首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A water-soluble polysaccharide isolated from Dalbergia sissoo Roxb. leaves was purified and major homogeneous fraction obtained by GPC. Complete hydrolysis of the polysaccharide followed by paper chromatography and GLC analysis indicated the presence of l-rhamnose, d-glucuronic acid, d-galactose and d-glucose in molar ratio of 1:1:2:2.33, respectively. Partial hydrolysis of the polysaccharide furnished one tri-[I], one hepta-[II] and one nona-[III] saccharides. Hydrolysis of the oligosaccharide I, II and III followed by GLC analysis furnished d-glucose and l-rhamnose (2:1); l-rhamnose, d-galactose and d-glucuronic acid (1:3:3); and l-rhamnose, d-galactose and d-glucose (1:3:5), respectively. Methylation analysis and periodate oxidation of the oligosaccharide I indicated the presence of two non reducing glucose units linked to rhamnose by 1→2 and 1→4 linkages, respectively. Oligosaccharide II is a branched molecule with a main chain consisting of 1,3-linked β-d-galactopyranosyl (2 mol), 1,3,4 linked α-l-rhamnopyranosyl (1 mol) and 1,4,6 linked β-d-galactopyranosyl unit (1 mol) and non reducing β-d-glucuronic acid at the end along with side chains of β-d-glucouronopyranosyl units (2 mol). Oligosaccharide III is also a branched molecule with a main chain consisting of 1,3,4 linked α-l-rhamnopyranosyl (1 mol), 1,2,4 linked β-d-glucopyranosyl (1 mol), 1,3 and 1,4 linked β-d-galactopyranosyl (2 and 1 mol, respectively) having β-d-glucopyranosyl as a non reducing end.  相似文献   

2.
Phytochemical analysis of Solanum nigrum has resulted in the isolation of two novel disaccharides. Their structures were determined as ethyl β-d-thevetopyranosyl-(1→4)-β-d-oleandropyranoside (1) and ethyl β-d-thevetopyranosyl-(1→4)-α-d-oleandropyranoside (2), respectively, by chemical and spectroscopic methods.  相似文献   

3.
A complex trisaccharide β-d-GalpNAcA-(1 → 4)-β-d-GlcpNAc-(1 → 4)-d-ManpNAc (3) was prepared in a good yield (35%) in a transglycosylation reaction catalyzed by β-N-acetylhexosaminidase from Talaromyces flavus using p-nitrophenyl 2-acetamido-2-deoxy-β-d-galacto-hexodialdo-1,5-pyranoside (1) as a donor followed by the in situ oxidation of the aldehyde functionality by NaClO2. The disaccharide β-d-GlcpNAc-(1 → 4)-d-ManpNAc (2) was used as galactosyl acceptor. A disaccharide β-d-GalpNAcA-(1 → 4)-d-GlcpNAc (4; 39%) originated as a by-product in the reaction. Oligosaccharides comprising a carboxy moiety at C-6 are shown to be very efficient ligands to natural killer cell activation receptors, particularly to human receptor CD69. Thus, oxidized trisaccharide 3 is the best-known oligosaccharidic ligand to this receptor, with IC50 = 2.5 × 10−9 M. The presented method of introducing a β-d-GalpNAcA moiety into carbohydrate structures is versatile and can be applied in the synthesis of other complex oligosaccharides.  相似文献   

4.
d-Hydantoinase and d-carbamoylase genes from Agrobacterium radiobacter TH572 were cloned by polymerase chain reaction (PCR). The plasmid pUCCH3 with a polycistronic structure that is controlled by the native hydantoinase promoter was constructed to co-express the two genes and transformed into Escherichia coli strain JM105. To obtain the highest level of expression of the d-carbamoylase and avoid intermediate accumulation, the d-carbamoylase gene was cloned closer to the promoter and the RBS region in the upstream of it was optimized. This resulted in high active expression of soluble d-hydantoinase and d-carbamoylase that is obtained without any inducer. Thus, by the constitutive recombinant JM105/pUCCH3, d-p-hydroxyphenylglycine (d-HPG) was obtained directly with 95.2% production yield and 96.3% conversion yield.  相似文献   

