首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have applied free flow electrophoresis to separate the canalicular and basolateral (sinusoidal and lateral) domains of rat hepatocyte plasma membranes. Hepatocyte plasma membranes were prepurified by rat zonal and discontinous sucrose gradient centrifugation. In electrophoretic separation, the canalicular membranes were more deflected toward the anode than the basolateral membranes. Na+-dependent taurocholate uptake could be measured in both membrane fractions, transport activity being highest in fractions containing the highest specific activity in the basolateral marker enzyme Na+-K+-ATPase. Thus, differences in electrophoretic mobility permit the separation of functional intact plasma membrane vesicles derived from basolateral and canalicular plasma membrane domains of rat hepatocyte.  相似文献   

2.
Plasma membranes from Candida tropicalis grown on glucose or hexadecane were isolated using a method based on the difference in surface charge of mitochondria and plasma membranes. After mechanical disruption of the cells, a fraction consisting of mitochondrial and plasma membrane vesicles was obtained by differential centrifugation. Subsequently the mitochondria were separated from the plasma membrane vesicles by aggregation of the mitochondria at a pH corresponding to their isoelectric point. Additional purification of the isolated plasma membrane vesicles was achieved by osmolysis. Surface charge densities of mitochondria and plasma membranes were determined and showed substrate-dependent differences. The isolated plasma membranes were morphologically characterized by electron microscopy and, as a marker enzyme, the activity of Mg2+-dependent ATPase was determine. By checking for three mitochondrial marker enzymes the plasma membrane fractions were estimated to be 94% pure with regard to mitochondrial contamination.  相似文献   

3.
The particulate fraction from murine plasmocytoma cells contained 90 per cent of the total guanylate cyclase activity. Triton X-100 produced a 6 fold stimulation of guanylate cyclase activity in plasma membrane enriched fractions obtained by zonal centrifugation. Isolated inside out (10) vesicles contained 9 times more activity than rightside out (RSO) vesicles. This difference was abolished by Triton X-100 treatment of the vesicles indicating that the catalytic site of guanylate cyclase is located on the inner face of the plasma membrane. Kinetic studies of membranous guanylate cyclase showed that optimal activity was found with manganese. Only 20 per cent of this activity was obtained with magnesium. The Km for GTP with magnesium (1.4 mM) was about 7 fold greater than with manganese (0.2 mM). Positive cooperativity was obtained in both cases and the Hill coefficients were 1.8 for manganese and 1.6 for magnesium. Physiological concentrations of ATP were found to inhibit both manganese and magnesium supported activities indicating a possible regulatory mechanism for this nucleotide in vivo.  相似文献   

4.
The purpose of this experimental investigation was to provide a purified plasma membrane fraction containing a highly hormone-responsive adenylate cyclase system. Bovine adrenal cortex was homogenised and a washed pellet (450 000 X g - min) was fractionated by zonal centrifugation in a sucrose and dextran gradient. Adenylate cyclase activity was purified up to 60-fold to a specific activity of 55, 340 and 210 pmol of adenosine 3':5'-monophosphate (cyclic AMP) produced/minute per mg of protein at 38 degrees C for the basal, adrenocorticotrophin and fluoride-activated states, respectively. The time course of the adenylate cyclase activity is linear. The concentration necessary for half-maximal stimulation by adrenocorticotrophin-(1-24)-tetracosipeptide is 0.5 muM. The high hormone-responsiveness of the membrane preparation allows one to demonstrate activation of adenylate cyclase by very weakly agonistic adrenocorticotrophin fragments. The F- activated state can be detergent-dispersed by Lubrol and shows a Km (ATP) different from that of either the basal or adrenocorticotrophin-stimulated state. Other marked enzymes such as 5'-nucleotidase, glucose-6-phosphatase and cytochrome oxidase were followed during purification. The plasma membrane fraction shows rather homogeneous, relatively large vesicles (mean diameter 0.5 mum). It contains high-affinity binding sites for angiotensin II (about 2 pmol per mg protein) with an apparent association constant of 2 X 10(7) (1/mol) at 12 degrees C. The yield, 20 mg of membrane protein per preparation, may make it a tool in either affinity-labelling studies with the peptide hormones mentioned or the starting point for solubilisation and purification of adenylate cyclase.  相似文献   

