首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Detailed understanding of cardiac mechanics depends upon accurate and complete characterization of the three-dimensional properties of both normal and diseased myocardial tissue. This, however, can only be obtained by performing multiaxial tests on cardiac tissue. In this study we subjected thin sheets of passive canine left ventricular myocardium to various combinations of simultaneous biaxial stretching. During each stretch the ratio of the orthogonal strains was kept constant and the corresponding stresses remained proportional. We fitted the biaxial stress-strain data both with exponential strain-energy functions with quadratic powers of strains as well as with an alternative function with nonintegral powers of strains. We used our recently developed nonparametric method to assess the reliability of the coefficients for each of these functions. The quadratic strain-energy functions resulted in wide intra- and interspecimen variability in the coefficients. Moreover, both their absolute and relative values demonstrated marked load history dependence such that interpretation of the direction of anisotropy was difficult. Fitting the data with the alternative nonintegral strain-energy function seemed to alleviate these problems. This alternative strain-energy function may provide more self-consistent results than the more commonly used quadratic strain-energy functions.  相似文献   

2.
Herein we present a refined version of Vito's two-sphere static model of the heart with pericardium and discuss its possible applications. The improvements we make on Vito's model are: (i) Vito assumed that the elastic materials which constitute the model 'heart' and 'pericardium' are isotropic; we relax this assumption to that of transverse-isotropy. (ii) Our analysis, which does not assume the existence of stored-energy functions, links the model directly to empirical stress-strain relations of suitable biaxial uniform-extension tests; two such stress-strain relations (one for the pericardium, one for the myocardium, both of which may be described by the same equation except for difference in the values of response parameters) now define the model completely, so we avoid altogether the difficult task of determining full-fledged constitutive equations for the pericardium and myocardium. As for applications, we contend that the concentric spheres in static equilibrium can be taken as a model of the left ventricle and pericardium at end-diastole. We show that the model when equipped with suitable stress-strain relations does give good fit to the pressure-volume data which Spotnitz et al. (1966, Circulation Res., 18, 49-66) obtained from excised canine left ventricles and to the pericardium data which Pegram et al. (1975, Circulation Res., 9, 707-714) obtained from closed chest, anaesthetized dogs. Three different empirical formulae were tried in the data-fitting as the equation that describes the requisite stress-strain relations. The 'exponential law' gave the best results.  相似文献   

3.
Two-dimensional stress-strain relationship for canine pericardium   总被引:2,自引:0,他引:2  
Two-dimensional pseudoelastic mechanical properties of the canine pericardium were investigated in vitro. The pericardium was assumed to be orthotropic. The material symmetry axis was determined a priori and aligned with the stretching axis. Various biaxial stretching tests were then performed and a set of data covering a wide range of strains was constructed. This complete data set was fitted to a new exponential type constitutive model, and a set of true material constants was determined for each specimen. Using the constitutive model and the true material constants, the results from constant lateral force tests and constant lateral displacement tests were predicted and compared with experiment.  相似文献   

4.
Biomechanical studies suggest that one determinant of abdominal aortic aneurysm (AAA) rupture is related to the stress in the wall. In this regard, a reliable and accurate stress analysis of an in vivo AAA requires a suitable 3D constitutive model. To date, stress analysis conducted on AAA is mainly driven by isotropic tissue models. However, recent biaxial tensile tests performed on AAA tissue samples demonstrate the anisotropic nature of this tissue. The purpose of this work is to study the influence of geometry and material anisotropy on the magnitude and distribution of the peak wall stress in AAAs. Three-dimensional computer models of symmetric and asymmetric AAAs were generated in which the maximum diameter and length of the aneurysm were individually controlled. A five parameter exponential type structural strain-energy function was used to model the anisotropic behavior of the AAA tissue. The anisotropy is determined by the orientation of the collagen fibers (one parameter of the model). The results suggest that shorter aneurysms are more critical when asymmetries are present. They show a strong influence of the material anisotropy on the magnitude and distribution of the peak stress. Results confirm that the relative aneurysm length and the degree of aneurysmal asymmetry should be considered in a rupture risk decision criterion for AAAs.  相似文献   

