首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Collagen genes and inherited connective tissue disease.   总被引:19,自引:2,他引:17       下载免费PDF全文
  相似文献   

4.
Biochemical markers of bone metabolism, including osteocalcin, total aminoterminal propeptide type I collagen (PINP), and the product of degradation of carboxy-terminal telopeptide type I collagen (β-CrossLaps) were studied in 17 adolescents 11–14 years of age with undifferentiated connective tissue dysplasia (UDCT). Decreased serum concentrations of bone formation markers (PINP and osteocalcin) against the background of normal levels of the bone resorption marker (β-CrossLaps) indicated that the processes of bone remodeling were disturbed and characterized by low-intensity bone-tissue formation with the relative predominance of resorption. The detected bone metabolism disturbances contributed to the development of osteopenia, which gives us grounds to include adolescents with UDCT to the risk group for early-onset osteoporosis.  相似文献   

5.
Collagen production in regenerating tendon   总被引:2,自引:0,他引:2  
  相似文献   

6.
The occurrence of endogenous opioids and their receptors in rat achilles tendon was analyzed by immunohistochemistry (IHC), radioimmunoassay (RIA), and in vitro binding assays. The investigation focused on four enkephalins, dynorphin B, and nociceptin/orphanin FQ. Nerve fibers immunoreactive to all enkephalins (Met-enkephalin, Leu-enkephalin, Met-enkephalin-Arg-Gly-Lys, Met-enkephalin-Arg-Phe) were consistently found in the loose connective tissue and the paratenon, whereas dynorphin B and nociceptin/orphanin FQ could not be detected. The majority of enkephalin-positive nerve fibers exhibited varicosities predominantly seen in blood vessel walls. Measurable levels of Met-enkephalin-Arg-Phe and nociceptin/orphanin FQ were found in tendon tissue using RIA, whereas dynorphin B could not be detected. In addition to the endogenous opioids identified, delta-opioid receptors on nerve fibers were also detected by IHC. Binding assays to characterize the opioid binding sites showed that they were specific and saturable for [3H]-naloxone (Kd 7.01 +/- 0.98 nM; Bmax 23.52 +/- 2.23 fmol/mg protein). Our study demonstrates the occurrence of an opioid system in rat achilles tendon, which may be assumed to be present also in other connective tissues of the locomotor apparatus. This system may prove to be a useful target for pharmacological therapy in painful and inflammatory conditions by new drugs acting selectively in the periphery.  相似文献   

7.
The tendon to bone insertion serves the mechanical role of transferring loads from a relatively compliant tendon to a relatively rigid bone. The details of the mechanism of load transfer are of great importance, since current surgical procedures for tendon reattachment have high failure rates. We hypothesized that the microscopic structure of the insertion is optimized to minimize stress concentrations associated with this load transfer. To explore this, collagen fiber orientation distributions were measured in the supraspinatus tendons of rats. The angular deviation of fibers was fairly uniform across the insertion, and the mean angles of the local distributions deviated mildly from the tendon axis. To explore how these observed property distributions could influence load transfer, these distributions were used to derive material properties for an idealized two-dimensional mechanical model of an insertion. Comparison between stress concentrations in this idealized model and those in three comparison models suggests that the microstructure serves to (1) simultaneously reduce stress concentrations and material mass, and (2) shield the insertion's outward splay from the highest stresses.  相似文献   

8.
Carpal tunnel syndrome (CTS) is a nerve entrapment disease, which has been extensively studied by the engineering and medical community. Although the direct cause is unknown, in vivo and in vitro medical research has shown that tendon excursion creates microtears in the subsynovial connective tissue (SSCT) surrounding the tendon in the carpal tunnel. One proposed mechanism for the SSCT injury is shearing, which is believed to cause fibrosis of the SSCT. Few studies have reported quantitative observations of SSCT response to mechanical loading. Our proposed model is a 2-D section that consists of an FDS tendon, interstitial SSCT and adjacent stationary tendons. We believe that developing this model will allow the most complete quantitative observations of SSCT response to mechanical loading reported thus far. Boundary conditions were applied to the FEA model to simulate single finger flexion. A velocity was applied to the FDS tendon in the model to match loading conditions of the documented cadaver wrist kinematics studies. The cadaveric and FEA displacement results were compared to investigate the magnitude of stiffness required for the SSCT section of the model. The relative motions between the model and cadavers matched more closely than the absolute displacements. Since cadaveric models do not allow identification of the SSCT layers, an FEA model will help determine the displacement and stress experienced by each SSCT layer. Thus, we believe this conceptual model is a first step in understanding how the SSCT layers are recruited during tendon excursion.  相似文献   