5.
Three new nervogenic acid glycosides, 1-O-α-l-rhamnopyranosyl 3,5-bis(3-methyl-but-2-enyl)-4-O-[α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl]-benzoate, 3,5-bis(3-methyl-but-2-enyl)-4-O-[α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl]-benzoic acid, and bis{3,5-bis(3-methyl-but-2-enyl)-4-O-[α-l-rhamnopyranosyl-(1→2)-β-d-glucopyranosyl]-benzoyl} 1,2-O-β-d-glucopyranose, which we named condobulbosides A–C, were isolated from a methanol extract of the leaves of Liparis condylobulbon together with an apigenin C-glycoside, schaftoside. Their structures were established on the basis of spectral techniques, namely, UV, IR, HR-MS spectroscopy, both 1D and 2D NMR experiments, and chemical reactions.  相似文献   

6.
An aerobic bacterium was isolated from activated sludge in a medium containing l-glutamate-N,N-diacetate (l-GLDA) as sole carbon and energy source. The isolate was identified as a Rhizobium radiobacter species. Besides l-GLDA, the strain utilized nitrilotriacetate (NTA) and proposed intermediates in l-GLDA metabolism such as glyoxylate and l-glutamate. l-GLDA-grown cells oxidized l-GLDA, l-glutamate but not iminodiacetate (IDA), and trans-ketoglutaconate, indicating removal of a carboxymethyl group as an initial degradation reaction. The removal of the first carboxymethyl group of l-GLDA is catalyzed by an NADH-dependent mono-oxygenase. The oxidative deamination of l-glutamate by a dehydrogenase resulting in the formation of oxoglutarate was also detected in cell-free extracts of R. radiobacter sp. A pathway for the metabolism of l-GLDA R. radiobacter sp. is proposed: First, l-GLDA leads to l-glutamate-N-monoacetate (l-GLMA) which in turn leads to l-glutamate. Then, l-glutamate leads to oxoglutarate, an intermediate of the TCA cycle.  相似文献   

7.
Twenty pregnane glycosides, tuberoside A1–L5, were isolated from the diethyl ether-soluble fraction of the MeOH extract from the aerial parts of Asclepias tuberosa (Asclepiadaceae). The pregnane glycosides were composed of 8,12;8,20-diepoxy-8,14-secopregnane as aglycon, and d-cymarose, d-oleandrose, d-digitoxose and/or d-glucose as the component sugars. Their structures were established using NMR spectroscopic analysis and chemical methodologies.  相似文献   

8.
Five glycosides, 2-(trans-cinnamoyloxy-methyl)-1-butene-4-O-β-d-glucopyranoside (1), 4-(6′-O-trans-cinnamoyl)-(2-hydroxymethyl-4-hydroxy-butenyl-β-d-glucopyranoside (2), 6′′-O-trans-p-coumaroyl-(4-hydroxybenzoyl)-β-d-glucopyranoside (3), 6′-O-(4-methoxy-trans-cinnamoyl) α/β-d-glucopyranose (4) 6′-O-(4′′-methoxy-trans-cinnamoyl)-kaempferol-3-β-d-glucopyranoside (7) along with six known compounds, (+)-isolariciresinol 3a-O-β-d-glucopyranoside (8) (+)-lyoniresinol 3a-O-β-d-glucopyranoside (9), apigenin 7-O-β-d-glucopyranoside (10), quercetin 3-O-β-d-glucopyranoside (11), 6′-O-cinnamoyl-α/β-d-glucopyranose (6) 6’-O-p-coumaroyl-α/β-d-glucopyranose (5) were isolated from the whole plant of Spiraea canescens. Some of these compounds showed potent radical scavenging activity in relevant non-physiological assays. Their structures were determined by NMR spectroscopic and CID mass spectrometric techniques.  相似文献   