5.
Isolation and characterization of Neurospora crassa plasma membranes.   总被引:7,自引:0,他引:7  
The isolation and characterization of plasma membranes from a cell wall-less mutant of Neurospora crassa are described. The plasma membranes are stabilized against fragmentation and vesiculation by treatment of intact cells with concanavalin A just prior to lysis. After lysis, the concanavalin A-stabilized plasma membrane ghosts are isolated by low speed centrifugation techniques and the purified ghosts subsequently converted to vesicles by removal of the bulk of the concanavalin A. The yield of ghosts is about 50% whereas the yield of vesicles is about 20%. The isolated plasma membrane vesicles have a characteristically high sterol to phospholipid ratio, Mg2+-dependent ATPase activity and (Na+ plus K+)-stimulated Mg2+ATPase activity. Only traces of succinate dehydrogenase and 5'-nucleotidase are present in the plasma membrane preparations.  相似文献   

6.
Plasma membranes from Candida tropicalis grown on glucose or hexadecane were isolated using a method based on the difference in surface charge of mitochondria and plasma membranes.After mechanical disruption of the cells, a fraction consisting of mitochondrial and plasma membrane vesicles was obtained by differential centrifugation.Subsequently the mitochondria were separated from the plasma membrane vesicles by aggregation of the mitochondria at a pH corresponding to their isoelectric point. Additional purification of the isolated plasma membrane vesicles was achieved by osmolysis. Surface charge densities of mitochondria and plasma membranes were determined and showed substrate-dependent differences.The isolated plasma membranes were morphologically characterized by electron microscopy and, as a marker enzyme, the activity of Mg2+-dependant ATPase was determined.By checking for three mitochondrial marker enzymes the plasma membrane fractions were estimated to be 94% pure with regard to mitochondrial contamination.  相似文献   

7.
A putative reservoir of functional plasma membrane proteins, the secretory vesicle identified by latent alkaline phosphatase and tetranectin, has previously been demonstrated based on indirect evidence (Borregaard, N., Miller, L. J., and Springer, T. A. (1987) Science 237, 1204-1206; Borregaard, N., Christensen, L., Bjerrum, O. W., Birgens, H. S., and Clemmesen, I. (1990) J. Clin. Invest. 85, 408-416). Difficulties in separating plasma membranes from this entity by density gradient centrifugation has prohibited discriminative dynamic and quantitative studies of secretory vesicles and plasma membranes. By combining density centrifugation with free flow electrophoresis we overcame this obstacle. Freshly prepared unperturbed human neutrophils were subjected to nitrogen cavitation followed by density centrifugation on Percoll gradients. Light membrane fractions containing plasma membranes and secretory vesicles were applied to high voltage free flow electrophoresis on an Elphor VaP 22. Plasma membrane vesicles, identified by HLA class I antigen mixed enzyme-linked immunosorbent assay (Bjerrum, O. W., and Borregaard, N. (1990) Scand. J. Immunol. 31, 305-313) and 125I applied to cells before cavitation, were clearly separated from secretory vesicles. Electron microscopy revealed a morphology typical of plasma membranes in the former fraction and a population of vesicles with markedly different appearance in the latter. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis profiles demonstrated distinct differences in protein patterns between the two fractions. Superoxide generating capacity induced by sodium dodecyl sulfate and cytosol, an entity traditionally ascribed to the plasma membrane, was largely confined to fractions containing secretory vesicles. Thus, the majority of membrane-bound NADPH oxidase components of light membranes of human neutrophils colocalize with secretory vesicles.  相似文献   