5.
S Q Liu  Y C Fung 《Biorheology》1992,29(5-6):443-457
Rheological properties of blood vessels are expected to change in disease process if the structure of the vessel wall changes. This is illustrated in diabetes, which can be induced in rat by a single injection of Streptozocin. One of the rheological properties of the blood vessel is the stress-strain relationship. The nonlinear stress-strain relationship of arteries is best expressed as derivations of a strain-energy function. In this paper, the stress-strain relations are measured and the coefficients in the strain energy function of arteries are determined for diabetic and control rats. The meaning of these coefficients are explained. The influence of diabetes on the elastic property of the arteries is expressed by the changes of these coefficients. A point of departure of the present paper from all other blood vessel papers published so far is that all strains used here are referred to the zero-stress state of the arteries, whereas all other papers refer strains to the no-load state. The existence of a large difference between the zero-stress state and no-load state of arteries is one of our recent findings. We have explained that the use of zero-stress state as a basis of strain measurements reveals that the in vivo circumferential stress distribution is quite uniform in the vessel wall at the homeostatic condition. It also makes the strain energy function much more accurate than those in which the residual stress is ignored. Using these new results, the stress and strain distribution in normal and diabetic arteries are presented.  相似文献   

6.
Structural constitutive models integrate information on tissue composition and structure, avoiding ambiguities in material characterization. However, critical structural information (such as fiber orientation) must be modeled using assumed statistical distributions, with the distribution parameters estimated from fits to the mechanical test data. Thus, full realization of structural approaches continues to be limited without direct quantitative structural information for direct implementation or to validate model predictions. In the present study, fiber orientation information obtained using small angle light scattering (SALS) was directly incorporated into a structural constitutive model based on work by Lanir (J. Biomech., v. 16, pp. 1-12, 1983). Demonstration of the model was performed using existing biaxial mechanical and fiber orientation data for native bovine pericardium (Sacks and Chuong, ABME, v.26, pp. 892-902, 1998). The structural constitutive model accurately predicted the complete measured biaxial mechanical response. An important aspect of this approach is that only a single equibiaxial test to determine the effective fiber stress-strain response and the SALS-derived fiber orientation distribution were required to determine the complete planar biaxial mechanical response. Changes in collagen fiber crimp under equibiaxial strain suggest that, at the meso-scale, fiber deformations follow the global tissue strains. This result supports the assumption of affine strain to estimate the fiber strains. However, future evaluations will have to be performed for tissue subjected to a wider range of strain to more fully validate the current approach.  相似文献   

7.
Utilization of novel biologically-derived biomaterials in bioprosthetic heart valves (BHV) requires robust constitutive models to predict the mechanical behavior under generalized loading states. Thus, it is necessary to perform rigorous experimentation involving all functional deformations to obtain both the form and material constants of a strain-energy density function. In this study, we generated a comprehensive experimental biaxial mechanical dataset that included high in-plane shear stresses using glutaraldehyde treated bovine pericardium (GLBP) as the representative BHV biomaterial. Compared to our previous study (Sacks, JBME, v.121, pp. 551-555, 1999), GLBP demonstrated a substantially different response under high shear strains. This finding was underscored by the inability of the standard Fung model, applied successfully in our previous GLBP study, to fit the high-shear data. To develop an appropriate constitutive model, we utilized an interpolation technique for the pseudo-elastic response to guide modification of the final model form. An eight parameter modified Fung model utilizing additional quartic terms was developed, which fitted the complete dataset well. Model parameters were also constrained to satisfy physical plausibility of the strain energy function. The results of this study underscore the limited predictive ability of current soft tissue models, and the need to collect experimental data for soft tissue simulations over the complete functional range.  相似文献   

8.
The pleural membrane is modeled as a planar collection of interconnected randomly oriented line elements. By assuming that the line elements follow the strain field of a continuum, a strain-energy function is formulated. From the strain-energy function, an explicit stress-strain equation for large deformations is derived. In the linear approximation of the stress-strain equation the shear modulus and the area modulus of the membrane are respectively found to be 2.4 and 2.8 times the tension at the reference state. The stress-strain equation for large deformations is used to predict the displacement field around a circular hole in pleura. Good agreement is found between these predictions and measurements made on ablated pleura from dog lungs. From these theoretical and experimental results the conclusion is drawn that the pleura has a significant role in carrying shear forces and maintaining the lung's shape.  相似文献   

