首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bovine myelin basic protein (MBP), charge isoform 1 (C1) was carboxylmethylated by the enzyme D-aspartyl/L-isoaspartyl protein methyltransferase (EC. 2.1.1.77) and the carboxylmethylated protein was subjected to proteolysis by sequencing grade staphylococcal V8 proteinase at pH 4.0 to identify its carboxylmethylated modified aspartate and/or asparagine residues which are recognized by this methyltransferase. Native MBP, C1 was treated similarly and the proteolysis products were compared, using electrophoretic, chromatographic and amino acid sequencing techniques. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) revealed differences in the kinetics of proteolysis between the native and the carboxylmethylated MBP, C1 which were confirmed using HPLC. Partial sequencing of the native and carboxylmethylated fragments eluting at about 29 min (P29) revealed cleavage of native MBP, C1 at Gly-127-Gly-128 and of the carboxylmethylated MBP, C1 at Phe-124-Gly-125. Additional evidence including tryptic subdigestion of carboxylmethylated P29 disclosed the following partial sequence for this peptide: Gly-Tyr-Gly-Gly-Arg-Ala-Ser-Asp-Tyr-Lys-Ser-Ala-His-Lys-Gly-Leu-Lys- Gly-His-Asp-Ala-Gln-Gly-Thr-Leu-Ser-Lys-Ileu-Phe-Lys-. This sequence matches MBP residues 125-154. As a result of these findings, Asp-132 and Asp-144 were identified as two of the modified (isomerized or racemized) methyl-accepting L-aspartates in MBP. The results of the proteolysis experiments wherein the sequencing grade staphylococcal V8 proteinase was used at the rarely tested pH of 4.0, rather than at its commonly tested pH of 7.8, also disclose that the proteinase totally failed to recognize and hence cleave the two Glu-X bonds (Glu-82-Asn-83 and Glu-118-Gly-119) of MBP, preferring to cleave the protein at a number of hitherto unreported sites.  相似文献   

2.
Human myelin basic protein (MBP) was fragmented into three major polypeptides comprised of a NH2-terminal domain (residues 1-83), a middle domain (residues 84-119) which contains an experimental allergic encephalitogenic determinant and a highly conserved triproline sequence, and a COOH-terminal domain (residues 120-170) by Staphylococcus aureus V8 protease at pH 4.0. These three polypeptides could be identified and purified by reversed-phase high-performance liquid chromatography. Analysis of the sites of phosphorylation of the component 1 of human MBP, the most cationic species, catalyzed by a purified Ca2+-activated and phospholipid-dependent protein kinase and cAMP-dependent protein kinase revealed that although these protein kinases could incorporate approximately 6 and 4 mol 32P, respectively, into MBP, none of the potential sites were located within the middle domain.  相似文献   

3.
Rabbit myelin basic protein (BP) contains several Arg-X bonds with differing susceptibilities to thrombic cleavage as measured by the yields of the various cleavage products obtained under three different conditions. Under conditions where the thrombin-to-substrate ratio was very low (1 NIH unit/mg BP), the concentration of substrate was relatively low (4 mg BP/ml), and the incubation time was short (2 h), the rabbit BP was cleaved essentially completely and specifically at a single site, the Arg(95)-Thr(96) bond. The BPs of other species (beef, pig, guinea pig, rat) were similarly cleaved, no doubt because all have the same amino acid sequence in this region of the protein. Under conditions in which the enzyme-to-substrate ratio and the substrate concentration were higher (2 NIH units/mg BP, 8 mg BP/ml) and the incubation time was long (24 h), additional, partial cleavages occurred, principally at the Arg(43)-Phe(44) and Arg(128)-Ala(129) bonds, but with some cleavage at the Arg(31)-His(32) and Arg(63)-Thr(64) bonds as well. Under conditions in which all three variables were elevated (5 NIH units/mg peptide, 20 mg peptide/ml, 24 h), more extensive cleavage occurred at the above sites. In peptide (96-168), which we examined in detail, nearly complete cleavage of the Arg(128)-Ala(129) bond occurred, with partial cleavage at the unmethylated Arg(105)-Gly(106), Arg(111)-Phe(112), Arg(150)-Leu(151), and Arg(160)-Ser(161) bonds. The susceptibilities to cleavage of the Arg-X bonds in the BP can be explained with varying degrees of success in terms of the known specificity of thrombin. Cleavage of two of the bonds, Arg(128)-Ala(129) and Arg(160)-Ser(161), suggests the occurrence of a chain reversal or beta-turn in the sequence preceding the scissile bonds. Most cleavages of the BP with thrombin do not occur in the more hydrophobic regions; in particular, the hydrophobic region in the center of the molecule that includes the Phe-Phe(87-88) sequence is left intact.  相似文献   