8.
A plasma membrane fraction was obtained by the combined use of differential centrifugation and aqueous polymer two-phase partitioning techniques. Vanadate-inhibited ATPase and glucan synthase activities were highly enriched in this fraction, although the presence of ATPase activity which was not inhibited by vanadate, nitrate, molybdate, anyimycin A or azide was also detected. Other intracellular membrane marker activities were present at very low or undetectable levels. A further separation step using Percoll density gradient centrifugation resulted in the separation of a fraction which exclusively contained vanadate-inhibited ATPase activity, and was enriched with silicotungstic-acid-staining membrane material. Latency tests performed on the plasma membrane markers showed that the membrane vesicles were in the right-side-out orientation.  相似文献   

9.
Cell surface membrane fragments were isolated and purified by successive rate zonal and isopycnic centrifugation of calcium oxalate-loaded pigeon heart microsomes in sucrose density gradients. The most highly purified cell membrane fraction sediments at a buoyant density of 1.105 g/ml. Some of the membrane pieces are present as open fragments and leaky vesicles, while others form tightly sealed vesicles of both inside-in and inside-out membrane orientation. The pigeon heart cell membrane preparation exhibits high (Na+ + K+ + Mg2+)-ATPase and adenylate cyclase activities. Additional activity of these enzymes is uncovered by sodium dodecyl sulfate and alamethicin, respectively. Electron microscopic inspection of the cell surface membrane preparation revealed (a) a predominance of thick-walled vesicles with smooth surfaces on negative staining and (b) binding of concanavalin A to the bulk of isolated membrane pieces following their incubation with the lectin.  相似文献   

10.
Bovine epididymal spermatozoa were subjected to nitrogen cavitation (600 psi for 10 min) to remove plasma membrane. Examination of the cavitated cells by electron microscopy revealed that the plasma membrane was preferentially removed from the periacrosomal and flagellar regions. Nuclear, mitochondrial and acrosomal membranes remained intact and attached to the spermatozoa, but the cytoplasmic droplets were frequently disrupted and their internal membrane-bound vesicles were released. Lower pressures (less than 200 psi) were relatively ineffective in removing the periacrosomal plasma membrane, while an intermediate pressure (400 psi) removed this membrane from about 70% of the spermatozoa. No apparent selectivity for removal of the periacrosomal and flagellar plasma membrane was observed as a function of cavitation pressure. The cavitated cells were separated from the plasma membranes by differential followed by linear sucrose density gradient centrifugation. Two distinct membrane populations were resolved on sucrose gradients and were designated Band I and Band II. Band I contained only spherical vesicles which arose from the plasma membrane. Surface labeling of intact cells confirmed the plasma membrane as the origin of Band I. The membranes of higher density comprising Band II were heterogeneous consisting of both spherical and flattened vesicles. When purified cytoplasmic droplets were cavitated and centrifuged on the sucrose gradient only Band II was obtained. These studies indicate that nitrogen cavitation of bovine epididymal spermatozoa can result in significant contamination of plasma membrane fractions by cytoplasmic droplet membranes unless appropriate differential centrifugation is used to separate the membrane fractions.  相似文献   

11.
In order to obtain plasma membrane-rich fractions two methods were tried. Approach A was based on differential pelleting followed by discontinous gradient centrifugation in a B-XIV zonal rotor. In approach B homogeneization was performed in buffered water (NaHCO3, pH 7.4). The 73 300 X g pellet from this homogenate was subjected to buoyant density equilibrium in a HS zonal rotor (continuous sucrose gradient). Using approach A, the highest relative specific activity for plasma membrane markers was found at the 30-37% sucrose interphase. However, an increase for glucose 6-phosphatase (endoplasmic reticulum marker) was also found at that interphase. Using approach B marker profiles different from approach A were found. Approach B results in a subdivision of membrane material in four distinct regions. These regions do not contain completely pure membrane species, although region I seems to be essentially derived from plasma membranes. It is also concluded from approach A that plasma membranes from bovine thyroid tissue are heterogeneous.  相似文献   

