首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comeau SR  Kozakov D  Brenke R  Shen Y  Beglov D  Vajda S 《Proteins》2007,69(4):781-785
ClusPro is the first fully automated, web-based program for docking protein structures. Users may upload the coordinate files of two protein structures through ClusPro's web interface, or enter the PDB codes of the respective structures. The server performs rigid body docking, energy screening, and clustering to produce models. The program output is a short list of putative complexes ranked according to their clustering properties. ClusPro has been participating in CAPRI since January 2003, submitting predictions within 24 h after a target becomes available. In Rounds 6-11, ClusPro generated acceptable submissions for Targets 22, 25, and 27. In general, acceptable models were obtained for the relatively easy targets without substantial conformational changes upon binding. We also describe the new version of ClusPro that incorporates our recently developed docking program PIPER. PIPER is based on the fast Fourier transform correlation approach, but the method is extended to use pairwise interaction potentials, thereby increasing the number of near-native docked structures.  相似文献   

2.
RNA molecules have recently become attractive as potential drug targets due to the increased awareness of their importance in key biological processes. The increase of the number of experimentally determined RNA 3D structures enabled structure-based searches for small molecules that can specifically bind to defined sites in RNA molecules, thereby blocking or otherwise modulating their function. However, as of yet, computational methods for structure-based docking of small molecule ligands to RNA molecules are not as well established as analogous methods for protein-ligand docking. This motivated us to create LigandRNA, a scoring function for the prediction of RNA–small molecule interactions. Our method employs a grid-based algorithm and a knowledge-based potential derived from ligand-binding sites in the experimentally solved RNA–ligand complexes. As an input, LigandRNA takes an RNA receptor file and a file with ligand poses. As an output, it returns a ranking of the poses according to their score. The predictive power of LigandRNA favorably compares to five other publicly available methods. We found that the combination of LigandRNA and Dock6 into a “meta-predictor” leads to further improvement in the identification of near-native ligand poses. The LigandRNA program is available free of charge as a web server at http://ligandrna.genesilico.pl.  相似文献   

3.
Prioritization of compounds using inverse docking approach is limited owing to potential drawbacks in its scoring functions. Classically, molecules ranked by best or lowest binding energies and clustering methods have been considered as probable hits. Mining probable hits from an inverse docking approach is very complicated given the closely related protein targets and the chemically similar ligand data set. To overcome this problem, we present here a computational approach using receptor‐centric and ligand‐centric methods to infer the reliability of the inverse docking approach and to recognize probable hits. This knowledge‐driven approach takes advantage of experimentally identified inhibitors against a particular protein target of interest to delineate shape and molecular field properties and use a multilayer perceptron model to predict the biological activity of the test molecules. The approach was validated using flavone derivatives possessing inhibitory activities against principal antimalarial molecular targets of fatty acid biosynthetic pathway, FabG, FabI and FabZ, respectively. We propose that probable hits can be retrieved by comparing the rank list of docking, quantitative‐structure activity relationship and multilayer perceptron models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
The program HBAT is a tool to automate the analysis of potential hydrogen bonds and similar type of weak interactions like halogen bonds and non-canonical interactions in macromolecular structures, available in Brookhaven Protein Database (PDB) file format. HBAT is written using PERL and TK languages. The program generates an MSOFFICE Excel compatible output file for statistical analysis. HBAT identify potential interactions based on geometrical criteria. A series of analysis reports like frequency tables, geometry distribution tables, furcations list are generated. A user friendly GUI offers freedom to select several parameters and options. Graphviz based visualization of hydrogen bond networks in 2D helps to study the cooperativity and anticooperativity geometry in hydrogen bond. HBAT supports post docking interaction analysis between PDB files for any target/receptor (in PDB files) and docked ligands/poses (in SDF). This tool can be implemented in active site interaction analysis, structure based drug design and molecular dynamics simulations.  相似文献   

