首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Out of a series of eleven related hetarylhydrazones four derivatives (ZIMET 124/73, ZIMET 38/74, ZIMET 44/69, and IMET 98/69), after subcutaneous administration (0.5 mmole/kg per injection), were found to possess significant antiviral activity against rapidly progressing and highly lethal Mengo virus encephalitis in mice. After peroral administration (2 mmole/kg per injection) only with IMET 98/69 significant protection was achieved. Drug treatments were given twice daily for 5 days. The effectiveness of compounds was evidenced by significant "rates of protection". Possible relationships between the antiviral activity and the structure of compounds are discussed.  相似文献   

3.
Tao Peng 《中国病毒学》2010,25(4):281-293
Viral infection begins with the entry of the virus into the host target cell and initiates replication.For this reason,the virus entry machinery is an excellent target for antiviral therapeutics.In general,a virus life cycle includes several major steps: cell-surface attachment,entry,replication,assembly,and egress,while some viruses involve another stage called latency.The early steps of the virus life cycle include virus attachment,receptor binding,and entry.These steps involve the initial interactions between a virus and the host cell and thus are major determinants of the tropism of the virus infection,the nature of the virus replication,and the diseases resulting from the infection.Owing to the pathological importance of these early steps in the progress of viral infectious diseases,the development of inhibitors against these steps has been the focus of the pharmaceutical industry.In this review,Herpes Simplex Virus(HSV),Hepatitis C Virus(HCV),and Human Enterovirus 71(EV71)were used as representatives of enveloped DNA,enveloped RNA,and non-enveloped viruses,respectively.The current mechanistic understanding of their attachment and entry,and the strategies for antagonist screenings are summarized herein.  相似文献   

4.
The protective effect of heat-killedLactobacillus casei (LC) against murine cytomegalovirus (MCMV) infection was examined. ICR mice treated once with LC 1 day or 2 days before challenge survived lethal infection, but untreated orLactobacillus fermentum (LF)-treated mice did not. The protective effect was evidenced by an increase in plaque-forming units (PFU) per 50% lethal dose (LD50) and a decrease in titers of infectious viruses replicated in the target organs. This was further confirmed by severity of histopathological damage to the target organs, especially the liver. LC neither inactivated MCMV nor inhibited its replication in mouse embryonic fibroblasts (MEF). The spleen cells from LC-treated mice inhibited its replication in MEF on co-cultivation. Augmentation by LC of splenic natural killer (NK) cell activity correlated with survival of mice from otherwise lethal MCMV infection. Cytotoxic activity of peritoneal cells and level of serum interferon (IFN) were elevated after MCMV infection, but they were not associated with survival of mice nor with treatment of LC. The protective effect of LC was not clear in NK-deficient beige mutant (bgJ/bgJ) mice, when compared with that in their littermate (bgJ/+) mice. Poor protection of bgJ/bgJ mice by LC treatment correlated with failure to induce NK cell activity by LC treatment in the mutant mice. Thus, it is likely that LC protects mice from MCMV infection by augmentation of NK cell activity.  相似文献   

5.
The protective effect of heat-killed Lactobacillus casei (LC) against murine cytomegalovirus (MCMV) infection was examined. ICR mice treated once with LC 1 day or 2 days before challenge survived lethal infection, but untreated or Lactobacillus fermentum (LF)-treated mice did not. The protective effect was evidenced by an increase in plaque-forming units (PFU) per 50% lethal dose (LD50) and a decrease in titers of infectious viruses replicated in the target organs. This was further confirmed by severity of histopathological damage to the target organs, especially the liver. LC neither inactivated MCMV nor inhibited its replication in mouse embryonic fibroblasts (MEF). The spleen cells from LC-treated mice inhibited its replication in MEF on co-cultivation. Augmentation by LC of splenic natural killer (NK) cell activity correlated with survival of mice from otherwise lethal MCMV infection. Cytotoxic activity of peritoneal cells and level of serum interferon (IFN) were elevated after MCMV infection, but they were not associated with survival of mice nor with treatment of LC. The protective effect of LC was not clear in NK-deficient beige mutant (bgJ/bgJ) mice, when compared with that in their littermate (bgJ/+) mice. Poor protection of bgJ/bgJ mice by LC treatment correlated with failure to induce NK cell activity by LC treatment in the mutant mice. Thus, it is likely that LC protects mice from MCMV infection by augmentation of NK cell activity.  相似文献   