9.
Continuing our research on the development of nucleopeptides as ODN analogs for biomedical and bioengineering applications, here we report the synthesis and the chemical–physical characterization of a homoadenine hexamer based on a l-diaminobutyric acid (l-DABA) backbone (dabPNA), and its binding studies with a complementary aegPNA. We demonstrated by CD and UV experiments that the l-dabPNA binds the aegPNA forming a complex with good thermal stability, that we identified as a left-handed triplex.  相似文献   

10.
A membrane-bound pyrroloquinoline quinine (PQQ)-dependent d-sorbitol dehydrogenase (mSLDH) in Gluconobacter oxydans participates in the oxidation of d-sorbitol to l-sorbose by transferring electrons to ubiquinone which links to the respiratory chain. To elucidate the kinetic mechanism, the enzyme purified was subjected to two-substrate steady-state kinetic analysis, product and substrate inhibition studies. These kinetic data indicate that the catalytic reaction follows an ordered Bi Bi mechanism, where the substrates bind to the enzyme in a defined order (first ubiquinone followed by d-sorbitol), while products are released in sequence (first l-sorbose followed by ubiquinol). From these findings, we proposed that the native mSLDH bears two different substrate-binding sites, one for ubiquinone and the other for d-sorbitol, in addition to PQQ-binding and Mg2+-binding sites in the catalytic center.  相似文献   

11.
A polysaccharide (PS-I) isolated from the aqueous extract of the unripe (green) tomatoes (Lycopersicon esculentum) consists of d-galactose, d-methyl galacturonate, d-arabinose, l-arabinose, and l-rhamnose. Structural investigation of the polysaccharide was carried out using total acid hydrolysis, methylation analysis, periodate oxidation study, and NMR studies (1H, 13C, DQF-COSY, TOCSY, NOESY, ROESY, HMQC, and HMBC). On the basis of above-mentioned experiments the structure of the repeating unit of the polysaccharide (PS-I) was established as:

  相似文献   

12.
In this study, the modulating effect of l-carnitine on tert-butyl-hydroperoxide-induced DNA damage was compared with that of mannitol, a well known scavenger of hydroxyl radicals, both in normal and Ataxia telangiectasia mutated (ATM)-deficient lymphoblastoid cell lines established from A. telangiectasia (A-T) patients. The alkaline version of the comet assay was employed to measure the frequency of single-strand breaks (SSBs) and alkali-labile sites induced by t-butyl-OOH immediately after treatment and at different recovery times in normal and A-T cell lines, with and without pre-treatment with l-carnitine. In addition, both the yield of induced chromosomal damage and the effect on cell proliferation were evaluated. Our results show that pre-treatment of cells with l-carnitine produced an enhancement of the rate and extent of DNA repair in A-T cell lines at early recovery time; furthermore, in samples pre-treated with l-carnitine a reduction of all types of chromosomal aberration was observed, both in A-T and in wild-type cell lines. The reducing effect of l-carnitine pre-treatment on oxidative DNA damage was more prominent than that of pre-treatment with mannitol. In conclusion, we demonstrated a protective effect of l-carnitine on oxidative stress-induced DNA damage in A-T cells, suggesting its possible role in future pharmacological applications in A-T therapy.  相似文献   

13.
The transglycosylation potential of the extracellular α-d-galactosidase from the filamentous fungus Talaromyces flavus CCF 2686, chosen as the best enzyme from the screening, was investigated using a series of sterically hindered alcohols (primary, secondary and tertiary) as galactosyl acceptors. Nine alkyl α-d-galactopyranosides derived from the following alcohols – tert-butyl alcohol, 2-methyl-2-butyl alcohol, 2-methyl-1-propyl alcohol, 2,2,2-trifluoroethyl alcohol, 2-propyn-1-ol, n-pentyl alcohol, 3,5-dihydroxybenzyl alcohol, 1-phenylethyl alcohol and 1,4-dithio-dl-threitol – were prepared on a semi-preparative scale. This demonstrates a broad synthetic potential of the T. flavus α-d-galactosidase that has not been observed with another enzyme tested. Moreover, this enzyme exhibits good transglycosylation yields (6–34%). The enzymatic synthesis of tert-butyl α-d-galactopyranoside by transglycosylation was studied in detail.  相似文献   