12.
Modification of our previous procedure for the isolation of microsomal membrane vesicles from red beet (Beta vulgaris L.) storage tissue allowed the recovery of sealed membrane vesicles displaying proton transport activity sensitive to both nitrate and orthovanadate. In the absence of a high salt concentration in the homogenization medium, contributions of nitrate-sensitive (tonoplast) and vanadate-sensitive (plasma membrane) proton transport were roughly equal. The addition of 0.25 M KCl to the homogenization medium increased the relative amount of nitrate-inhibited proton transport activity while the addition of 0.25 M KI resulted in proton pumping vesicles displaying inhibition by vanadate but stimulation by nitrate. These effects appeared to result from selective sealing of either plasma membrane or tonoplast membrane vesicles during homogenization in the presence of the two salts. Following centrifugation on linear sucrose gradients it was shown that the nitrate-sensitive, proton-transporting vesicles banded at low density and comigrated with nitrate-sensitive ATPase activity while the vanadate-sensitive, proton-transporting vesicles banded at a much higher density and comigrated with vanadate-sensitive ATPase. The properties of the vanadate-sensitive proton pumping vesicles were further characterized in microsomal membrane fractions produced by homogenization in the presence of 0.25 M KI and centrifugation on discontinuous sucrose density gradients. Proton transport was substrate specific for ATP, displayed a sharp pH optimum at 6.5, and was insensitive to azide but inhibited by N'-N-dicyclohexylcarbodiimide, diethylstilbestrol, and fluoride. The Km of proton transport for Mg:ATP was 0.67 mM and the K0.5 for vanadate inhibition was at about 50 microM. These properties are identical to those displayed by the plasma membrane ATPase and confirm a plasma membrane origin for the vesicles.  相似文献   

13.
Plasma membranes from normal, full-term human placental trophoblast have been isolated by a new procedure. The method depends upon isopycnic zonal centrifugation using linear sucrose/Ficoll density gradients. Enrichment of plasma membrane marker enzymes with respect to trophoblast homogenate is found in two distinct peaks (designated B and D) of the fractionated effluent recovered from the rotor. Fraction B is enriched with membrane-bound alkaline phosphatase and 5'-nucleotidase, but not with (Na+, K+)-ATPase of F(-)-stimulated adenylate cyclase. It is suggested that this material is derived from the maternal-facing microvillous plasma membrane. Fraction D, enriched with (Na+, K+)-ATPase, F(-)-stimulated adenylate cyclase and, to a smaller extent, with 5'-nucleotidase and alkaline phosphatase is, by exclusion, proposed to be derived from the fetal-facing basal plasma membrane. Both plasma membrane fractions are shown to be free of appreciable contamination, using specific markers for endoplasmic reticulum, mitochondria, nuclei and lysosomes. The separation of the two membrane fractions is shown to depend both upon these membranes forming closed vesicles during homogenization and upon the buoyant densities of such vesicles differing in such a way that microvillous plasma membranes band at a lower density than basal plasma membranes. No separation of the membranes is achieved in gradients in which the vesicles are collapsed.  相似文献   

14.
The localization of the sodium-dependent alanine uptake activity in rat liver cells was studied. Fractions representative of the canalicular, the contiguous (lateral) and the blood-sinusoidal surface of the hepatocyte were isolated by means of centrifugal fractionation and density gradient centrifugation. The distribution of various marker-enzyme activities in conjunction with the occurrence of alanine transport activity was studied both in fractions obtained after zonal density gradient centrifugation, and in the subcellular fractions mentioned above.It is concluded that the sodium-dependent alanine transport activity is primarily located in the blood-sinusoidal plasma membrane of the hepatocyte.  相似文献   