4.
Due to critical amino acid changes in the 72-89 sequence, the determinant of human (Hu) basic protein (BP) that induces experimental autoimmune encephalomyelitis (EAE) in Lewis rats most likely differs from rat and guinea pig BP. To discern encephalitogenic sequence(s), the immunodominant epitopes recognized by Hu-BP-specific T cell lines were identified using synthetic peptides that corresponded to the Hu-BP sequence. The Hu-BP-reactive T cell line contained two distinct specificities, one directed at the 87-99 (Hu) sequence restricted by I-E, and the second directed at the 55-74 (Hu) sequence restricted by I-A. T cells specific for the 87-99 determinant recognized both Hu- and Rt-BP, were highly encephalitogenic, and accounted for the experimental autoimmune encephalomyelitis-inducing activity of the Hu-BP line. T cells directed at the S55-74 (Hu) sequence did not recognize Rt-BP and were not encephalitogenic. The same TCR V genes (homologous to the mouse V alpha 2 and V beta 8 families) that we showed previously were utilized preferentially in response to the I-A restricted 72-89 encephalitogenic sequence were also present in T cell lines specific for both the S55-74 and S87-99 epitopes. These data indicate that encephalitogenic activity of BP in Lewis rats is related to discrete T cell epitopes that are present on or cross-react with rat-BP. Furthermore it would appear that genes in the TCR V alpha 2 and V beta 8 families are widely used in response to different BP epitopes restricted by either I-A or I-E molecules.  相似文献   

5.
Two peptic fragments (residues 37-88 and 43-88) of guinea pig myelin basic protein which are capable of inducing experimental allergic encephalomyelitis in Lewis rats were cleaved to shorter fragments with alpha-protease (Crotalus atrox proteinase, EC 3.4.24.1) and thermolysin (EC 3.4.24.4). The fragments were isolated, purified, and identified by amino acid composition and NH2- and COOH-terminal residues. The time courses of the reactions, monitored by thin layer electrophoresis of the digests, showed that alpha-protease cleaves peptide (43-88) initially at the Pro(71)-Gln(72) bond, and that the product peptides are subsequently attacked at the Arg(63) -Thr(64), Ser(74)-Gln(75), Arg(78)-Ser(79), and Ser(76)-Gln(80) bonds. No significant cleavages occurred at the -Leu, -Val, and -Ala bonds. These results are in striking contrast to those obtained previously by others workers with other peptide substrates, where selective cleavage at hydrophobic residues occurred. Thermolysin was found to attack peptide (37-88) at the Phe(42)-Phe(43) bond very rapidly; the product peptides were subsequently attacked at the His(60)-Ala(61), Ser(38)-Ile(39)-Tyr(67)-Gly(68), and Pro(84)-Val(85) bonds. These cleavages are compatible with the known specificity of this enzyme. Several of the fragments prepared with these two enzymes, peptides (43-71), (61-88), (75-88), and (72-84) have been used in other studies to locate the encephalitogenic site in the parent peptic peptide.  相似文献   

6.
The requirement of N- and C-terminal regions for the enzymatic activity of human T-cell leukemia virus type I (HTLV-I) protease was investigated using a series of deletion mutants. The activity was analyzed by autoprocessing of the protease itself or by processing of the gag p53 precursor. The deletional analyses indicated that Asp38-Gly152 with an additional Met-Pro sequence at the N-terminus was probably sufficient for the enzymatic activity, although the mature HTLV-I protease consists of Pro33-Leu157. A molecular model of HTLV-I protease, which was constructed by comparison with the structure of Rous sarcoma virus protease, predicted that Pro33-Leu37 and Gly143-Leu147 would form a beta-sheet. Our experimental results and the model structure suggest that (a) five amino acids in the N-terminal region (Pro33-Leu37), which are thought to be involved in the beta-sheet, are not crucial for the enzymatic activity; (b) Pro153-Leu157 is not necessary but Pro148-Gly152 is important for the enzymatic activity, in addition to Gly143-Leu147 involved in the beta-sheet.  相似文献   