5.
MOTIVATION: Sampling the conformational space is a fundamental step for both ligand- and structure-based drug design. However, the rational organization of different molecular conformations still remains a challenge. In fact, for drug design applications, the sampling process provides a redundant conformation set whose thorough analysis can be intensive, or even prohibitive. We propose a statistical approach based on cluster analysis aimed at rationalizing the output of methods such as Monte Carlo, genetic, and reconstruction algorithms. Although some software already implements clustering procedures, at present, a universally accepted protocol is still missing. RESULTS: We integrated hierarchical agglomerative cluster analysis with a clusterability assessment method and a user independent cutting rule, to form a global protocol that we implemented in a MATLAB metalanguage program (AClAP). We tested it on the conformational space of a quite diverse set of drugs generated via Metropolis Monte Carlo simulation, and on the poses we obtained by reiterated docking runs performed by four widespread programs. In our tests, AClAP proved to remarkably reduce the dimensionality of the original datasets at a negligible computational cost. Moreover, when applied to the outcomes of many docking programs together, it was able to point to the crystallographic pose. AVAILABILITY: AClAP is available at the "AClAP" section of the website http://www.scfarm.unibo.it.  相似文献   

6.
Gorelik B  Goldblum A 《Proteins》2008,71(3):1373-1386
Multiple near-optimal conformations of protein-ligand complexes provide a better chance for accurate representation of biomolecular interactions, compared with a single structure. We present ISE-dock--a docking program which is based on the iterative stochastic elimination (ISE) algorithm. ISE eliminates values that consistently lead to the worst results, thus optimizing the search for docking poses. It constructs large sets of such poses with no additional computational cost compared with single poses. ISE-dock is validated using 81 protein-ligand complexes from the PDB and its performance was compared with those of Glide, GOLD, and AutoDock. ISE-dock has a better chance than the other three to find more than 60% top single poses under RMSD = 2.0 A and more than 80% under RMSD = 3.0 A from experimental. ISE alone produced at least one 3.0 A or better solutions among the top 20 poses in the entire test set. In 98% of the examined molecules, ISE produced solutions that are closer than 2.0 A from experimental. Paired t-tests (PTT) were used throughout to assess the significance of comparisons between the performances of the different programs. ISE-dock provides more than 100-fold docking solutions in a similar time frame as LGA in AutoDock. We demonstrate the usefulness of the large near optimal populations of ligand poses by showing a correlation between the docking results and experiments that support multiple binding modes in p38 MAP kinase (Pargellis et al., Nat Struct Biol 2002;9:268-272] and in Human Transthyretin (Hamilton, Benson, Cell Mol Life Sci 2001;58:1491-1521).  相似文献   

7.
Huang Z  Wong CF 《Biophysical journal》2007,93(12):4141-4150
Using the docking of p-nitrocatechol sulfate to Yersinia protein tyrosine phosphatase YopH as an example, we showed that an approach based on mining minima followed by cluster and similarity analysis could generate useful insights into docking pathways. Our simulation treated both the ligand and the protein as flexible molecules so that the coupling between their motion could be properly accounted for. Our simulation identified three docking poses; the one with the lowest energy agreed well with experimental structure. The model also predicted the side-chain conformations of the amino acids lying in the binding pocket correctly with the exception of three residues that appeared to be stabilized by two structural water molecules in the crystal structure. The implicit solvent model employed in the simulation could not capture such effects well. We also found four major pathways leading to these docking poses after the ligand entered the mouth of the binding pocket. In addition, the sulfate group of p-nitrocatechol sulfate was found to be important both in binding the ligand to the pocket and in guiding the ligand to dock into the pocket. The coupling of the motion between the protein and the ligand also played an important role in facilitating ligand loading and unloading.  相似文献   

8.
Lorenzen S  Zhang Y 《Proteins》2007,68(1):187-194
Most state-of-the-art protein-protein docking algorithms use the Fast Fourier Transform (FFT) technique to sample the six-dimensional translational and rotational space. Scoring functions including shape complementarity, electrostatics, and desolvation are usually exploited in ranking the docking conformations. While these rigid-body docking methods provide good performance in bound docking, using unbound structures as input frequently leads to a high number of false positive hits. For the purpose of better selecting correct docking conformations, we structurally cluster the docking decoys generated by four widely-used FFT-based protein-protein docking methods. In all cases, the selection based on cluster size outperforms the ranking based on the inherent scoring function. If we cluster decoys from different servers together, only marginal improvement is obtained in comparison with clustering decoys from the best individual server. A collection of multiple decoy sets of comparable quality will be the key to improve the clustering result from meta-docking servers.  相似文献   

