首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 748 毫秒
1.
Despite over three decades of progress, extraction of high molecular weight (HMW) DNA from high clay soils or iron oxide cemented clay has remained challenging. HMW DNA is desirable for next generation sequencing as it yields the most comprehensive coverage. Several DNA extraction procedures were compared from samples that exhibit strong nucleic acid adsorption. pH manipulation or use of alternative ion solutions offered no improvement in nucleic acid recovery. Lysis by liquid N2 grinding in concentrated guanidine followed by concentrated sodium phosphate extraction supported HMW DNA recovery from clays high in iron oxides. DNA recovered using 1 M sodium phosphate buffer (PB) as a competitive desorptive wash was 15.22±2.33 µg DNA/g clay, with most DNA consisting of >20 Kb fragments, compared to 2.46±0.25 µg DNA/g clay with the Powerlyzer system (MoBio). Increasing PB concentration in the lysis reagent coincided with increasing DNA fragment length during initial extraction. Rarefaction plots of 16S rRNA (V1–V3 region) pyrosequencing from A-horizon and clay soils showed an ∼80% and ∼400% larger accessed diversity compared to the Powerlyzer soil DNA system, respectively. The observed diversity from the Firmicutes showed the strongest increase with >3-fold more operational taxonomic units (OTU) recovered.  相似文献   

2.
Biochemical experimentation generally requires accurate knowledge, at an early stage, of the nucleic acid, protein, and other biomolecular components in potentially heterogeneous specimens. Nucleic acids can be detected via several established approaches, including analytical methods that are spectrophotometric (e.g., A260), fluorometric (e.g., binding of fluorescent dyes), or colorimetric (nucleoside-specific chromogenic chemical reactions).1 Though it cannot readily distinguish RNA from DNA, the A260/A280 ratio is commonly employed, as it offers a simple and rapid2 assessment of the relative content of nucleic acid, which absorbs predominantly near 260 nm and protein, which absorbs primarily near 280 nm. Ratios < 0.8 are taken as indicative of ''pure'' protein specimens, while pure nucleic acid (NA) is characterized by ratios > 1.53.However, there are scenarios in which the protein/NA content cannot be as clearly or reliably inferred from simple uv-vis spectrophotometric measurements. For instance, (i) samples may contain one or more proteins which are relatively devoid of the aromatic amino acids responsible for absorption at ≈280 nm (Trp, Tyr, Phe), as is the case with some small RNA-binding proteins, and (ii) samples can exhibit intermediate A260/A280 ratios (~0.8 < ~1.5), where the protein/NA content is far less clear and may even reflect some high-affinity association between the protein and NA components. For such scenarios, we describe herein a suite of colorimetric assays to rapidly distinguish RNA, DNA, and reducing sugars in a potentially mixed sample of biomolecules. The methods rely on the differential sensitivity of pentoses and other carbohydrates to Benedict''s, Bial''s (orcinol), and Dische''s (diphenylamine) reagents; the streamlined protocols can be completed in a matter of minutes, without any additional steps of having to isolate the components. The assays can be performed in parallel to differentiate between RNA and DNA, as well as indicate the presence of free reducing sugars such as glucose, fructose, and ribose (Figure 1).  相似文献   

3.
Chlorine dioxide (ClO2) inactivation experiments were conducted with adenovirus type 40 (AD40) and feline calicivirus (FCV). Experiments were carried out in buffered, disinfectant demand-free water under high- and low-pH and -temperature conditions. Ct values (the concentration of ClO2 multiplied by contact time with the virus) were calculated directly from bench-scale experiments and from application of the efficiency factor Hom (EFH) model. AD40 Ct ranges for 4-log inactivation (Ct99.99%) at 5°C were >0.77 to <1.53 mg/liter × min and >0.80 to <1.59 mg/liter × min for pH 6 and 8, respectively. For 15°C AD40 experiments, >0.49 to <0.74 mg/liter × min and <0.12 mg/liter × min Ct99.99% ranges were observed for pH 6 and 8, respectively. FCV Ct99.99% ranges for 5°C experiments were >20.20 to <30.30 mg/liter × min and >0.68 mg/liter × min for pH 6 and 8, respectively. For 15°C FCV experiments, Ct99.99% ranges were >4.20 to <6.72 and <0.18 mg/liter × min for pH 6 and 8, respectively. Viral inactivation was higher at pH 8 than at pH 6 and at 15°C than at 5°C. Comparison of Ct values and inactivation curves demonstrated that the EFH model described bench-scale experiment data very well. Observed bench-scale Ct99.99% ranges and EFH model Ct99.99% values demonstrated that FCV is more resistant to ClO2 than AD40 for the conditions studied. U.S. Environmental Protection Agency guidance manual Ct99.99% values are higher than Ct99.99% values calculated from bench-scale experiments and from EFH model application.  相似文献   

