation by F-minus, which permits evaluation of a dissociation constant for K+, KD. Moderate-affinity sites ("alpha sites"), with a KD near 1 mM, were demonstrable for the phosphatase activity and for the "free" enzyme. High-affinity sites ("beta sites"), with a KD near 0.1 mM, were seen for the overall ATPase activity and under conditions in which enzyme phosphorylation by substrate also occurs. Further differentiation between alpha and beta sites was made in terms of (i) the characteristic changes in affinity with pH, and (ii) the efficacy of Li+ relative to K+, Rb+, Cs+, and Tl+ at these two classes of sites. Low-affinity sites ("gamma sites") through which K+ inhibits enzymatic activity were also detectable, with a KD around 140 mM. These data are incorporated into a model for the reaction sequence to accommodate both transport processes and certain K+/ATP antagonisms.  相似文献   

11.
The (K+ + H+)-ATPase from gastric mucosa has been treated by limited proteolytic digestion with trypsin to study the conformational states of the enzyme. The existence of a K+- and an ATP-form of the enzyme follows from the kinetics of inactivation and from the specific cleavage products. In the presence of K+ the 95 kDa chain is cleaved into two fragments of 56 and 42 kDa, whereas in the presence of ATP fragments of 67 and 35 kDa are formed. When Mg2+ is present during tryptic digestion cleavage products which are specific for both the ATP- and the K+-form of the enzyme are yielded. In analogy to ATP, Mg2+ is able to convert the enzyme from a K+-conformation to a more protected form. Moreover Mg2+ supports the protecting effect of ATP against tryptic inactivation. The K0.5 for ATP is lowered from 1.6 mM (no Mg2+) to 0.2 mM in the presence of 10 mM Mg2+. Mg2+, which in previous studies has been shown to induce a specific conformation, apparently induces a conformation different from the K+-form of the enzyme and has ATP-like effects on the enzyme. In addition it has been found that in the initial rapid phase of the digestion process the K+-ATPase activity is interrupted at a step which is very likely the interconversion of the phosphoenzyme forms E1P and E2P, since neither the K+-stimulated p-nitrophenylphosphatase activity nor the phosphorylation of the enzyme are inhibited in this phase. During the tryptic digestion in the presence of K+ there is a good correlation between the residual ATPase activity and the amount of the catalytic subunit left, suggesting that the latter is homogeneous. After tryptic digestion in the presence of K+, phosphorylation only occurs in the 42 kDa and not in the 56 kDa band. The same experiments in the presence of ATP yield only phosphorylation in the 67 kDa band and not in the 35 kDa band. A provisional model for the structure of the catalytic subunit is given.  相似文献   

12.
The sarcoplasmic reticulum Ca2(+)-ATPase of skeletal muscle has two high affinity calcium sites, one of fast access ("f" site) and one of slow access ("s" site). In addition to Ca2+ these sites are able to interact with other cations like Mg2+ or K+. We have studied with a stopped-flow method the modifications produced by Mg2+ and K+ on the kinetics of the intrinsic fluorescence changes produced by Ca2+ binding to and dissociation from the Ca2(+)-ATPase of sarcoplasmic reticulum. The presence of Mg2+ ions (K1/2 = 0.5 mM at pH 7.2) leads to the appearance of a rapid phase in the Ca2+ binding, which represents half of the signal amplitude at optimal Mg2+. The presence of K+ greatly accelerates both the Ca2+ binding and the Ca2+ dissociation reactions, giving, respectively, a 4- and 8-fold increase of the rate constant of the induced fluorescence change. K+ ions also increase the rate of the 45Ca/40Ca exchange reaction at the s site measured by rapid filtration. These results lead us to build up a model for the Ca2(+)-binding mechanism of the sarcoplasmic reticulum Ca2(+)-ATPase in which Mg2+ and K+ participate at particular steps of the reaction. Moreover, we propose that, in the absence of Ca2+, this enzyme may be the pathway for monovalent ion fluxes across the sarcoplasmic reticulum membrane.  相似文献   