6.
7.
Interleukin-18 (IL-18), originally called interferon-gamma (IFN-gamma)-inducing factor is a novel cytokine which exhibits pleiotropic immunomodulatory activities such as the activation of natural killer (NK) cells and cytotoxic T lymphocytes (CTL). In this study, the efficacy of IL-18 on viral infection in mice was investigated. IL-18 treatment significantly suppressed pock formation on the tails of BALB/c mice inoculated intravenously with vaccinia virus when the cytokine was administered intraperitoneally on days 0, 2 and 4 after infection. Sequentially, NK and CTL activity of the infected mice were significantly augmented by IL-18 injection. The in vivo anti-vaccinia virus activity of IL-18 was only partially inhibited by treating the infected mice with anti-asialo GM1 antibody. When infected mice were injected with anti-IFN-gamma antibody only, severe deterioration of health and significant body weight loss were observed, suggesting that IFN-gamma is very important in protecting mice against vaccinia virus infection. Interestingly, IL-18 injection visibly improved the severe vaccinia virus-induced symptoms in mice treated with anti-IFN-gamma antibody, even though a pivotal involvement of IFN-gamma in IL-18-mediated anti-vaccinia virus effect is not yet determined. Taken together, these results indicate that the IL-18-elicited anti-vaccinia virus effect in the acute phase of infection would be raised by the sum of various host defence mechanisms including NK cells and CTL, and not from a specific immunocompetent cell population or effector molecule.  相似文献   

8.
Infant mice are extremely susceptible to fatal Herpes simplex virus (HSV) infection. They are unable to produce antibody to HSV, and their leukocytes cannot mediate antibody-dependent cellular cytotoxicity (ADCC) to HSV-infected cells. In order to avoid H-2-dependent effector mechanisms and instead analyze possible in vivo ADCC, a murine model employing adoptive transfer of antibody and human leukocytes was developed. Administration of either human immune globulin or leukocytes i.p. from HSV immune or nonimmune humans could not protect infant C57BL/6 mice from fatal HSV infection. In contrast, a combination of a subneutralizing dilution of globulin and leukocytes from nonimmune or immune human donors, given one day before inoculation, was highly protective against lethal HSV infection. The cells involved included lymphocytes or monocyte-macrophages. At least 5 X 10(6) viable leukocytes (or 1 X 10(6) monocyte-macrophages) and immune serum globulin concentrations as low as 10(-8) were protective. Infected cell monolayer adsorption and DEAE column fractionation demonstrated that the protection by globulin was due to specific antiviral IgG antibody. Protection was n ot seen in animals receiving virus before immune transfer. Protection did not involve synergistic viral neutralization by antibody and cells, as shown by in vitro experiments. Animals receiving globulin and cells, unlike normal infant mice, had circulating antiviral antibody and peritoneal leukocytes able to mediate ADCC to HSV-infected cells. This is the first in vivo evidence for the role of human ADCC. This model also allows for the in vivo evaluation of the ability of cells from immunocompromised humans to curb viral infection.  相似文献   