7.
Staphylococcus aureus strain V8 protease is a serine endopeptidase which cleaves peptide bonds at the carboxyl side of Glu and Asp. Specific cleavage at Glu has previously been achieved in ammonium bicarbonate whereas in sodium phosphate cleavage at both Glu and Asp was observed. However, it is shown here that bicarbonate does not restrict the specificity to Glu-X bonds, it simply inhibits the enzyme. The degradation of a mixture of oxidized insulin and glucagon proceeds similarly in the two buffers, although faster in phosphate.  相似文献   

8.
In Lewis rats, immunization with myelin basic protein induces two distinct encephalitogenic T cell populations, those responding to the immunodominant 72-89 epitope and those specific for a secondary epitope including residues 87-99. The 72-89 specific T cells were I-A restricted and preferentially expressed V beta 8.2 in their TCR. To determine the fine specificity, MHC restriction, and TCR V beta gene use in T cells reactive to the secondary epitope, we characterized 23 T cell clones from the lymph nodes (LN) and spinal cords (SC) of rats immunized with either whole basic protein or synthetic peptides S85-99 and S87-99 that were found to be functionally similar. The S85-99/S87-99 specific clones from LN and SC were all encephalitogenic despite differences in recognition of intact basic protein and class II MHC restriction. Unlike LN clones that overexpressed V beta 8 (46%+) and V beta 6 (31%+), however, SC clones were strongly biased (86%+) in their expression of V beta 6. This V gene bias raised the possibility of TCR peptide therapy using V beta 6 peptides. The V beta 6 sequence was similar to V beta 8.2 in the CDR2 region, and the corresponding peptides from this region were found to be cross-reactive in vivo. Moreover, both peptides were effective in the treatment of EAE induced with either S85-99, biased in V beta 6+ and V beta 8+ T cells, or guinea pig basic protein, biased only in V beta 8+ T cells. These data demonstrate the presence of common immunogenic epitopes among subsets of TCR V region gene families that possess important regulatory activity on effector T cell function.  相似文献   

9.
A peptide, ubiquitin(67-76)-histone 2A(114-128) fragment (UBH2AF), was synthesized by selective formation of an isopeptide bond between the C-terminus of ubiquitin(67-76) and the epsilon-amino group of lysine-119 in histone 2A(114-128) which contained 4 lysine residues at positions 118, 119, 125 and 127, respectively. The transfer active ester condensation technique, together with the Tnm amine protecting group, were used successfully in the peptide segment coupling reaction. [structure: see text]  相似文献   

10.
Two arrowhead proteinase inhibitors (inhibitors A and B) were characterized and their primary structures were determined. Both inhibitors A and B are double-headed and multifunctional protease inhibitors. Inhibitor A inhibits an equimolar amount of trypsin and chymotrypsin simultaneously and weakly inhibits kallikrein. Inhibitor B inhibits two molecules of trypsin simultaneously and inhibits kallikrein more strongly than does inhibitor A. The amino acid sequences of inhibitors A and B were determined by sequencing the reduced and S-carboxamidomethylated proteins and their peptides produced by cyanogen bromide or proteolytic lysylendopeptidase or Staphylococcus aureus V8 protease cleavage. Inhibitors A and B consist of 150 amino acid residues with three disulfide bonds (Cys 43-Cys 89, Cys 110-Cys 119, and Cys 112-Cys 115) and share 90% sequence identity, with 13 different residues. Since the primary structures are totally different from those of all other serine protease inhibitors so far known, these inhibitors might be classified into a new protease inhibitor family.  相似文献   