9.
Glucocorticosteroids are highly effective in treating various acute and chronic diseases, but their long-term use is often accompanied by side effects, such as osteoporosis of skeleton and bones and atrophy of the skin. Clinically, many of these side effects involve changes in connective tissue. Glucocorticoid effects on connective tissue metabolism are, however, sometimes beneficial for instance, in the treatment of keloids or autoimmune connective tissue diseases. Recent advances in the biochemical technology have provided tools to examine the molecular mechanisms by which glucocorticoids affect connective tissue. These studies have shown distinct alterations in the extracellular matrix as a result of glucocorticoid treatment. This knowledge is useful for the further development of glucocorticosteroids with desirable action spectrum and with minimal side effects.  相似文献   

10.
11.
Current study investigated bone morphogenetic protein 12 (BMP12) and connective tissue growth factor (CTGF) activate tendon derived stem cells (TDSCs) tenogenic differentiation, and promotion of injured tendon regeneration. TDSCs were transfected with BMP12 and CTGF via recombinant adenovirus (Ad) infection. Gene transfection efficiency, cell viability and cytotoxicity, tenogenic gene expression, collagen I/III synthesis were evaluated in vitro. For the in vivo study, the transfected cells were transplanted into the rat patellar tendon window defect. At weeks 2 and 8 of post-surgery, the repaired tendon tissues were harvested for histological and biomechanical examinations. The transfected TDSCs revealed relatively stable transfection efficiency (80–90%) with active cell viability means while rare cytotoxicity in each group. During days 1 and 5, BMP12 and CTGF transfection caused tenogenic differentiation genes activation in TDSCs: type I/III collagen, tenascin-C, and scleraxis were all up-regulated, whereas osteogenic, adipogenic, and chondrogenic markers were all down-regulated respectively. In addition, BMP12 and CTGF overexpression significantly promote type I/III collagen synthesis. After in vivo transplantation, at 2 and 8 weeks post-surgery, BMP12, CTGF and co-transfection groups showed more integrated tendon tissue structure versus control, meanwhile, the ultimate failure loads and Young’s were all higher than control. Remarkably, at 8 weeks post-surgery, the biomechanical properties of co-transfection group was approaching to normal rat patellar tendon, moreover, the ratio of type III/I collagen maintained about 20% in each transfection group, meanwhile, the type I collagen were significantly increased with co-transfection treatment. In conclusion, BMP12 and CTGF transfection stimulate tenogenic differentiation of TDSCs. The synergistic effects of simultaneous transfection of both may significantly promoted rat patellar tendon window defect regeneration.  相似文献   

12.
During tendon development collagen fibrillogenesis occurs in extracellular micro-domains defined by the tenocytes. This permits cellular regulation of the extracellular steps involved in the tissue-specific matrix assembly required for function. The hypothesis tested here is that collagen V associates with the tenocyte surface where it functions in regulation of collagen assembly and cell-directed fibril deposition. The in vitro and in vivo data demonstrate that collagen V is a quantitatively minor component of the tendon. It is preferentially localized on the tenocyte surface as distinct foci in tendons and in cell culture. In vitro data indicate that this interaction with the tenocyte is not HSPG GAG-dependent. Collagen V is present as the mature, processed form, is absent from the media, and is a significant part of the detergent-insoluble cell layer, presumably as part of a membrane-associated complex. In contrast, procollagen I is not efficiently processed and is found predominantly in the culture media. Our data suggest that the regulatory role of collagen V requires collagen V to occupy a different cellular niche from the structural collagen I. In monolayer cultures, the conversion to the tissue form of collagen V and its deposition with the cell layer suggest efficient engagement of procollagen V with pericellular receptors and processing enzymes. The secretion of collagen I into the media and inefficient processing of procollagen I suggest reduced accessibility to these pericellular molecules due to disengagement from the cell surface. This all points to differential spatial localization of collagen V as a mechanism to optimize its regulatory roles during the cell-surface directed steps in tendon collagen fibril assembly.  相似文献   