9.
Incompressible nonlinearly hyperelastic materials are rarely simulated in finite element numerical experiments as being perfectly incompressible because of the numerical difficulties associated with globally satisfying this constraint. Most commercial finite element packages therefore assume that the material is slightly compressible. It is then further assumed that the corresponding strain-energy function can be decomposed additively into volumetric and deviatoric parts. We show that this decomposition is not physically realistic, especially for anisotropic materials, which are of particular interest for simulating the mechanical response of biological soft tissue. The most striking illustration of the shortcoming is that with this decomposition, an anisotropic cube under hydrostatic tension deforms into another cube instead of a hexahedron with non-parallel faces. Furthermore, commercial numerical codes require the specification of a ‘compressibility parameter’ (or ‘penalty factor’), which arises naturally from the flawed additive decomposition of the strain-energy function. This parameter is often linked to a ‘bulk modulus’, although this notion makes no sense for anisotropic solids; we show that it is essentially an arbitrary parameter and that infinitesimal changes to it result in significant changes in the predicted stress response. This is illustrated with numerical simulations for biaxial tension experiments of arteries, where the magnitude of the stress response is found to change by several orders of magnitude when infinitesimal changes in ‘Poisson’s ratio’ close to the perfect incompressibility limit of 1/2 are made.  相似文献   

10.
The probability of the occurrence of consecutive closed-open or open-closed intervals of specified durations in single-channel recordings may be of enormous help in the establishment of the kinetic scheme that describes the behavior of the channel. The relevant probability functions are linear combinations of products of exponential functions of the closed durations and the open durations. A method is presented for the evaluation of the coefficients of the exponential functions using a set of auxiliary functions that are each orthogonal to all but one of the exponential functions. The coefficients in the probability functions may then be obtained from the experimental data by multiplication by the auxiliary functions and subsequent simple integration operations. Furthermore, the variance to be expected in the evaluated numerical magnitude of the parameters, due to the stochastic nature of the transitions in the channel conductance, is also readily estimated by use of the above auxiliary functions. The procedure is illustrated by analysis of synthetic data obtained from computer simulated experiments.  相似文献   

11.
The passive mechanical properties of blood vessel mainly stem from the interaction of collagen and elastin fibers, but vessel constriction is attributed to smooth muscle cell (SMC) contraction. Although the passive properties of coronary arteries have been well characterized, the active biaxial stress-strain relationship is not known. Here, we carry out biaxial (inflation and axial extension) mechanical tests in right coronary arteries that provide the active coronary stress-strain relationship in circumferential and axial directions. Based on the measurements, a biaxial active strain energy function is proposed to quantify the constitutive stress-strain relationship in the physiological range of loading. The strain energy is expressed as a Gauss error function in the physiological pressure range. In K(+)-induced vasoconstriction, the mean ± SE values of outer diameters at transmural pressure of 80 mmHg were 3.41 ± 0.17 and 3.28 ± 0.24 mm at axial stretch ratios of 1.3 and 1.5, respectively, which were significantly smaller than those in Ca(2+)-free-induced vasodilated state (i.e., 4.01 ± 0.16 and 3.75 ± 0.20 mm, respectively). The mean ± SE values of the inner and outer diameters in no-load state and the opening angles in zero-stress state were 1.69 ± 0.04 mm and 2.25 ± 0.08 mm and 126 ± 22°, respectively. The active stresses have a maximal value at the passive pressure of 80-100 mmHg and at the active pressure of 140-160 mmHg. Moreover, a mechanical analysis shows a significant reduction of mean stress and strain (averaged through the vessel wall). These findings have important implications for understanding SMC mechanics.  相似文献   

12.
A constitutive relation proposed by Shoemaker (Ph.D. dissertation, 1984) to model the mechanical behavior of membraneous or two-dimensional soft tissues is described. Experiments by Schneider (Ph.D. dissertation, 1982) on human skin and Lee et al. (Am. J. Physiol., 249, H222-H230, 1985) on canine pericardium, and the application of the constitutive model to biaxial stress-strain data from these experiments, are discussed. Some experimental data and predictions of the model obtained by curvefitting are presented for comparison. Values of material parameters are also presented. It is concluded that the constitutive model is well able to fit results of individual tests, and that its generality (judged by consistency of parameters from test to test of the same specimen), though not complete, does compare favorably with some other results presented in the literature.  相似文献   