11.
Rabbit myelin basic protein (BP) was subjected to partial cleavage with plasmin, and 15 cleavage products were isolated by a combination of gel filtration and ion-exchange chromatography. Their identification was achieved by amino acid analysis and tryptic peptide mapping, supplemented in some instances by carboxy-terminal analyses with carboxypeptidases A, B, and Y and amino-terminal analyses with dipeptidyl aminopeptidase I. The results showed that major plasmic cleavage sites included the Lys89-Asn90, Lys133-Ser134, and Lys153-Leu154 bonds. Cleavages also occurred at the Arg31-His32, Lys53-Arg54, and Arg25-His26 bonds, but these appeared to be less extensive. A large number of additional peptides were produced in relatively low yield. The smaller of these were isolated from heterogeneous fractions by high-voltage electrophoresis-TLC. Amino acid analysis of these peptides showed that minor cleavage sites included the Arg9-His10, Lys13-Tyr14, Lys103-Gly104, Lys137-Gly138, Lys140-Gly141, and Arg160-Ser161 bonds. In spite of a lower selectivity toward peptide bonds in BP as compared with pepsin, cathepsin D, and thrombin, plasmin has the advantage over the former proteinases in that it does not cleave at or near the Phe44-Phe45 bond. Instead it cleaves at the Arg31-His32 and Lys53-Arg54 bonds, thus preserving the entire hydrophobic sequence Ile-Leu-Asp-Ser-Ile-Gly-Arg-Phe-Phe as well as short sequences to either side.  相似文献   

12.
The psbO gene encoding the extrinsic 33 kDa protein of oxygen-evolving photosystem II (PSII) complex was cloned and sequenced from a red alga, Cyanidium caldarium. The gene encodes a polypeptide of 333 residues, of which the first 76 residues served as transit peptides for transfer across the chloroplast envelope and thylakoid membrane. The mature protein consists of 257 amino acids with a calculated molecular mass of 28,290 Da. The sequence homology of the mature 33 kDa protein was 42.9-50.8% between the red alga and cyanobacteria, and 44.7-48.6% between the red alga and higher plants. The cloned gene was expressed in Escherichia coli, and the recombinant protein was purified, subjected to protease-treatments. The cleavage sites of the 33 kDa protein by chymotrypsin or V8 protease were determined and compared among a cyanobacterium (Synechococcus elongatus), a euglena (Euglena gracilis), a green alga (Chlamydomonas reinhardtii) and two higher plants (Spinacia oleracea and Oryza sativa). The cleavage sites by chymotrypsin were at 156F and 190F for the cyanobacterium, 159M, 160F and 192L for red alga, 11Y and 151F for euglena, 10Yand 150F for green alga, and 16Y for spinach, respectively. The cleavage sites by V8 protease were at 181E (cyanobacterium), 182E and 195E (red alga), 13E, 67E, 69E, 153D and 181E (euglena), 176E and 180E (green alga), and 18E or 19E (higher plants). Since most of the residues at these cleavage sites were conserved among the six organisms, the results indicate that the structure of the 33 kDa protein, at least the structure based on the accessibility by proteases, is different among these organisms. In terms of the cleavage sites, the structure of the 33 kDa protein can be divided into three major groups: cyanobacterial and red algal-type has cleavage sites at residues around 156-195, higher plant-type at residues 16-19, and euglena and green algal-type at residues of both cyanobacterial and higher plant-types.  相似文献   

13.
IL-1 converting enzyme (ICE) specifically cleaves the human IL-1 beta precursor at two sequence-related sites: Asp27-Gly28 (site 1) and Asp116-Ala117 (site 2). Cleavage at Asp116-Ala117 results in the generation of mature, biologically active IL-1 beta. ICE is unusual in that preferred cleavage at Asp-X bonds (where X is a small hydrophobic residue), has not been described for any other eukaryotic protease. To further examine the substrate specificity of ICE, proteins that contain Asp-X linkages including transferrin, actin, complement factor 9, the murine IL-1 beta precursor, and human and murine IL-1 alpha precursors, were assayed for cleavage by 500-fold purified ICE. The human and murine IL-1 beta precursors were the only proteins cleaved by ICE, demonstrating that ICE is an IL-1 beta convertase. Analysis of human IL-1 beta precursor mutants containing amino acid substitutions or deletions within each processing site demonstrated that omission or replacement of Asp at site 1 or site 2 prevented cleavage by ICE. To quantitatively assess the substrate requirements of ICE, a peptide-based cleavage assay was established using a 14-mer spanning site 2. Cleavage between Asp [P1] and Ala [P1']2 was demonstrated. Replacement of Asp with Ala, Glu, or Asn resulted in a greater than 100-fold reduction in cleavage activity. The rank order in position P1' was Gly greater than Ala much greater than Leu greater than Lys greater than Glu. Substitutions at P2'-P4' and P6' had relatively little effect on cleavage activity. These results show that ICE is a highly specific IL-1 beta convertase with absolute requirements for Asp in P1 and a small hydrophobic amino acid in P1'.  相似文献   