9.
Human pancreatic cholesterol esterase (hCEase) is one of the lipases found to involve in the digestion of large and broad spectrum of substrates including triglycerides, phospholipids, cholesteryl esters, etc. The presence of bile salts is found to be very important for the activation of hCEase. Molecular dynamic simulations were performed for the apoform and bile salt complexed form of hCEase using the co-ordinates of two bile salts from bovine CEase. The stability of the systems throughout the simulation time was checked and two representative structures from the highly populated regions were selected using cluster analysis. These two representative structures were used in pharmacophore model generation. The generated pharmacophore models were validated and used in database screening. The screened hits were refined for their drug-like properties based on Lipinski's rule of five and ADMET properties. The drug-like compounds were further refined by molecular docking simulation using GOLD program based on the GOLD fitness score, mode of binding, and molecular interactions with the active site amino acids. Finally, three hits of novel scaffolds were selected as potential leads to be used in novel and potent hCEase inhibitor design. The stability of binding modes and molecular interactions of these final hits were re-assured by molecular dynamics simulations.  相似文献   

10.
Docking methodology aims to predict the experimental binding modes and affinities of small molecules within the binding site of particular receptor targets and is currently used as a standard computational tool in drug design for lead compound optimisation and in virtual screening studies to find novel biologically active molecules. The basic tools of a docking methodology include a search algorithm and an energy scoring function for generating and evaluating ligand poses. In this review, we present the search algorithms and scoring functions most commonly used in current molecular docking methods that focus on protein–ligand applications. We summarise the main topics and recent computational and methodological advances in protein–ligand docking. Protein flexibility, multiple ligand binding modes and the free-energy landscape profile for binding affinity prediction are important and interconnected challenges to be overcome by further methodological developments in the docking field.  相似文献   

11.
In this study, chemical feature based pharmacophore models of MMP-1, MMP-8 and MMP-13 inhibitors have been developed with the aid of HypoGen module within Catalyst program package. In MMP-1 and MMP-13, all the compounds in the training set mapped HBA and RA, while in MMP-8, the training set mapped HBA and HY. These features revealed responsibility for the high molecular bioactivity, and this is further used as a three dimensional query to screen the knowledge based designed molecules. These pharmacophore models for collagenases picked up some potent and novel inhibitors. Subsequently, docking studies were performed for the potent molecules and novel hits were suggested for further studies based on the docking score and active site interactions in MMP-1, MMP-8 and MMP-13.  相似文献   

12.
Fradera X  Knegtel RM  Mestres J 《Proteins》2000,40(4):623-636
A similarity-driven approach to flexible ligand docking is presented. Given a reference ligand or a pharmacophore positioned in the protein active site, the method allows inclusion of a similarity term during docking. Two different algorithms have been implemented, namely, a similarity-penalized docking (SP-DOCK) and a similarity-guided docking (SG-DOCK). The basic idea is to maximally exploit the structural information about the ligand binding mode present in cases where ligand-bound protein structures are available, information that is usually ignored in standard docking procedures. SP-DOCK and SG-DOCK have been derived as modified versions of the program DOCK 4.0, where the similarity program MIMIC acts as a module for the calculation of similarity indices that correct docking energy scores at certain steps of the calculation. SP-DOCK applies similarity corrections to the set of ligand orientations at the end of the ligand incremental construction process, penalizing the docking energy and, thus, having only an effect on the relative ordering of the final solutions. SG-DOCK applies similarity corrections throughout the entire ligand incremental construction process, thus affecting not only the relative ordering of solutions but also actively guiding the ligand docking. The performance of SP-DOCK and SG-DOCK for binding mode assessment and molecular database screening is discussed. When applied to a set of 32 thrombin ligands for which crystal structures are available, SG-DOCK improves the average RMSD by ca. 1 A when compared with DOCK. When those 32 thrombin ligands are included into a set of 1,000 diverse molecules from the ACD, DIV, and WDI databases, SP-DOCK significantly improves the retrieval of thrombin ligands within the first 10% of each of the three databases with respect to DOCK, with minimal additional computational cost. In all cases, comparison of SP-DOCK and SG-DOCK results with those obtained by DOCK and MIMIC is performed.  相似文献   