9.
RNA silencing is an important antiviral mechanism in diverse eukaryotic organisms. In Arabidopsis DICER‐LIKE 4 (DCL4) is the primary antiviral Dicer, required for the production of viral small RNAs from positive‐strand RNA viruses. Here, we showed that DCL4 and its interacting partner dsRNA‐binding protein 4 (DRB4) participate in the antiviral response to Turnip yellow mosaic virus (TYMV), and that both proteins are required for TYMV‐derived small RNA production. In addition, our results indicate that DRB4 has a negative effect on viral coat protein accumulation. Upon infection DRB4 expression was induced and DRB4 protein was recruited from the nucleus to the cytoplasm, where replication and translation of viral RNA occur. DRB4 was associated with viral RNA in vivo and directly interacted in vitro with a TYMV RNA translational enhancer, raising the possibility that DRB4 might repress viral RNA translation. In plants the role of RNA silencing in viral RNA degradation is well established, but its potential function in the regulation of viral protein levels has not yet been explored. We observed that severe infection symptoms are not necessarily correlated with enhanced viral RNA levels, but might be caused by elevated accumulation of viral proteins. Our findings suggest that the control of viral protein as well as RNA levels might be important for mounting an efficient antiviral response.  相似文献   

10.
Collagenous lectins (collectins) present in mammalian serum and pulmonary fluids bind to influenza virus and display antiviral activity in vitro, but their role in vivo has yet to be determined. We have used early and late isolates of H3N2 subtype influenza viruses that differ in their degree of glycosylation to examine the relationship between sensitivity to murine serum and pulmonary lectins in vitro and the ability of a virus to replicate in the respiratory tract of mice. A marked inverse correlation was found between these two parameters. Early H3 isolates (1968 to 1972) bear 7 potential glycosylation sites on hemagglutinin (HA), whereas later strains carry 9 or 10. Late isolates were shown to be much more sensitive than early strains to neutralization by the mouse serum mannose-binding lectin (MBL) and rat lung surfactant protein D (SP-D) and bound greater levels of these lectins in enzyme-linked immunosorbent assays and Western blot analyses. They also replicated very poorly in mouse lungs compared to the earlier strains. Growth in the lungs was greatly enhanced, however, if saccharide inhibitors of the collectins were included in the virus inoculum. The level of SP-D in bronchoalveolar lavage fluids increased on influenza virus infection. MBL was absent from lavage fluids of normal mice but could be detected in fluids from mice 3 days after infection with the virulent strain A/PR/8/34 (H1N1). The results implicate SP-D and possibly MBL as important components of the innate defense of the respiratory tract against influenza virus and indicate that the degree or pattern of glycosylation of a virus can be an important factor in its virulence.  相似文献   

11.
12.
13.
We compared various strains of Propionibacterium with regard to protection of young adult mice against lethal infection with herpes simplex virus type 2 (HSV-2). Propionibacterium acnes, P. granulosum, and P. avidum were protective, while P. acidi-propionici and P. lymphophilum were ineffective. The protective effect proved to be in the cell wall fraction. Attempts were made to elucidate possible mechanisms of the protection using both effective and ineffective strains. The results strongly suggest that induction of interferon rather than activation of macrophages and natural killer cells by Propionibacterium pretreatment plays a crucial role, directly or indirectly, in protection against infection by herpes simplex virus. Propionibacterium only moderately protected newborn mice against HSV-2 infection.  相似文献   

14.
The innate immune response, and in particular the alpha/beta interferon (IFN-alpha/beta) system, plays a critical role in the control of viral infections. Interferons alpha and beta exert their antiviral effects through the induction of hundreds of interferon-induced (or -stimulated) genes (ISGs). While several of these ISGs have characterized antiviral functions, their actions alone do not explain all of the effects mediated by IFN-alpha/beta. To identify additional IFN-induced antiviral molecules, we utilized a recombinant chimeric Sindbis virus to express selected ISGs in IFN-alpha/beta receptor (IFN-alpha/betaR)(-/-) mice and looked for attenuation of Sindbis virus infection. Using this approach, we identified a ubiquitin homolog, interferon-stimulated gene 15 (ISG15), as having antiviral activity. ISG15 expression protected against Sindbis virus-induced lethality and decreased Sindbis virus replication in multiple organs without inhibiting the spread of virus throughout the host. We establish that, much like ubiquitin, ISG15 requires its C-terminal LRLRGG motif to form intracellular conjugates. Finally, we demonstrate that ISG15's LRLRGG motif is also required for its antiviral activity. We conclude that ISG15 can be directly antiviral.  相似文献   