14.
The interaction of the following human fibrinogen-like peptides with bovine thrombin was studied by use of one- and two-dimensional NMR techniques in aqueous solution: Ala(1)-Asp-Ser-Gly-Glu-Gly-Asp-Phe(8)-Leu-Ala-Glu-Gly-Gly-Gly-Val-Arg(16 )- Gly(17)-Pro-Arg(19)-Val(20)-Val-Glu-Arg (F10), residues 1-16 of F10 (fibrinopeptide A), residues 17-23 of F10 (F12), residues 1-20 of F10 (F13), residues 6-20 of F10 with Arg(16) replaced by a Gly residue (F14), and residues 6-19 of F10 with Arg(16) replaced by a Leu residue (F15). At pH 5.3 and 25 degrees C, the Arg(16)-Gly(17) peptide bonds of both peptides F10 and F13 were cleaved instantaneously in the presence of 0.6 mM thrombin, whereas the cleavage of the Arg(19)-Val(20) peptide bonds in peptides F12, F13, and F14 took over 1 h for completion. On the basis of observations of line broadening, fibrinopeptide A was found to bind to thrombin. While resonances from residues Ala(1)-Glu(5) were little affected, binding of fibrinopeptide A to thrombin caused significant line broadening of NH and side-chain proton resonances within residues Asp(7)-Arg(16). There is a chain reversal within residues Asp(7)-Arg(16) such that Phe(8) is brought close to the Arg(16)-Gly(17) peptide bond in the thrombin-peptide complex, as indicated by transferred NOEs between the aromatic ring protons of Phe(8) and the C alpha H protons of Gly(14) and the C gamma H protons of Val(15). A similar chain reversal was obtained in the isolated peptide F10 at a subzero temperature of -8 degrees C. The titration behavior of Asp(7) in peptide F13 does not deviate from that of the reference peptide, N-acetyl-Asp-NHMe at both 25 and -8 degrees C, indicating that no strong interaction exists between Asp(7) and Arg(16) or Arg(19). Peptides with Arg(16) replaced by Gly and Leu, respectively, i.e., F14 and F15, were also found to bind to thrombin but with a different conformation, as indicated by the absence of the long-range NOEs observed with fibrinopeptide A. Residues Asp(7)-Arg(16) constitute an essential structural element in the interaction of thrombin with fibrinogen.  相似文献   

15.
The 3C-like protease of the Chiba virus, a Norwalk-like virus, is one of the chymotrypsin-like proteases. To identify active-site amino acid residues in this protease, 37 charged amino acid residues and a putative nucleophile, Cys139, within the GDCG sequence were individually replaced with Ala in the 3BC precursor, followed by expression in Escherichia coli, where the active 3C-like protease would cleave 3BC into 3B (VPg) and 3C (protease). Among 38 Ala mutants, 7 mutants (R8A, H30A, K88A, R89A, D138A, C139A, and H157A) completely or nearly completely lost the proteolytic activity. Cys139 was replaceable only with Ser, suggesting that an SH or OH group in the less bulky side chain was required for the side chain of the residue at position 139. His30, Arg89, and Asp138 could not be replaced with any other amino acids. Although Arg8 was also not replaceable for the 3B/3C cleavage and the 3C/3D cleavage, the N-terminal truncated mutant devoid of Arg8 significantly cleaved 3CD into 3C and 3D (polymerase), indicating that Arg8 itself was not directly involved in the proteolytic cleavage. As for position 88, a positively charged residue was required because the Arg mutant showed significant activity. As deduced by the X-ray structure of the hepatitis A virus 3C protease, Arg8, Lys88, and Arg89 are far away from the active site, and the side chain of Asp138 is directed away from the active site. Therefore, these are not catalytic residues. On the other hand, all of the mutants of His157 in the S1 specificity pocket tended to retain very slight activity, suggesting a decreased level of substrate recognition. These results, together with a sequence alignment with the picornavirus 3C proteases, indicate that His30 and Cys139 are active-site residues, forming a catalytic dyad without a carboxylate directly participating in the proteolysis.  相似文献   