14.
A new l-amino acid oxidase (LAAO) was isolated from the Central Asian cobra Naja naja oxiana venom by size exclusion, ion exchange and hydrophobic chromatography. The N-terminal sequence and the internal peptide sequences share high similarity with other snake venom l-amino acid oxidases, especially with those isolated from elapid venoms. The enzyme is stable at low temperatures (− 20 °C, − 70 °C) and loses its activity by heating at 70 °C. Specific substrates for the isolated protein are l-phenylalanine, l-tryptophan, l-methionine and l-leucine. The enzyme has antibacterial activity inhibiting the growth of Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria. N. naja oxiana LAAO dose-dependently inhibited ADP- or collagen-induced platelet aggregation with IC50 of 0.094 μM and 0.036 μM, respectively. The antibacterial and anti-aggregating activity was abolished by catalase.  相似文献   

15.
The flagellin of Pseudomonas syringae pv. tabaci is a glycoprotein that contains O-linked oligosaccharides composed of rhamnosyl and 4,6-dideoxy-4-(3-hydroxybutanamido)-2-O-methylglucosyl residues. These O-linked glycans are released by hydrazinolysis and then labeled at their reducing ends with 2-aminopyridine (PA). A PA-labeled trisaccharide and a PA-labeled tetrasaccharide are isolated by normal-phase high-performance liquid chromatography. These oligosaccharides are structurally characterized using mass spectrometry and NMR spectroscopy. Our data show that P. syringae pv. tabaci flagellin is glycosylated with a tetrasaccharide, 4,6-dideoxy-4-(3-hydroxybutanamido)-2-O-methyl-Glcp-(1→3)-α-l-Rhap-(1→2)-α-l-Rhap-(1→2)-α-l-Rha-(1→, as well a trisaccharide, 4,6-dideoxy-4-(3-hydroxybutanamido)-2-O-methyl-Glcp-(1→3)-α-l-Rhap-(1→2)-α-l-Rha-(1→, which was identified in a previous study.  相似文献   

16.
Although several biosynthetic intermediates in pathways to cruciferous phytoalexins and phytoanticipins are common, questions regarding the introduction of substituents at N-1 of the indole moiety remain unanswered. Toward this end, we investigated the potential incorporations of several perdeuterated d- and l-1′-methoxytryptophans, d- and l-tryptophans and other indol-3-yl derivatives into pertinent phytoalexins and phytoanticipins (indolyl glucosinolates) produced in rutabaga (Brassica napus L. ssp. rapifera) roots. In addition, we probed the potential transformations of quasi-natural compounds, these being analogues of biosynthetic intermediates that might lead to “quasi-natural” products (products similar to natural products but not produced under natural conditions). No detectable incorporations of deuterium labeled 1′-methoxytryptophans into phytoalexins or glucobrassicin were detected. l-tryptophan was incorporated in a higher percentage than d-tryptophan into both phytoalexins and phytoanticipins. However, in the case of the phytoalexin rapalexin A, both d- and l-tryptophan were incorporated to the same extent. Furthermore, the transformations of both 1′-methylindolyl-3′-acetaldoxime and 1′-methylindolyl-3′-acetothiohydroxamic acid (quasi-natural products) into 1′-methylglucobrassicin but not into phytoalexins suggested that post-aldoxime enzymes in the biosynthetic pathway of indolyl glucosinolates are not substrate-specific. Hence, it would appear that the 1-methoxy substituent of the indole moiety is introduced downstream from tryptophan and that the post-aldoxime enzymes of the glucosinolate pathway are different from the enzymes of the phytoalexin pathway. A higher substrate specificity of some enzymes of the phytoalexin pathway might explain the relatively lower structural diversity among phytoalexins than among glucosinolates.  相似文献   