15.
Mouse serum interferons induced by polyI:C, vesicular stomatitis virus (VSV), reovirus, and Mengo virus were assayed in monolayers of mouse L-929 cells by the plaque-reduction method using both VSV and Mengo as challenge viruses. Titers obtained with Mengo virus as challenge were all lower than with VSV. With the interferons induced by VSV, reovirus, and ployI:C, the reductions were of the order of two- to three-fold. With Mengo virus-induced interferon the reduction was much greater (about 17-fold). This offers an explanation for the observation that, unit for unit (measured by the plaque reduction of VSV), Mengo virus-induced interferon is only about 1/10 as effective as polyI:C-induced interferon in protecting mice against lethal infection with Mengo virus. The data are consistent with the hypothesis that an interferon antagonist is produced in the serum of mice infected with Mengo virus. This antagonist, which is not produced in mice inoculated with polyI:C, or reovirus, effectively blocks the antiviral action of interferon during Mengo virus infections, both in vivo and in vitro.  相似文献   

16.
目的 研究灭活贝氏柯克斯体增强小鼠非特异性抗登革病毒感染的免疫效能。方法 用灭活贝氏柯克斯体全细胞疫苗(WCV)免疫BALB/c小鼠,每只小鼠皮下注射50μg WCV,初次免疫后第5周及第7周分别腹腔注射20μg WCV加强免疫。1周后,用10~5 TCID_(50)剂量的登革病毒2型经尾静脉注入感染小鼠,于感染后48、72h分别解剖小鼠.自血和脑组织提取RNA样本,用实时荧光定量聚合酶链反应(PCR)检测样本。结果 用登革病毒特异的定量PCR检测感染小鼠血RNA样本,结果显示感染72h血样本中病毒含量显著低于48h样本,但免疫小鼠与未免疫小鼠之间无显著差异。检测脑组织RNA样本,未免疫小鼠和免疫小鼠的感染48h样本检出病毒均为少量;但未免疫小鼠感染96h样本检出病毒量明显增加,显著高于免疫小鼠。结论 灭活贝氏柯克斯体可诱导机体产生非特异的免疫应答,具有一定增强小鼠抗登革病毒感染的能力,但具体机制有待进一步研究。  相似文献   

17.
Highly pathogenic avian influenza H5N1 viruses are found chiefly in birds and have caused severe disease and death in infected humans. Development of influenza vaccines capable of inducing heterosubtypic immunity against a broad range of influenza viruses is the best option for the preparedness, since vaccination remains the principal method in controlling influenza viral infections. Here, a mOMV-adjuvanted recombinant H5N2 (rH5N2) whole virus antigen vaccine with A/Environment/Korea/W149/06(H5N1)-derived H5 HA and A/Chicken/Korea/ma116/04(H9N2)-derived N2 NA in the backbone of A/Puerto Rico/8/34(H1N1) was prepared and generated by reverse genetics. Groups of mice were vaccinated by a prime-boost regime with the rH5N2 vaccine (1.75 μg of HA with/without 10 μg mOMV or aluminum hydroxide adjuvant for comparison). At two weeks post-immunizations, vaccinated mice were challenged with lethal doses of 103.5 EID50/ml of H5N1 or H9N2 avian influenza viruses, and were monitored for 15 days. Both mOMV- and alum-adjuvant vaccine groups had high survival rates after H5N1 infection and low levels of body weight changes compared to control groups. Interestingly, the mOMV-adjuvanted group induced better cross-reactive antibody responses serologically and promoted cross-protectivity against H5N1 and H9N2 virus challenges. Our results suggest that mOMV could be used as a vaccine adjuvant in the development of effective vaccines used to control influenza A virus transmission.  相似文献   