13.
Evaluation and simulation of the multiaxial mechanical behavior of native and engineered soft tissues is becoming more prevalent. In spite of this growing use, testing methods have not been standardized and methodologies vary widely. The strong influence of boundary conditions were recently underscored by Waldman et al. [2002, J. Materials Science: Materials in Medicine 13, pp. 933-938] wherein substantially different experimental results were obtained using different sample gripping methods on the same specimens. As it is not possible to experimentally evaluate the effects of different biaxial test boundary conditions on specimen internal stress distributions, we conducted numerical simulations to explore these effects. A nonlinear Fung-elastic constitutive model (Sun et al., 2003, JBME 125, pp. 372-380, which fully incorporated the effects of in-plane shear, was used to simulate soft tissue mechanical behavior. Effects of boundary conditions, including varying the number of suture attachments, different gripping methods, specimen shapes, and material axes orientations were examined. Results demonstrated strong boundary effects with the clamped methods, while suture attachment methods demonstrated minimal boundary effects. Suture-based methods appeared to be best suited for biaxial mechanical tests of biological materials. Moreover, the simulations demonstrated that Saint-Venant's effects depended significantly on the material axes orientation. While not exhaustive, these comprehensive simulations provide experimentalists with additional insight into the stress-strain fields associated with different biaxial testing boundary conditions, and may be used as a rational basis for the design of biaxial testing experiments.  相似文献   

14.
Accurate material properties of developing embryonic tissues are a crucial factor in studies of the mechanics of morphogenesis. In the present work, we characterize the viscoelastic material properties of the looping heart tube in the chick embryo through nonlinear finite element modeling and microindentation experiments. Both hysteresis and ramp-hold experiments were performed on the intact heart and isolated cardiac jelly (extracellular matrix). An inverse computational method was used to determine the constitutive relations for the myocardium and cardiac jelly. With both layers assumed to be quasilinear viscoelastic, material coefficients for an Ogden type strain-energy density function combined with Prony series of two terms or less were determined by fitting numerical results from a simplified model of a heart segment to experimental data. The experimental and modeling techniques can be applied generally for determining viscoelastic material properties of embryonic tissues.  相似文献   

15.
Porcine heart valves and bovine pericardium exhibit suitable properties for use as substitutes in cardiothoracic surgery, but must meet several requirements to be safe and efficient. Treatment with glutaraldehyde (GA) render some of these requirements, but calcification and degradation post-implant remain a problem. This study aimed to identify additional biochemical treatments that will minimize calcification potential without compromising the physical properties of pericardium. Pericardium treated with GA calcified severely after 8 weeks in the subcutaneous rat model, compared to tissue treated with higher concentrations of glycosaminoglycans (GAG) and commercial Glycar patches. GA, lower concentrations GAG and Glycar pericardium had high denaturation temperatures due to enhanced cross-linking. Tensile strength of GA tissue was significantly lower than GAG-treated or Glycar tissues, due to lower water content with resultant lower flexibility and suppleness. Pericardium treated with 0.01 M GAG gave acceptable denaturation temperatures, tensile strength and reduced calcification potential. All tissue treatments evoked comparable host immune responses, and no significant difference in resistance to enzymatic degradation. Ineffective stabilization and fixation of cross-links following GAG treatment, as well as limited penetration into the pericardium, resulted in GAG leaching out into the surrounding host tissue or storage medium, and prohibits safe clinical use of such tissue.  相似文献   

16.
Abdominal aortic aneurysm (AAA) is a cardiovascular disease with high incidence among elderly population. Biomechanical computational analyses can provide fundamental insights into AAA pathogenesis and clinical management, but modeling should be sufficiently accurate. Several constitutive models of the AAA wall are present in the literature, and some of them seem to well describe the experimental behavior of the aneurysmatic human aorta. In this work we compare a two (2FF) and a four (4FF) fiber families constitutive models of the AAA wall. Both these models satisfactorily fit literature data from biaxial tests on the aneurysmatic tissue. To investigate the peculiar characteristics of these models, we considered the problem of AAA inflation, and solved it by implementing the constitutive equations in a finite element code. A 20% axial stretch was imposed to the aneurysm ends, to simulate the physiological condition. Although fitted on the same dataset, the two material models lead to considerably different outcomes. In particular, adopting a 4FF strain energy function (SEF), an increase of the circumferential stress values can be observed, while higher axial stresses are recorded for the 2FF model. These differences can be attributed to the intrinsic characteristics of the SEFs and to the effective stress field, with respect to the one experienced in biaxial experimental tests on which the fitting is based. In fact the two SEFs appear similar within the region of the stress-strain experimental data, but become different outside it, as in case of aneurysms, due to the effects of the data extrapolation process. It is suggested that experimental data should be obtained for conditions similar to those of the application for which they are intended.  相似文献   