4.
Dipicolinic acid was determined by reverse-phase liquid chromatography. Elution was with 0.2 M potassium phosphate, pH 1.8, containing 1.5% tert-amyl alcohol or higher concentrations of lower alcohols or acetonitrile. The normal analytical range was 50 to 1,000 μM, which is equivalent to 0.1 to 1 mg of spores per ml with a relative standard error of 2 to 4% and a detection limit of <100 pmol. Dipicolinic acid was fully extracted from spores by heating at pH 1.8 for 10 min at 100°C. Sporulating cultures may be analyzed in less than 20 min without separation of cells from media. Liquid chromatography was also used to detect dipicolinic acid in more complex substrates, e.g., guinea pig feces containing Metabacterium polyspora spores and canned food. Dipicolinic acid could be detected in unspoiled canned salmon containing <106 added Bacillus cereus spores per g.  相似文献   

5.
We investigate the hydration state of horse-heart cytochrome c (hh cyt c) in the unfolding process induced by trifluoroacetic acid (TFA). The conformation of hh cyt c changes from the native (N) state (2.9 < pH < 6.0) to the acid-unfolded (UA) state (1.7 < pH < 2.0) to the acid-induced molten globule (A) state (pH ∼1.2). Hydration properties of hh cyt c during this process are measured at 20°C by high-resolution dielectric relaxation (DR) spectroscopy, UV-vis absorbance, and circular dichroism spectroscopy. Constrained water of hh cyt c is observed at every pH as an ∼5-GHz Debye component (DC) (DR time, τD ∼30 ps) and its DR amplitude (DRA) is increased by 77% upon N-to-UA transition, when pH changes from 6.0 to 2.0. Even in the N state, the DRA of the constrained-water component is found to be increased by 22% with decreasing pH from 6.0 to 2.9, suggesting an increase in the accessible surface area of native hh cyt c. Moreover, hypermobile water around native hh cyt c is detected at pH 6.0 as a 19-GHz DC (τD ∼ 8.4 ps < τDW = 9.4 ps), but is not found at other pH values. The DRA signal of constrained water is found to return to the pH 2.9 (N-state) level upon UA-to-A transition. Fast-response water (slightly slower than bulk) around A-state hh cyt c is detected at pH 1.2, and this suggests some accumulation of TFA ions around the peptide chain. Thus, this high-resolution DR spectroscopy study reveals that hh cyt c exhibits significant hydration-state change in the TFA-unfolding process.  相似文献   

6.
Biosynthesis of the popular dyestuff indigo from indole has been comprehensively studied using pure cultures, but less has been done to characterize the indigo production by microbial communities. In our previous studies, a wild strain Comamonas sp. MQ was isolated from activated sludge and the recombinant Escherichia coli nagAc carrying the naphthalene dioxygenase gene (nag) from strain MQ was constructed, both of which were capable of producing indigo from indole. Herein, three activated sludge systems, G1 (non-augmented control), G2 (augmented with Comamonas sp. MQ), and G3 (augmented with recombinant E. coli nagAc), were constructed to investigate indigo production. After 132-day operation, G3 produced the highest yields of indigo (99.5 ± 3.0 mg/l), followed by G2 (27.3 ± 1.3 mg/l) and G1 (19.2 ± 1.2 mg/l). The microbial community dynamics and activities associated with indigo production were analyzed by Illumina Miseq sequencing of 16S rRNA gene amplicons. The inoculated strain MQ survived for at least 30 days, whereas E. coli nagAc was undetectable shortly after inoculation. Quantitative real-time PCR analysis suggested the abundance of naphthalene dioxygenase gene (nagAc) from both inoculated strains was strongly correlated with indigo yields in early stages (0–30 days) (P < 0.001) but not in later stages (30–132 days) (P > 0.10) of operation. Based on detrended correspondence analysis (DCA) and dissimilarity test results, the communities underwent a noticeable shift during the operation. Among the four major genera (> 1% on average), the commonly reported indigo-producing populations Comamonas and Pseudomonas showed no positive relationship with indigo yields (P > 0.05) based on Pearson correlation test, while Alcaligenes and Aquamicrobium, rarely reported for indigo production, were positively correlated with indigo yields (P < 0.05). This study should provide new insights into our understanding of indigo bio-production by microbial communities.  相似文献   