18.
Pathogenic hantaviruses are a closely related group of rodent-borne viruses which are responsible for two distinct diseases in humans, hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome (HPS, otherwise known as hantavirus cardiopulmonary syndrome, HCPS). The antiviral effect of ribavirin against Old World hantaviruses, most notably Hantaan virus, is well documented; however, only a few studies have addressed its inhibitory effect on New World hantaviruses. In the present study, we demonstrate that ribavirin is highly active against Andes virus (ANDV), an important etiological agent of HPS, both in vitro and in vivo using a lethal hamster model of HPS. Treatment of ANDV infected Vero E6 cells with ribavirin resulted in dose-dependent reductions in viral RNA and protein as well as virus yields with a half maximal inhibitory concentration between 5 and 12.5 μg ml(-1). In hamsters, treatment with as little as 5 mg kg(-1) day(-1) was 100% effective at preventing lethal HPS disease when therapy was administered by intraperitoneal injection from day 1 through day 10 post-infection. Significant reductions were observed in ANDV RNA and antigen positive cells in lung and liver tissues. Ribavirin remained completely protective when administered by intraperitoneal injections up to three days post-infection. In addition, we show that daily oral ribavirin therapy initiated 1 day post-infection and continuing for ten days is also protective against lethal ANDV disease, even at doses of 5 mg kg(-1) day(-1). Our results suggest ribavirin treatment is beneficial for postexposure prophylaxis against HPS-causing hantaviruses and should be considered in scenarios where exposure to the virus is probable. The similarities between the results obtained in this study and those from previous clinical evaluations of ribavirin against HPS, further validate the hamster model of lethal HPS and demonstrate its usefulness in screening antiviral agents against this disease.  相似文献   

19.
Cellular and humoral immunity against vaccinia virus infection of mice   总被引:8,自引:0,他引:8  
Despite the widespread use of vaccinia virus (VV) as a vector for other Ags and as the smallpox vaccine, there is little information available about the protective components of the immune response following VV infection. In this study, protection against wild-type VV was evaluated in mice with respect to the relative contributions of CD8(+) T cells vs that of CD4(+) T cells and Ab. C57BL/6 mice primed with the Western Reserve strain of VV mount significant IgM and IgG Ab responses, specific cytotoxic T cell responses, IFN-gamma responses in CD4(+) and CD8(+) T cells, and effectively clear the virus. This protection was abrogated by in vivo depletion of CD4(+) T cells or B cells in IgH(-/-) mice, but was not sensitive to CD8(+) T cell depletion alone. However, a role for CD8(+) T cells in primary protection was demonstrated in MHC class II(-/-) mice, where depleting CD8(+) T cells lead to increase severity of disease. Unlike control MHC class II(-/-) mice, the group depleted of CD8(+) T cells developed skin lesions on the tail and feet and had adrenal necrosis. Adoptive transfer experiments also show CD8(+) T cells can mediate protective memory. These results collectively show that both CD4(+) and CD8(+) T cell-mediated immunity can contribute to protection against VV infection. However, CD4(+) T cell-dependent anti-virus Ab production plays a more important role in clearing virus following acute infection, while in the absence of Ab, CD8(+) T cells can contribute to protection against disease.  相似文献   

20.
Influenza virus infection frequently causes complications and some excess mortality in the patients with diabetes. Vaccination is an effective measure to prevent influenza virus infection. In this paper, antibody response and protection against influenza virus infection induced by vaccination were studied in mouse model of diabetes. Healthy and diabetic BALB/c mice were immunized once or twice with inactivated influenza virus vaccine at various dosages. Four weeks after the first immunization or 1 week after the second immunization, the mice were challenged with influenza virus at a lethal dose. The result showed that the antibody responses in diabetic mice were inhibited. Immunization once with high dose or twice with low dose of vaccine provided full protection against lethal influenza virus challenge in diabetic mice, however, in healthy mice, immunization only once with low dose provided a full protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号