17.
A synthetic gene encoding a Streptomyces l-proline-3-hydroxylase was constructed and used to produce the hydroxylase protein in recombinant Escherichia coli. A fermentation process for growth of this recombinant E. coli for enzyme production was scaled-up to 250 L. A biotransformation process was developed using cell suspensions of the recombinant E. coli and subsequently scaled-up to 10 L for conversion of l-proline to cis-3-hydroxy-l-proline. A reaction yield of 85 M% and d.e. of 99.9% was obtained for cis-3-hydroxy-l-proline.  相似文献   

18.
The dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) is a critical bacterial enzyme for the construction of the bacterial cell wall. A screen biased toward compounds containing zinc-binding groups (ZBG’s) including thiols, carboxylic acids, boronic acids, phosphonates and hydroxamates has delivered a number of micromolar inhibitors of DapE from Haemophilus influenzae, including the low micromolar inhibitor l-captopril (IC50 = 3.3 μM, Ki = 1.8 μM). In vitro antimicrobial activity was demonstrated for l-captopril against Escherichia coli.  相似文献   

19.
Each of the cell walls of four representatives of the genus Kribbella (order Actinomycetales; suborder Propionibacterineae; family Nocardioidaceae) contains a neutral polysaccharide and an acidic polysaccharide with unusual structures. Common to all four strains studied is a mannan with the following repeating unit: In the cell wall of the strain VKM Ac-2541, a teichulosonic acid was identified with a monosaccharide component that has not hitherto been found in Gram-positive bacteria, viz., pseudaminic acid, and an unusual linkage type in the polymeric chain,

where R = Н (45%), α-d-Galp3OMe (37%) or α-d-Galp2,3OMe (18%).The anionic cell wall components of three other strains are represented by teichuronic acids with a rare constituent, viz., a diaminosugar, 2,3-diacetamido-2,3-dideoxyglucopyranose. The structures of their repeating units differ in the nature of the acidic components:→4)-β-d-Manp2,3NAcA-(1→6)-α-d-Glcp2,3NAc-(1→ (VKM Ас-2538 and VKM Ас-2540) and →4)-β-d-ManpNAcA-(1→6)-α-d-Glcp2,3NAc-(1→ (VKM Ас-2539).The structures of all the glycopolymers were established by chemical and NMR spectroscopic methods; they are identified in Gram-positive bacteria for the first time.  相似文献   

20.
Giardia lamblia arginine deiminase (GlAD), the topic of this paper, belongs to the hydrolase branch of the guanidine-modifying enzyme superfamily, whose members employ Cys-mediated nucleophilic catalysis to promote deimination of l-arginine and its naturally occurring derivatives. G. lamblia is the causative agent in the human disease giardiasis. The results of RNAi/antisense RNA gene-silencing studies reported herein indicate that GlAD is essential for G. lamblia trophozoite survival and thus, a potential target for the development of therapeutic agents for the treatment of giardiasis. The homodimeric recombinant protein was prepared in Escherichia coli for in-depth biochemical characterization. The 2-domain GlAD monomer consists of a N-terminal domain that shares an active site structure (depicted by an in silico model) and kinetic properties (determined by steady-state and transient state kinetic analysis) with its bacterial AD counterparts, and a C-terminal domain of unknown fold and function. GlAD was found to be active over a wide pH range and to accept l-arginine, l-arginine ethyl ester, Nα-benzoyl-l-arginine, and Nω-amino-l-arginine as substrates but not agmatine, l-homoarginine, Nα-benzoyl-l-arginine ethyl ester or a variety of arginine-containing peptides. The intermediacy of a Cys424–alkylthiouronium ion covalent enzyme adduct was demonstrated and the rate constants for formation (k1 = 80 s−1) and hydrolysis (k2 = 35 s−1) of the intermediate were determined. The comparatively lower value of the steady-state rate constant (kcat = 2.6 s−1), suggests that a step following citrulline formation is rate-limiting. Inhibition of GlAD using Cys directed agents was briefly explored. S-Nitroso-l-homocysteine was shown to be an active site directed, irreversible inhibitor whereas Nω-cyano-l-arginine did not inhibit GlAD but instead proved to be an active site directed, irreversible inhibitor of the Bacillus cereus AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号