13.
Clustering is one of the most powerful tools in computational biology. The conventional wisdom is that events that occur in clusters are probably not random. In protein docking, the underlying principle is that clustering occurs because long-range electrostatic and/or desolvation forces steer the proteins to a low free-energy attractor at the binding region. Something similar occurs in the docking of small molecules, although in this case shorter-range van der Waals forces play a more critical role. Based on the above, we have developed two different clustering strategies to predict docked conformations based on the clustering properties of a uniform sampling of low free-energy protein-protein and protein-small molecule complexes. We report on significant improvements in the automated prediction and discrimination of docked conformations by using the cluster size and consensus as a ranking criterion. We show that the success of clustering depends on identifying the appropriate clustering radius of the system. The clustering radius for protein-protein complexes is consistent with the range of the electrostatics and desolvation free energies (i.e., between 4 and 9 Angstroms); for protein-small molecule docking, the radius is set by van der Waals interactions (i.e., at approximately 2 Angstroms). Without any a priori information, a simple analysis of the histogram of distance separations between the set of docked conformations can evaluate the clustering properties of the data set. Clustering is observed when the histogram is bimodal. Data clustering is optimal if one chooses the clustering radius to be the minimum after the first peak of the bimodal distribution. We show that using this optimal radius further improves the discrimination of near-native complex structures.  相似文献   

14.
Forty anthraquinone derivatives have been downloaded from PubChem database and investigated in a quantitative structure-activity relationships (QSAR) study. The models describing log P and LD50 of this set were built up on the hypermolecule scheme that mimics the investigated receptor space; the models were validated by the leave-one-out procedure, in the external test set and in a new version of prediction by using similarity clusters. Molecular docking approach using Lamarckian Genetic Algorithm was made on this class of anthraquinones with respect to 3Q3B receptor. The best scored molecules in the docking assay were used as leaders in the similarity clustering procedure. It is demonstrated that the LD50 data of this set of anthraquinones are related to the binding energies of anthraquinone ligands to the 3Q3B receptor.  相似文献   

15.
Multiple receptors conformation docking (MRCD) and clustering of dock poses allows seamless incorporation of receptor binding conformation of the molecules on wide range of ligands with varied structural scaffold. The accuracy of the approach was tested on a set of 120 cyclic urea molecules having HIV-1 protease inhibitory activity using 12 high resolution X-ray crystal structures and one NMR resolved conformation of HIV-1 protease extracted from protein data bank. A cross validation was performed on 25 non-cyclic urea HIV-1 protease inhibitor having varied structures. The comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) models were generated using 60 molecules in the training set by applying leave one out cross validation method, rloo2 values of 0.598 and 0.674 for CoMFA and CoMSIA respectively and non-cross validated regression coefficient r2 values of 0.983 and 0.985 were obtained for CoMFA and CoMSIA respectively. The predictive ability of these models was determined using a test set of 60 cyclic urea molecules that gave predictive correlation (rpred2) of 0.684 and 0.64 respectively for CoMFA and CoMSIA indicating good internal predictive ability. Based on this information 25 non-cyclic urea molecules were taken as a test set to check the external predictive ability of these models. This gave remarkable out come with rpred2 of 0.61 and 0.53 for CoMFA and CoMSIA respectively. The results invariably show that this method is useful for performing 3D QSAR analysis on molecules having different structural motifs.  相似文献   

16.
The main aim of the study is to identify molecules that can disrupt quorum sensing (QS) system of Vibrio harveyi and therefore perhaps the production of toxins. Recently, a novel class of dioxazaborocane derivatives has been found to block AI-2 QS by targeting LuxPQ, but the mechanism of protein inhibition is still unclear. In order to investigate the possible binding modes, all the derivatives were docked into the binding site of LuxP using induced fit docking (IFD). The computed binding affinity is in good agreement with the experimental data. Resultant protein–ligand complexes were simulated using Desmond module and the result revealed better binding of ligands in the binding site of LuxP. Both pharmacophore- and structure-based virtual screening was performed to identify novel hits against LuxP. A filtering protocol, including lipinski filters, number of rotatable bonds and three levels of docking precisions were used for the selection of hits with specific properties. The virtual screening results were then combined and analyzed, which retrieved six hits with significant Glide score, binding affinity toward LuxP. The pharmacokinetic properties of the retrieved hits are in the acceptable range. Enrichment calculation was performed to validate the final hits, to discriminate the active compounds from the inactive compounds. The identified hits could serve as a base for further drug development against LuxP of Vibrio harveyi.  相似文献   