16.
The interaction of the following human fibrinogen-like peptides with bovine thrombin was studied by one- and two-dimensional NMR techniques in aqueous solution: acetyl-Phe(8)-Leu(9)-Ala(10)-Glu-(11)-Gly(12)-Gly(13)-Gly(14)-Val(15)-Ar g(16)- Gly(17)-Pro(18)-NHMe (F6), acetyl-Phe-Leu-Ala-Glu-Gly-Gly-Gly-Val-Arg(16) (tF6), acetyl-Asp(7)-Phe-Leu-Ala-Glu-Gly-Gly-Gly-Val-Arg(16)-Gly(17)-Pro- Arg(19)-Val(20)-NHMe (F8), and acetyl-Asp-Phe-Leu-Ala-Glu-Gly-Gly-Gly-Val-Arg(16) (tF8). At pH 5.3 and 25 degrees C, the Arg(16)-Gly(17) peptide bonds in both F6 and F8 were cleaved instantaneously in the presence of 0.5 mM thrombin, producing truncated peptides tF6 and tF8 and other peptide fragments. On the basis of observations of line broadening, thrombin was found to bind to the cleavage products, tF6 and tF8, of peptides F6 and F8. Peptide tF8 may have a higher affinity for thrombin than peptide tF6, as suggested by the more pronounced thrombin-induced line broadening on the proton resonances in peptide tF8. Transferred NOE (TRNOE) measurements were made of the complexes between thrombin and peptides tF6 and tF8. Medium- and long-range NOE interactions were found between the NH proton of Asp(7) and the C beta H protons of Ala(10), between the C alpha H proton of Glu(11) and the NH proton of Gly(13), and between the ring protons of Phe(8) and the C alpha H protons of Gly(14) and the C gamma H protons of Val(15). Sets of structures of the decapeptide tF8 were deduced by use of distance geometry calculations based on sequential and medium- and long-range TRNOEs from the thrombin-bound peptide. A predominant feature of these structures is the nonpolar cluster formed by the side chains of residues Phe(8), Leu(9), and Val(15) that are directly involved in binding to thrombin. This structural feature is brought about by an alpha-helical segment involving residues Phe(8)-Ala(10), followed by a multiple-turn structure involving residues Glu(11)-Val(15). These results provide an explanation for the observations that Asp(7), Phe(8), and Gly(12) are strongly conserved in mammalian fibrinogens and that the mutations of Asp(7) to Asn(7) and of Gly(12) to Val(12), result in delayed release of fibrinopeptide A, producing human bleeding disorders.  相似文献   

17.
The complete amino acid sequence of Achromobacter lyticus protease I (EC 3.4.21.50), which specifically hydrolyzes lysyl peptide bonds, has been established. This has been achieved by sequence analysis of the reduced and S-carboxymethylated protease and of peptides obtained by enzymatic digestion with Achromobacter protease I itself and Staphylococcus aureus V8 protease and by chemical cleavage with cyanogen bromide. The protease consists of 268 residues with three disulfide bonds, which have been assigned to Cys6-Cys216, Cys12-Cys80, and Cys36-Cys58. Comparison of the amino acid sequence of Achromobacter protease and other serine proteases of bacterial and mammalian origins has revealed that Achromobacter protease I is a mammalian-type serine protease of which the catalytic triad comprises His57, Asp113, and Ser194. It has also been shown that the protease has 9- and 26-residue extensions of the peptide chain at the N and C termini, respectively, and overall sequence homology is as low as 20% with bovine trypsin. The presence of a disulfide bridge between the N-terminal extension Cys6 and Cys216 close to the putative active site in the C-terminal region is thought to be responsible for the generation of maximal proteolytic function in the pH range 8.5-10.7 and enhanced stability to denaturation.  相似文献   