7.
Staphylococcus lugdunensis has emerged as a major cause of community-acquired and nosocomial infections. This bacterium can rapidly adapt to changing environmental conditions to survive and capitalize on opportunities to colonize and infect through wound surfaces. It was proposed that S. lugdunensis would have underlying alterations in metabolic homeostasis to provide the necessary levels of adaptive protection. The aims of this project were to examine the impacts of subtle variations in environmental conditions on growth characteristics, cell size and membrane fatty acid composition in S. lugdunensis. Liquid broth cultures of S. lugdunensis were grown under varying combinations of pH (6–8), temperature (35–39°C) and osmotic pressure (0–5% sodium chloride w/w) to reflect potential ranges of conditions encountered during transition from skin surfaces to invasion of wound sites. The cells were harvested at the mid-exponential phase of growth and assessed for antibiotic minimal inhibitory concentration (MIC), generation time, formation of small colony variants, cell size (by scanning electron microscopy) and membrane fatty acid composition. Stress regimes with elevated NaCl concentrations resulted in significantly higher antibiotic resistance (MIC) and three of the combinations with 5% NaCl had increased generation times (P<0.05). It was found that all ten experimental growth regimes, including the control and centroid cultures, yielded significantly different profiles of plasma membrane fatty acid composition (P<0.0001). Alterations in cell size (P<0.01) were also observed under the range of conditions with the most substantial reduction occurring when cells were grown at 39°C, pH 8 (514±52 nm, mean ± Standard Deviation) compared with cells grown under control conditions at 37°C with pH 7 (702±76 nm, P<0.01). It was concluded that S. lugdunensis responded to slight changes in environmental conditions by altering plasma membrane fatty acid composition, growth rates and morphology to achieve optimal adaptations for survival in changing environments.  相似文献   

8.
Protease-negative variants were shown to outcompete the wild-type strains of Streptococcus cremoris E8, HP, and Wg2 at pH values higher than 6.0 in milk. For S. cremoris E8 this process was studied in more detail. At lower pH values the wild type had a selective advantage. This pH-dependent selection was not found in all media tested. The poor growth of the protease-negative variant at low pH was not due to lower internal pH values. By growing S. cremoris E8 and Wg2 in acidified milk (pH 5.9) the proteolytic activity of the cultures could be stabilized. In continuous cultures under amino acid limitation the wild type S. cremoris E8 and HP strains had a selective advantage over the protease-negative variants at low dilution rates (D < 0.2) at all pH values of the medium. This was apparently due to a lower affinity-constant (Ks) of the protease-positive variants for amino acids. Finally, a high fraction of protease-positive variants could be maintained in continuous cultures by using a growth medium with low concentrations of casein as a nitrogen source. At high dilution rates nearly all cells were protease positive.  相似文献   

9.
1. Phosphatase synthesis was studied in Klebsiella aerogenes grown in a wide range of continuous-culture systems. 2. Maximum acid phosphatase synthesis was associated with nutrient-limited, particularly carbohydrate-limited, growth at a relatively low rate, glucose-limited cells exhibiting the highest activity. Compared with glucose as the carbon-limiting growth material, other sugars not only altered the activity but also changed the pH–activity profile of the enzyme(s). 3. The affinity of the acid phosphatase in glucose-limited cells towards p-nitrophenyl phosphate (Km 0.25–0.43mm) was similar to that of staphylococcal acid phosphatase but was ten times greater than that of the Escherichia coli enzyme. 4. PO43−-limitation derepressed alkaline phosphatase synthesis but the amounts of activity were largely independent of the carbon source used for growth. 5. The enzymes were further differentiated by the effect of adding inhibitors (F, PO43−) and sugars to the reaction mixture during the assays. In particular, it was shown that adding glucose, but not other sugars, stimulated the rate of hydrolysis of p-nitrophenyl phosphate by the acid phosphatase in carbohydrate-limited cells at low pH values (<4.6) but inhibited it at high pH values (>4.6). Alkaline phosphatase activity was unaffected. 6. The function of phosphatases in general is discussed and possible mechanisms for the glucose effect are outlined.  相似文献   