15.
Pancreas of the cat was fractionated into its subcellular components by centrifugation through an exponential ficoll-sucrose density gradient in a zonal rotor. This enables a preparation of four fractions enriched in plasma membranes, endoplasmic reticulum, mitochondria and zymogen granules, respectively. The first fraction, enriched by 9- to 15-fold in the plasma membrane marker enzymes, hormone-stimulated adenylate cyclase, (Na+K+)-ATPase, and 5'-nucleotidase, is contaminated by membranes derived from endoplasmic reticulum but is virtually free from mitochondrial and zymogen-granule contamination. The second fraction from the zonal gradient shows only moderate enrichment of the above marker enzymes but contains a considerable quantity of plasma membrane marker enzymes and represents mostly rough endoplasmic reticulum. The third fraction contains the bulk of mitochondria and the fourth mainly zymogen granules as assessed by electron microscopy and marker enzymes for both mitochondria and zymogen granules, namely succinic dehydrogenase, trypsin and amylase. Further purification of the plasma membrane fractions by differential and sucrose step-gradient centrifugation yields plasma membranes enriched 40-fold in basal and hormone-stimulated adenylate cyclase and (Na+K+)-ATPase.  相似文献   

16.
1. Rat isolated fat-cells were coated with rabbit anti-(rat erythrocyte) antibody and incubated with fresh guinea-pig serum for 25 min at 37 degrees C, which resulted in a more than 95% release of the cytosolic enzyme lactate dehydrogenase. 2. Under these conditions fragmentation of the plasma membrane was examined by following the plasma-membrane markers 5'-nucleotidase, adrenaline-sensitive adenylate cyclase and membrane-bound rabbit immunoglobulin G through a differential-centrifugation fractionation procedure. 3. Approx. 50% of the plasma-membrane markers remained associated with triacylglycerol. Of the remainder more than half was pelleted by centrifugation at 10 000 g for 30 min. 4. The 10 000 g supernatant was fractionated by centrifugation on a sucrose density gradient (15-50%, w/w). This procedure resulted in the production of two visible white bands on the density gradient. The bands consisted of vesicles derived from the plasma membrane, since they coincided with peaks of 5'-nucleotidase activity, contained membrane-bound immunoglobulin G and the denser one had adenylate cyclase activity. The phospholipid and protein contents of the vesicles were determined and compared with those in purified plasma membrane. 5. It is suggested that complement-mediated lysis of rat fat-cells caused the production of plasma-membrane vesicles that differ in composition from the whole plasma membrane.  相似文献   

17.
Subcellular fractionation studies were performed to delineate plasma membrane and intracellular membrane populations which might be involved in intracellular Ca2+-homeostasis of rat small intestinal epithelial cells. After a low-speed supernatant fraction had been suspended in 5% sorbitol and subjected to equilibrium centrifugation in a zonal rotor, the Golgi and endoplasmic reticulum markers, galactosyltransferase and NADPH-cytochrome -c reductase, were concentrated in a density region designated Window II. The basal-lateral membrane marker (Na+-K+)-ATPase was concentrated in a higher-density region designated Window III. ATP-dependent Ca2+ transport was equally distributed between the two windows. Several membrane populations could be resolved from each window with good recovery of Ca2+-transport activity by a second density gradient centrifugation step. Second density gradient fractions were subjected to counter-current partitioning in an aqueous polymer two-phase system. Basal-lateral membranes, characterized by an 11-fold enrichment of (Na+-K+)-ATPase, contained ATP-dependent Ca2+-transport activity with Vmax = 3.7 nmol/mg per min and Km = 0.5 microM. A major Golgi-derived population exhibited Ca2+-transport activity with Vmax and Km values similar to those of the basal-lateral membranes. One membrane population, presumed to have been derived from the endoplasmic reticulum, contained Ca2+-transport activity with Vmax = 4 nmol/mg per min and Km = 0.5 microM. In addition to demonstrating that ATP-dependent Ca2+-transport activity has a complex distribution within enterocytes, this study raises the possibility that the basolateral plasma membranes might account for a relatively minor portion of the cell's Ca2+-pumping ability.  相似文献   