17.
Abstract

p21-activated kinases (Paks) play an integral component in various cellular diverse processes. The full activation of Pak is dependent upon several serine residues present in the N-terminal region, a threonine present at the activation loop, and finally the phosphorylation of these residues ensure the complete activation of Pak1. The present study deals with the identification of novel potent candidates of Pak1 using computational methods as anti-cancer compounds. A diverse energy based pharmacophore (e-pharmacophore) was developed using four co-crystal inhibitors of Pak1 having pharmacophore features of 5 (DRDRR), 6 (DRHADR), and 7 (RRARDRP and DRRDADH) hypotheses. These models were used for rigorous screening against e-molecule database. The obtained hits were filtered using ADME/T and molecular docking to identify the high affinity binders. These hits were subjected to hierarchical clustering using dendritic fingerprint inorder to identify structurally diverse molecules. The diverse hits were scored against generated water maps to obtain WM/MM ΔG binding energy. Furthermore, molecular dynamics simulation and density functional theory calculations were performed on the final hits to understand the stability of the complexes. Five structurally diverse novel Pak1 inhibitors (4835785, 32198676, 32407813, 76038049, and 32945545) were obtained from virtual screening, water thermodynamics and WM/MM ΔG binding energy. All hits revealed similar mode of binding pattern with the hinge region residues replacing the unstable water molecules in the binding site. The obtained novel hits could be used as a platform to design potent drugs that could be experimentally tested against cancer patients having increased Pak1 expression.  相似文献   

18.
Identifying correct binding modes in a large set of models is an important step in protein–protein docking. We identified protein docking filter based on overlap area that significantly reduces the number of candidate structures that require detailed examination. We also developed potentials based on residue contacts and overlap areas using a comprehensive learning set of 640 two‐chain protein complexes with mathematical programming. Our potential showed substantially better recognition capacity compared to other publicly accessible protein docking potentials in discriminating between native and nonnative binding modes on a large test set of 84 complexes independent of our training set. We were able to rank a near‐native model on the top in 43 cases and within top 10 in 51 cases. We also report an atomic potential that ranks a near‐native model on the top in 46 cases and within top 10 in 58 cases. Our filter+potential is well suited for selecting a small set of models to be refined to atomic resolution. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
The SURFNET program generates molecular surfaces and gaps between surfaces from 3D coordinates supplied in a PDB-format file. The gap regions can correspond to the voids between two or more molecules, or to the internal cavities and surface grooves within a single molecule. The program is particularly useful in clearly delineating the regions of the active site of a protein. It can also generate 3D contour surfaces of the density distributions of any set of 3D data points. All output surfaces can be viewed interactively, along with the molecules or data points in question, using some of the best-known molecular modeling packages. In addition, PostScript output is available, and the generated surfaces can be rendered using various other graphics packages.  相似文献   

20.
Król M  Tournier AL  Bates PA 《Proteins》2007,68(1):159-169
Molecular Dynamics (MD) simulations have been performed on a set of rigid-body docking poses, carried out over 25 protein-protein complexes. The results show that fully flexible relaxation increases the fraction of native contacts (NC) by up to 70% for certain docking poses. The largest increase in the fraction of NC is observed for docking poses where anchor residues are able to sample their bound conformation. For each MD simulation, structural snap-shots were clustered and the centre of each cluster used as the MD-relaxed docking pose. A comparison between two energy-based scoring schemes, the first calculated for the MD-relaxed poses, the second for energy minimized poses, shows that the former are better in ranking complexes with large hydrophobic interfaces. Furthermore, complexes with large interfaces are generally ranked well, regardless of the type of relaxation method chosen, whereas complexes with small hydrophobic interfaces remain difficult to rank. In general, the results indicate that current force-fields are able to correctly describe direct intermolecular interactions between receptor and ligand molecules. However, these force-fields still fail in cases where protein-protein complexes are stabilized by subtle energy contributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号