10.
Baicalin purified from the root of Radix scutellariae is widely used in clinical practices. This study aimed to evaluate the effect of baicalin on the pharmacokinetics of nifedipine, a CYP3A probe substrate, in rats in vivo and in vitro. In a randomised, three-period crossover study, significant changes in the pharmacokinetics of nifedipine (2 mg/kg) were observed after treatment with a low (0.225 g/kg) or high (0.45 g/kg) dose of baicalin in rats. In the low- and high-dose groups of baicalin-treated rats, C max of total nifedipine decreased by 40%±14% (P<0.01) and 65%±14% (P<0.01), AUC0–∞ decreased by 41%±8% (P<0.01) and 63%±7% (P<0.01), Vd increased by 85%±43% (P<0.01) and 224%±231% (P<0.01), and CL increased by 97%±78% (P<0.01) and 242%±135% (P<0.01), respectively. Plasma protein binding experiments in vivo showed that C max of unbound nifedipine significantly increased by 25%±19% (P<0.01) and 44%±29% (P<0.01), respectively, and there was a good correlation between the unbound nifedipine (%) and baicalin concentrations (P<0.01). Furthermore, in vitro results revealed that baicalin was a competitive displacer of nifedipine from plasma proteins. In vitro incubation experiments demonstrated that baicalin could also competitively inhibit CYP3A activity in rat liver microsomes in a concentration-dependent manner. In conclusion, the pharmacokinetic changes of nifedipine may be modulated by the inhibitory effects of baicalin on plasma protein binding and CYP3A–mediated metabolism.  相似文献   

11.
The isolation and properties of the protein calliphorin   总被引:2,自引:2,他引:0       下载免费PDF全文
1. A procedure for the isolation of the protein calliphorin from larvae and pupae of the blowfly Calliphora erythrocephala is described. 2. The calliphorin preparation shows a single component in the ultracentrifuge at pH6.3 and gives a single band when stained for protein after agar-gel or starch-gel electrophoresis at pH6.3 or 8.6. Immunoelectrophoresis yields only one arc, associated with the stained spot, to a rabbit antiserum known to react with 13 other soluble components of Calliphora pupae. 3. Calliphorin has s020,w 19.4S, D020,w 3.25×10−7cm2·s−1 and f/f0 1.22, indicating a molecular weight of 528000 and a compact symmetrical structure. The molecular weight determined by the meniscus-depletion sedimentation-equilibrium method is 529000. 4. In 6.2m-guanidine hydrochloride calliphorin dissociates into six components each with a molecular weight of about 87000. Calliphorin reversibly dissociates into components with sedimentation coefficients of about 7S as the pH is raised progressively above pH6.5. 5. Calliphorin has an unusually high tyrosine and phenylalanine content (442 and 400mol/mol of protein respectively), a relatively high methionine content (162mol/mol of protein) and very little cystine or cysteine (18mol/mol of protein). The E280/E250 ratio is 3.2. The pure protein contains 0.4–0.5% carbohydrate. 6. When examined in the electron microscope by the negative staining technique the protein is seen to consist of particles which are right prisms, being 105Å wide and 65Å high, rectangular in side view and curvilinear equilateral triangles in surface view.  相似文献   

12.
Design of antisense oligonucleotides stabilized by locked nucleic acids   总被引:24,自引:14,他引:10  
The design of antisense oligonucleotides containing locked nucleic acids (LNA) was optimized and compared to intensively studied DNA oligonucleotides, phosphorothioates and 2′-O-methyl gapmers. In contradiction to the literature, a stretch of seven or eight DNA monomers in the center of a chimeric DNA/LNA oligonucleotide is necessary for full activation of RNase H to cleave the target RNA. For 2′-O-methyl gapmers a stretch of six DNA monomers is sufficient to recruit RNase H. Compared to the 18mer DNA the oligonucleotides containing LNA have an increased melting temperature of 1.5–4°C per LNA depending on the positions of the modified residues. 2′-O-methyl nucleotides increase the Tm by only <1°C per modification and the Tm of the phosphorothioate is reduced. The efficiency of an oligonucleotide in supporting RNase H cleavage correlates with its affinity for the target RNA, i.e. LNA > 2′-O-methyl > DNA > phosphorothioate. Three LNAs at each end of the oligonucleotide are sufficient to stabilize the oligonucleotide in human serum 10-fold compared to an unmodified oligodeoxynucleotide (from t1/2 = ~1.5 h to t1/2 = ~15 h). These chimeric LNA/DNA oligonucleotides are more stable than isosequential phosphorothioates and 2′-O-methyl gapmers, which have half-lives of 10 and 12 h, respectively.  相似文献   