13.
Defining the structural and catalytic properties of the ion transport site(s) of enzyme-phosphorylating ATPases is of key importance in understanding the mechanism of ion transport by these enzymes. In the case of the H+, K(+)-ATPase, SCH 28080 (3-(cyanomethyl)-2-methyl-8-(phenylmethoxy)imidazo[1,2a]-pyridine) has been shown to act as a high affinity, extracytosolic, K(+)-competitive inhibitor of Mg2+, K(+)-ATPase activity (Wallmark, B., Briving, C., Fryklund, J., Munson, K., Jackson, R., Mendlein, J., Rabon, E., and Sachs, G. (1987) J. Biol. Chem. 262, 2077-2084). To define the nature of the SCH 28080-binding site in relation to the catalytic cycle of the enzyme, we have investigated the effects of this potential K+ transport site probe on the steady-state and partial reactions of the H+, K(+)-ATPase. In the absence of K+, SCH 28080 inhibits Mg2(+)-ATPase activity with high affinity (apparent Ki = 30 nM). Inhibition is due to K(+)-like prevention of phosphoenzyme formation. SCH 28080 has no effect on Mg2(+)-catalyzed dephosphorylation. SCH 28080, at concentrations less than 0.5 microM, increases the apparent Km for K+ for Mg2+, K(+)-ATPase activity with little effect on the maximum velocity. At higher concentrations of SCH 28080, reversal of inhibition by higher K+ concentrations is not complete, due to inhibition of ATPase activity by high K+. In contrast, SCH 28080 inhibits K(+)-stimulated dephosphorylation by competitively displacing K+ from phosphoenzyme with an extracytosolic conformation of the monovalent cation site (E2P) at low concentrations of SCH 28080 and K+. At higher concentrations, 10 microM SCH 28080 and 50 mM K+, a slowly dephosphorylating complex with both SCH 28080 and K+ bound to E2P may form which represents a small fraction of the total E2P (15-25%). Preincubation of SCH 28080 with E2P completely blocks K(+)-stimulated dephosphorylation, and K+ is unable to reverse this preincubation effect, indicating that the SCH 28080 dissociation rate is at least as slow as K(+)-independent dephosphorylation of E2P. These findings indicate that SCH 28080 inhibits K(+)-stimulated ATPase activity by competing with K+ for binding to E2P and blocking K(+)-stimulated dephosphorylation. In the absence of K+, SCH 28080 has a higher apparent affinity for E2P, but it permits K(+)-independent dephosphorylation. Since the dissociation rate of SCH 28080 from the enzyme is slow, phosphoenzyme formation is prevented by SCH 28080 remaining bound to the extracytosolic conformation of the monovalent cation site, thereby reducing the steady-state level of phosphoenzyme.  相似文献   

14.
In Kv2.1 potassium channels, changes in external [K+] modulate current magnitude as a result of a K+-dependent interconversion between two outer vestibule conformations. Previous evidence indicated that outer vestibule conformation (and thus current magnitude) is regulated by the occupancy of a selectivity filter binding site by K+. In this paper, we used the change in current magnitude as an assay to study how the interconversion between outer vestibule conformations is controlled. With 100 mM internal K+, rapid elevation of external [K+] from 0 to 10 mM while channels were activated produced no change in current magnitude (outer vestibule conformation did not change). When channels were subsequently closed and reopened in the presence of elevated [K+], current magnitude was increased (outer vestibule conformation had changed). When channels were activated in the presence of low internal [K+], or when K+ flow into conducting channels was transiently interrupted by an internal channel blocker, increasing external [K+] during activation did increase current magnitude (channel conformation did change). These data indicate that, when channels are in the activated state under physiological conditions, the outer vestibule conformation remains fixed despite changes in external [K+]. In contrast, when channel occupancy is lowered, (by channel closing, an internal blocker or low internal [K+]), the outer vestibule can interconvert between the two conformations. We discuss evidence that the ability of the outer vestibule conformation to change is regulated by the occupancy of a nonselectivity filter site by K+. Independent of the outer vestibule-based potentiation mechanism, Kv2.1 was remarkably insensitive to K+-dependent processes that influence current magnitude (current magnitude changed by <7% at membrane potentials between -20 and 30 mV). Replacement of two outer vestibule lysines in Kv2.1 by smaller neutral amino acids made current magnitude dramatically more sensitive to the reduction in K+ driving force (current magnitude changed by as much as 40%). When combined, these outer vestibule properties (fixed conformation during activation and the presence of lysines) all but prevent variation in Kv2.1 current magnitude when [K+] changes during activation. Moreover, the insensitivity of Kv2.1 current magnitude to changes in K+ driving force promotes a more uniform modulation of current over a wide range of membrane potentials by the K+-dependent regulation of outer vestibule conformation.  相似文献   

15.
Recently, we have shown that a hydrophobic amine (AU-1421) produces an irreversible inactivation of Na+/K(+)-ATPase activity. This inactivation was prevented by K+ and its congeners. In this study, we examined the possibility of Ca2+ or ethylenediamine as a probe of the K+ occlusion center of Na+/K(+)-ATPase. The inactivation by AU-1421 was prevented by Ca2+ with an apparent high affinity (approximately 0.1 mM). Ca2+ protection was cancelled by high concentrations of ATP, ADP or Mg2+. Ca2+ and K+ were similar in these respects. Kinetic analyses of the above data indicated the presence of two AU-1421 occlusion sites on the enzyme, either one of which is susceptible to Ca2+ occlusion. Ethylenediamine also prevented the inactivation by AU-1421 or by C12E8 solubilization of the enzyme, suggesting that ethylenediamine, like K+, stabilized the enzyme. However, an apparent affinity of ethylenediamine (approximately 1.4 mM) was one order of magnitude lower than that of K+ (approximately 0.2 mM), and the protective manner did not show a simple competition. In addition, ethylenediamine binding was unaffected by ATP or ADP at a low affinity site, and antagonized K+ binding. From these results we concluded that ethylenediamine does not act like K+ or Ca2+ in protecting AU-1421 inactivation, since it can't stabilize the enzyme conformation as an E2 (K(+)-bound form).  相似文献   