13.
The development and evolution of multicellular animals relies on the ability of certain cell types to synthesise an extracellular matrix (ECM) comprising very long collagen fibrils that are arranged in very ordered 3-dimensional scaffolds. Tendon is a good example of a highly ordered ECM, in which tens of millions of collagen fibrils, each hundreds of microns long, are synthesised parallel to the tendon long axis. This review highlights recent discoveries showing that the assembly of collagen fibrils in tendon is hierarchical, and involves the formation of fairly short "collagen early fibrils" that are the fusion precursors of the very long fibrils that occur in mature tendon.  相似文献   

14.
15.
The assembly, deposition and organization of collagen fibril bundles and their composite fibrils were studied during morphogenesis of the chick embryo tendon using electron microscopy, serial sections and computer-assisted three-dimensional reconstruction techniques. The 14-day chick embryo is a stage when tendon architecture is being established and rapid changes in the mechanical properties occur between days 14 and 17 of development. Tendon matrix structure develops from discrete subunits, bundles of collagen fibrils. The bundles branch; undergo a gradual rotation over several micrometers; are intimately associated with the cellular elements of the developing tendon; and form arborizing networks within and among fascicles. The organization of discrete fibril segments into bundles, during the establishment of tendon architecture and function, where the segmental fibrillar components could interact with the interfibrillar matrix as well as with adjacent fibrils would contribute to the stabilization of this structure. The observed gradual rotation of the bundles would serve to stabilize the immature bundle through the physical twining of the composite fibrils while the extensive branching of the bundles observed at 14-days of development and their intimate association with the cellular elements would provide a higher order of structure stabilization.  相似文献   

16.
17.

Background  

Tissue engineering of vascularised skeletal muscle is a promising method for the treatment of soft tissue defects in reconstructive surgery. In this study we explored the characteristics of novel collagen and fibrin matrices for skeletal muscle tissue engineering. We analyzed the characteristics of newly developed hybrid collagen-I-fibrin-gels and collagen nanofibers as well as collagen sponges and OPLA?-scaffolds. Collagen-fibrin gels were also tested with genipin as stabilizing substitute for aprotinin.  相似文献   

18.
The method of considering a single loading condition in the study of stress/morphology relationships in trabecular bone is expanded to include the multiple loading conditions experienced by bone in vivo. The bone daily loading histories are characterized in terms of stress magnitudes or cyclic strain energy density and the number of loading cycles. Relationships between local bone apparent density and loading history are developed which assume that bone mass is adjusted in response to strength or energy considerations. Three different bone maintenance criteria are described which are formulated based upon: (1) continuum model effective stress, (2) continuum model fatigue damage accumulation density, and (3) bone tissue strain energy density. These approaches can be applied to predict variations in apparent density within bone and among bones. We show that all three criteria have similar mathematical forms and may be related to the density (or concentration) of bone strain energy which is transferred (dissipated) in the mineralized tissue. The loading history and energy transfer concepts developed here can be applied to many different situations of growth, functional adaptation, injury, and aging of connective tissues.  相似文献   

19.
20.
The visco-elastic behavior of connective tissue is generally attributed to the material properties of the extracellular matrix rather than cellular activity. We have previously shown that fibroblasts within areolar connective tissue exhibit dynamic cytoskeletal remodeling within minutes in response to tissue stretch ex vivo and in vivo. Here, we tested the hypothesis that fibroblasts, through this cytoskeletal remodeling, actively contribute to the visco-elastic behavior of the whole tissue. We measured significantly increased tissue tension when cellular function was broadly inhibited by sodium azide and when cytoskeletal dynamics were compromised by disrupting microtubules (with colchicine) or actomyosin contractility (via Rho kinase inhibition). These treatments led to a decrease in cell body cross-sectional area and cell field perimeter (obtained by joining the end of all of a fibroblast's processes). Suppressing lamellipodia formation by inhibiting Rac-1 decreased cell body cross-sectional area but did not affect cell field perimeter or tissue tension. Thus, by changing shape, fibroblasts can dynamically modulate the visco-elastic behavior of areolar connective tissue through Rho-dependent cytoskeletal mechanisms. These results have broad implications for our understanding of the dynamic interplay of forces between fibroblasts and their surrounding matrix, as well as for the neural, vascular, and immune cell populations residing within connective tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号