13.
Thermoplasma acidophilum is a thermophilic archaeon that uses both non-phosphorylative Entner-Doudoroff (ED) pathway and Embden-Meyerhof-Parnas (EMP) pathway for glucose degradation. While triosephosphate isomerase (TPI), a well-known glycolytic enzyme, is not involved in the ED pathway in T. acidophilum, it has been considered to play an important role in the EMP pathway. Here, we report crystal structures of apo- and glycerol-3-phosphate-bound TPI from T. acidophilum (TaTPI). TaTPI adopts the canonical TIM-barrel fold with eight α-helices and parallel eight β-strands. Although TaTPI shares ~30% sequence identity to other TPIs from thermophilic species that adopt tetrameric conformation for enzymatic activity in their harsh physiological environments, TaTPI exists as a dimer in solution. We confirmed the dimeric conformation of TaTPI by analytical ultracentrifugation and size-exclusion chromatography. Helix 5 as well as helix 4 of thermostable tetrameric TPIs have been known to play crucial roles in oligomerization, forming a hydrophobic interface. However, TaTPI contains unique charged-amino acid residues in the helix 5 and adopts dimer conformation. TaTPI exhibits the apparent Td value of 74.6°C and maintains its overall structure with some changes in the secondary structure contents at extremely acidic conditions (pH 1–2). Based on our structural and biophysical analyses of TaTPI, more compact structure of the protomer with reduced length of loops and certain patches on the surface could account for the robust nature of Thermoplasma acidophilum TPI.  相似文献   

14.
15.
Organic acids derived from engineered microbes can replace fossil-derived chemicals in many applications. Fungal hosts are preferred for organic acid production because they tolerate lignocellulosic hydrolysates and low pH, allowing economic production and recovery of the free acid. However, cell death caused by cytosolic acidification constrains productivity. Cytosolic acidification affects cells asynchronously, suggesting that there is an underlying cell-to-cell heterogeneity in acid productivity and/or in resistance to toxicity. We used fluorescence microscopy to investigate the relationship between enzyme concentration, cytosolic pH, and viability at the single-cell level in Saccharomyces cerevisiae engineered to synthesize xylonic acid. We found that cultures producing xylonic acid accumulate cells with cytosolic pH below 5 (referred to here as “acidified”). Using live-cell time courses, we found that the probability of acidification was related to the initial levels of xylose dehydrogenase and sharply increased from 0.2 to 0.8 with just a 60% increase in enzyme abundance (Hill coefficient, >6). This “switch-like” relationship likely results from an enzyme level threshold above which the produced acid overwhelms the cell''s pH buffering capacity. Consistent with this hypothesis, we showed that expression of xylose dehydrogenase from a chromosomal locus yields ∼20 times fewer acidified cells and ∼2-fold more xylonic acid relative to expression of the enzyme from a plasmid with variable copy number. These results suggest that strategies that further reduce cell-to-cell heterogeneity in enzyme levels could result in additional gains in xylonic acid productivity. Our results demonstrate a generalizable approach that takes advantage of the cell-to-cell variation of a clonal population to uncover causal relationships in the toxicity of engineered pathways.  相似文献   