18.
The ionizable groups in proteins with the lowest pKs are the carboxyl groups of aspartic acid side-chains. One of the lowest, pK=0.6, is observed for Asp76 in ribonuclease T1. This low pK appeared to result from hydrogen bonds to a water molecule and to the side-chains of Asn9, Tyr11, and Thr91. The results here confirm this by showing that the pK of Asp76 increases to 1.7 in N9A, to 4.0 in Y11F, to 4.2 in T91V, to 4.4 in N9A+Y11F, to 4.9 in N9A+T91V, to 5.9 in Y11F+T91V, and to 6.4 in the triple mutant: N9A+Y11F+T91V. In ribonuclease Sa, the lowest pK=2.4 for Asp33. This pK increases to 3.9 in T56A, which removes the hydrogen bond to Asp33, and to 4.4 in T56V, which removes the hydrogen bond and replaces the -OH group with a -CH(3) group. It is clear that hydrogen bonds are able to markedly lower the pK values of carboxyl groups in proteins. These same hydrogen bonds make large contributions to the conformational stability of the proteins. At pH 7, the stability of D76A ribonuclease T1 is 3.8 kcal mol(-1) less than wild-type, and the stability of D33A ribonuclease Sa is 4.1 kcal mol(-1) less than wild-type. There is a good correlation between the changes in the pK values and the changes in stability. The results suggest that the pK values for these buried carboxyl groups would be greater than 8 in the absence of hydrogen bonds, and that the hydrogen bonds and other interactions of the carboxyl groups contribute over 8 kcal mol(-1) to the stability.  相似文献   

19.
Treatment of rabbit muscle pyruvate kinase with iron/ascorbate caused an inactivation with the cleavage of peptide bond. The inactivation or fragmentation of the enzyme was prevented by addition of Mg2+, catalase, and mannitol, but ADP and PEP the substrates did not show any effect. Protective effect of catalase and mannitol suggests that hydroxyl radical produced through the ferrous ion-dependent reduction of oxygen is responsible for the inactivation/fragmentation of the enzyme. SDS-PAGE and TOF-MS analysis confirmed five pairs of fragments, which were determined to result from the cleavage of the Lys114-Gly115, Glu117-Ile118, Asp177-Gly178, Gly207-Val208, and Phe243-Ile244 bonds of the enzyme by amino-terminal sequencing analysis. Protection of the enzyme by Mg2+ implies the identical binding sites of Fe2+ and Mg2+, but the cleavage sites were discriminated from the cofactor Mg2+-binding sites. Considering amino acid residues interacting with metal ions and tertiary structure, Fe2+ ion may bind to Asp177 neighboring to Gly207 and Glu117 neighboring to Lys114 and Phe243, causing the peptide cleavage by hydroxyl radical. Iron-dependent oxidative inactivation/fragmentation of pyruvate kinase can explain the decreased glycolytic flux under aerobic conditions. Intracellular free Mg2+ concentrations are responsible for the control of cellular respiration and glycolysis.  相似文献   

20.
Highly encephalitogenic peptide (37-88), derived from the guinea pig myelin basic protein by peptic digestion, was treated chemically to destroy its tyrosyl and histidyl residues and enzymatically to remove its C-terminal sequence Val-His-Phe. Neither of the modifications resulted in loss of activity in Lewis rats. The enccephalitogenic region within peptide (37-88) was located by examination of derivative peptides obtained by selective proteolytic cleavage. The results showed that peptide (61-88), like peptide (43-88), was fully active at the level of 0.02 nmole whereas peptides (72-88) and (72-84) were fully active at levels of 0.5 and 2.5 nmole, respectively. In contrast, peptides (43-71) and (75-88) were completely inactive. These results demonstrated that the undecapeptide Gln-Lys-Ser-Gln-Arg-Ser-Gln-Asp-Glu-Asn-Pro (residues 72-84), although not as encephalitogenic as peptides (43-88) or (61-88), does contain the elements essential for the induction of disease. At the levels tested (10.8 and 2.2 nmole) only peptides (43-88) and (61-88) were capable of inhibiting the induciton of disease by passively transferred lymph node cells; this inhibition, however, was less than that achieved by the intact guinea pig basic protein. Further studies on the encephalitogenicity of the bovine basic protein in Lewis rats demonstrated that the active site in the C-terminal half of this protein is present in its entirety within residues 89 to 115.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号