17.
During the morphogenetic process of cardiac looping, the initially straight cardiac tube bends and twists into a curved tube. The biophysical mechanisms that drive looping remain unknown, but the process clearly involves mechanical forces. Hence, it is important to determine mechanical properties of the early heart, which is a muscle-wrapped tube consisting primarily of a thin outer layer of myocardium surrounding a thick extracellular matrix compartment known as cardiac jelly. In this work, we used microindentation experiments and finite element modeling, combined with an inverse computational method, to determine constitutive relations for the myocardium and cardiac jelly at the outer curvature of stage 12 chick hearts. Material coefficients for exponential strain-energy density functions were found by fitting force-displacement and surface displacement data near the indenter Residual stress in the myocardium also was estimated. These results should be useful for computational models of the looping heart.  相似文献   

18.
The paper presents a detailed analysis of experimental data in order to characterize the elastic properties of arteries.Suchanalysis would provide a good basis for evaluation of biomimetic vascular grafts.Since the latter needs to exhibit similarproperties of native tissue,it is important to accurately characterize the biomimetic sample in a large range of applied stresses.The stress-strain properties vary according to the specific pathology(e.g.arteriosclerosis,aneurism)and the tissue graft must bechosen correctly.Two models are proposed in this paper on the stress-strain characteristics.An extension for frequency-domainanalysis is provided for one of the models.The comparison between vascular grafts and native tissue for carotid and thoracicarteries in pigs are in good agreement with results from literature.The proposed experimental method offers suitable parametersfor identifying models which characterize both elasticity and stiffness properties of the analyzed tissues(stress-strain).Theproposed models show good performance in characterizing the intrinsic material properties.  相似文献   

19.
Numerical simulation of soft tissue mechanical properties is a critical step in developing valuable biomechanical models of live organisms. A cubic Hermitian spline optimization routine is proposed in this paper to model nonlinear experimental force-elongation curves of soft tissues, in particular when modeled as lumped elements. Boundary conditions are introduced to account for the positive definiteness and the particular curvature of the experimental curve to be fitted. The constrained least-square routine minimizes user intervention and optimizes fitting of the experimental data across the whole fitting range. The routine provides coefficients of a Hermitian spline or corresponding knots that are compatible with a number of constraints that are suitable for modeling soft tissue tensile curves. These coefficients or knots may become inputs to user-defined component properties of various modeling software. Splines are particularly advantageous over the well-known exponential model to account for the traction curve flatness at low elongations and to allow for more flexibility in the fitting process. This is desirable as soft tissue models begin to include more complex physical phenomena.  相似文献   

20.
Incisional hernia development is a significant complication after laparoscopic abdominal surgery. Intra-abdominal pressure (IAP) is known to initiate the extrusion of intestines through the abdominal wall, but there is limited data on the mechanics of IAP generation and the structural properties of rectus sheath. This paper presents an explanation of the mechanics of IAP development, a study of the uniaxial and biaxial tensile properties of porcine rectus sheath, and a simple computational investigation of the tissue. Analysis using Laplace?s law showed a circumferential stress in the abdominal wall of approx. 1.1 MPa due to an IAP of 11 kPa, commonly seen during coughing. Uniaxial and biaxial tensile tests were conducted on samples of porcine rectus sheath to characterise the stress–stretch responses of the tissue. Under uniaxial tension, fibre direction samples failed on average at a stress of 4.5 MPa at a stretch of 1.07 while cross-fibre samples failed at a stress of 1.6 MPa under a stretch of 1.29. Under equi-biaxial tension, failure occurred at 1.6 MPa with the fibre direction stretching to only 1.02 while the cross-fibre direction stretched to 1.13. Uniaxial and biaxial stress–stretch plots are presented allowing detailed modelling of the tissue either in silico or in a surrogate material. An FeBio computational model of the tissue is presented using a combination of an Ogden and an exponential power law model to represent the matrix and fibres respectively. The structural properties of porcine rectus sheath have been characterised and add to the small set of human data in the literature with which it may be possible to develop methods to reduce the incidence of incisional hernia development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号