18.
Artificial mixtures of plasma membrane vesicles produced by microcavitation from infected and uninfected cells band at the same density on isopycnic centrifugation in sucrose density gradient. However, after reaction with antiviral antibody, the density of the infected cell plasma membrane vesicles increases, and the infected and uninfected cell membranes are quantitatively separable on isopycnic centrifugation. Plasma membrane vesicles prepared from cells doubly labeled before and after infection with radioactive amino acids and reacted with antibody banded at a high density. Polyacrylamide gel electropherograms show that the vesicles reacted with antibody consist of both host- and virus-specific membrane proteins. Microcavitation does not disrupt viral envelopes since infectivity is not affected by this procedure. We conclude that viral and cellular proteins in the plasma membrane preparations are contiguous.  相似文献   

19.
Conditions promoting the formation of sealed membrane vesicles from corn roots with reduced proton permeability were examined using the probe 9-aminoacridine as a rapid indicator of pH gradient formation and dissipation. Plasma membrane vesicles isolated by differential and density gradient centrifugation were leaky to protons and rapidly equilibrated when exposed to artificially imposed pH gradients. The leaky plasma membrane vesicles showed reduced proton permeability when incubated with calcium or with excess phospholipids. However, these vesicles were unable to form ATP-induced pH gradients. Sealed vesicles isolated by discontinuous Ficoll gradient centrifugation of a microsomal fraction displayed reduced proton permeability and were osmotically active. In contrast to purified plasma membrane vesicles, the microsomal-derived vesicles were more suitable for studies of active proton transport.  相似文献   

20.
We recently developed a procedure for immunoisolating insulin-responsive membrane vesicles that contain the muscle/fat glucose transporter isoform, GLUT 4, from rat adipocytes. Utilizing this methodology, we are analyzing the components of these vesicles to gain an understanding of how they are regulated by insulin. In this report we identify a phosphatidylinositol (PtdIns) 4-kinase as a constituent of glucose transporter vesicles (GTVs). This kinase has the biochemical and immunological properties of a type II PtdIns 4-kinase as classified by Endeman et al. (Endemann, G., Dunn, S. N., and Cantley, L. C. (1987) Biochemistry 26, 6845-6852). A monoclonal antibody, 4C5G, which specifically inhibits the type II PtdIns 4-kinase, suppresses 80% of the GTV-PtdIns 4-kinase activity. In addition, the GTVs-PtdIns 4-kinase is maximally activated by the nonionic detergent Triton X-100, at a concentration of 0.2% and is inhibited by adenosine with a Ki of approximately 20-30 microM. We find that the GTVs do not contain any PtdIns4P 5-kinase or diacylglycerol kinase activities, whereas these activities were detected in the plasma membrane. An analysis of the subcellular distribution of PtdIns 4-kinase activity in the rat adipocyte shows that there are similar levels of activity in GTVs, plasma membranes, and the high and low density microsomal fractions, whereas the mitochondria- and nuclei-containing fractions have less than 5% of the activity seen in other fractions. Low density microsomes were subfractionated by sucrose density gradient centrifugation and PtdIns 4-kinase activity was found to correlate closely with the distribution of membrane protein, indicating that the activity is equally distributed throughout this heterogenous population of membranes. PtdIns 4-kinase activity measured in GTVs, plasma membranes, and low density microsomes, was not affected by prior treatment of the intact adipocytes with 35 nM insulin. We postulate that while the GTV-PtdIns 4-kinase is not regulated by insulin, it may play a role in defining the fusogenic properties necessary to mediate membrane movement between the GTVs, plasma membranes, and microsomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号