16.
The hydrolysis of [gamma-32P]ATP by porcine brain (Na+ + K+)-stimulated ATP phosphohydrolase (EC 3.6.1.3) has been studied at 28 degree C in a rapid mixing quenched-flow apparatus. An "early burst" in the release of Pi from ATP has been observed when the enzyme is mixed with ATP, Na+ and a relatively high concentration of K+ (10 mM) but the burst is less pronounced with 0.5 mM K+. This "early burst" of Pi release is suppressed when the enzyme is pre-mixed with 10 mM K+ or 20% (v/v) dimethylsulphoxide before mixing with ATP and Na+, and premixing of enzyme with Na+ antagonizes this effect of dimethylsulphoxide. The results have been analysed by a non-linear least squares regression treatment and are consistent with a mechanism involving three steps, one of which may be a relatively slow change in enzyme conformation following release of Pi from its covalent linkage with the enzyme, in addition to formation of the enzyme-substrate complex. Rate constants (and S.E.) for these steps have been calculated and the roles of phospho-enzyme and other intermediates in the reaction mechanism of the transport ATPase are dicussed.  相似文献   

17.
Free Mg2+ is studied for its effect on the activation kinetics of pig kidney Na+, K+-ATPase by monovalent cations (nH and K0.5 for Na+ and K+ are determined). It is established that at the saturating concentration of complementary ion-activator an increase of free Mg2+ concentration up to 12 mM is accompanied by a rise of nH and K0.5 for Na+ and a fall of K0.5 for K+ without nH changes for this cation. The analysis of inhibition kinetics shows that free Mg2+ is a competitive inhibitor as to Na+ and noncompetitive as to K+. It is concluded that inhibition of Na+, K+-ATPase by free Mg2+ is a complex process including competition with Na+ at its binding sites and the "occluding" of enzyme at the stage, preceding dissociation of cation and also the weakening of subunit interactions in the enzyme.  相似文献   

18.
We examined effects of ethanol and dimethyl sulfoxide on the regulation and apparent thermodynamic properties of moderate affinity Na+ and K+ binding that regulates the K+-dependent phosphatase activity of (Na+,K+)-ATPase. Ethanol and other alcohols reduced the apparent affinity for Na+ and K+ at their moderate affinity sites and increased the negative delta H and delta S of cation binding. Dimethyl sulfoxide had the opposite effects. Inhibition by ethanol was favored by high temperature or low K+. Ethanol potentiated inhibition of K+ binding by ATP or Mg2+. Ethanol also shifted the equilibrium between K+-sensitive and -insensitive forms of (Na+,K+)-ATPase toward the K+-sensitive form; in this case, it reduced the negative delta H and delta S for the transition to K+-sensitive enzyme. Again, dimethyl sulfoxide had the opposite effects. These data indicate that ethanol and other agents considered to affect membrane fluidity act by a combination of membrane (on cation binding) and solvent (on conformation) effects. The most important effect of ethanol and similar agents on the enzyme is to prevent the formation of K+-sensitive enzyme by cation binding and to destabilize K+-sensitive enzyme in the presence of ATP. These results also add further evidence that the sites by which Na+ and K+ produce K+-sensitive enzyme are similar or identical.  相似文献   

19.
The Mg2+-dependent ouabain insensitive-ATPase activity present in gill microsomal preparations from Dicentrarchus labrax is stimulated not only by Na+ but also by K=, NH4+ or Li+. These cations at 50-100 mM concentrations are similarly efficient to Na+ in stimulating the enzyme activity with similar Km values. Whatever cation stimulates the activity, the enzyme is poorly sensitive to ouabain and 100% inhibited by 1.5-2.5 mM ethacrynic acid. All activity vs cation concentration curves show a biphasic profile with activation following the Michaelis-Menten kinetics (Hill coefficient approximately 2). The absence of additivity when the enzyme is activated by binary mixtures of cations, each of which may act as competitive inhibitor of the other confirms the involvement of the same binding site for the monovalent cations.  相似文献   

20.
M A Griep  C S McHenry 《Biochemistry》1988,27(14):5210-5215
The beta subunit of Escherichia coli DNA polymerase III holoenzyme binds Mg2+. Reacting beta with fluoresceinmaleimide (FM) resulted in one label per beta monomer with full retention of activity. Titration of FM-beta with Mg2+ resulted in a saturable 11% fluorescence enhancement. Analysis indicated that there was one noncooperative magnesium binding site per beta monomer with a dissociation constant of 1.7 mM. Saturable fluorescence enhancement was also observed when titration was with Ca2+ or spermidine(3+) but not with the monovalent cations Na+ and K+. The Mg2+-induced fluorescence enhancement was specific for FM-beta and was not observed with FM-glutathione, dimethoxystilbenemaleimide-beta, or pyrenylmaleimide-beta. Gel filtration studies indicated that the beta dimer-monomer dissociation occurred at physiologically significant beta concentrations and that the presence of 10 mM Mg2+ shifted the dimer-monomer equilibrium to favor monomers. Both the gel-filtered dimers and the gel-filtered monomers were active in the replication assay. These and other results suggested that the fluorescence increase which accompanies beta dissociation is due to a relief from homoquenching of FM when the beta dimer dissociates into monomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号