16.
Factors Affecting Oxidation of Thiosalts by Thiobacilli   总被引:1,自引:1,他引:0       下载免费PDF全文
The effects of temperature, initial pH, and the concentrations of ammonium, phosphate, and heavy metals on the oxidation of thiosalts by an authentic strain of Thiobacillus thiooxidans (ATCC 8085) and by a mixed culture isolated from a base metal-processing mill effluent pond were studied. The optimum temperature was 30°C and the optimum initial pH was 3.75 for both cultures using thiosulfate and for the mixed culture using tetrathionate. T. thiooxidans ATCC 8085 did not oxidize tetrathionate. For a thiosalt concentration of 2,000 ppm (2,000 mg/liter), maximal rates of destruction occurred at concentrations of ammonium ion above 2 mg/liter and in the presence of 1 mg of phosphate per liter. Under optimal conditions, the rate of thiosulfate oxidation by the pure culture was 55 ± 3 mg/liter per h; the mixed culture oxidized thiosulfate at the rate of 40 ± 1 mg/liter per h and tetrathionate at the rate of 50 ± 2 mg/liter per h. Metal ions caused normal inhibition kinetics in the oxidation of thiosulfate by T. thiooxidans ATCC 8085. Ki values were calculated for cadmium (16 mg/liter), copper (0.46 mg/liter), lead (2 mg/liter), silver (3.1 mg/liter), and zinc (33 mg/liter). Only a slight additive effect was apparent in the presence of all of these metal ions. The mixed culture of thiosalt-oxidizing bacteria was less sensitive to heavy metal inhibition; the order of inhibition of thiosulfate oxidation was Cd < Zn < Pb < Ag < Cu, and that of tetrathionate oxidation was Zn < Cd < Pb < Ag < Cu.  相似文献   

17.
Increased accumulation of macrophages in adipose tissue in obesity is linked to low-grade chronic inflammation, and associated with features of metabolic syndrome. Vitamin D3 may have immunoregulatory effects and reduce adipose tissue inflammation, although the molecular mechanisms remain to be established. This study investigated the effects of vitamin D3 on macrophage-elicited inflammatory responses in cultured human adipocytes, particularly the signalling pathways involved. Macrophage-conditioned (MC) medium (25% with adipocyte maintenance media) markedly inhibited protein expression of the nuclear factor-κB (NFκB) subunit inhibitor κBα (IκBα) (71%, P<0.001) and increased NFκB p65 (1.5-fold, P = 0.026) compared with controls. Treatment with 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) abolished macrophage-induced activation of NFκB signalling by increasing IκBα expression (2.7-fold, P = 0.005) and reducing NFκB p65 phosphorylation (68%; P<0.001). The mitogen-activated protein kinase (MAPK) signalling was activated by MC medium, which was also blunted by 1,25(OH)2D3 with a downregulation of phosphorylated p38 MAPK (32%, P = 0.005) and phosphorylated Erk1/2 (49%, P = 0.001). Furthermore, MC medium (12.5% or 25%) dose-dependently upregulated secretion of key proinflammatory chemokines/cytokines (22-368-fold; all P<0.001) and this was significantly decreased by 1,25(OH)2D3: IL-8 (61% and 31%, P<0.001), MCP-1 (37%, P<0.001 and 36%, P = 0.002), RANTES (78% and 62%, P<0.001) and IL-6 (29%, P<0.001 and 34%, P = 0.019). Monocyte migration-elicited by adipocytes treated with 1,25(OH)2D3 was also reduced (up to 25%, P<0.001). In conclusion, vitamin D3 could be anti-inflammatory in adipose tissue, decreasing macrophage-induced release of chemokines and cytokines by adipocytes and the chemotaxis of monocytes. Our data suggests these effects are mediated by inhibition of the NFκB and MAPK signalling pathways.  相似文献   

18.
The specific growth rates of four species of lactobacilli decreased linearly with increases in the concentration of dissolved solids (sugars) in liquid growth medium. This was most likely due to the osmotic stress exerted by the sugars on the bacteria. The reduction in growth rates corresponded to decreased lactic acid production. Medium pH was another factor studied. As the medium pH decreased from 5.5 to 4.0, there was a reduction in the specific growth rate of lactobacilli and a corresponding decrease in the lactic acid produced. In contrast, medium pH did not have any significant effect on the specific growth rate of yeast at any particular concentration of dissolved solids in the medium. However, medium pH had a significant (P < 0.001) effect on ethanol production. A medium pH of 5.5 resulted in maximal ethanol production in all media with different concentrations of dissolved solids. When the data were analyzed as a 4 (pH levels) by 4 (concentrations of dissolved solids) factorial experiment, there was no synergistic effect (P > 0.2923) observed between pH of the medium and concentration of dissolved solids of the medium in reducing bacterial growth and metabolism. The data suggest that reduction of initial medium pH to 4.0 for the control of lactobacilli during ethanol production is not a good practice as there is a reduction (P < 0.001) in the ethanol produced by the yeast at pH 4.0. Setting the mash (medium) with ≥30% (wt/vol) dissolved solids at a pH of 5.0 to 5.5 will minimize the effects of bacterial contamination and maximize ethanol production by yeast.  相似文献   

19.
The effects of seven commercially available alkaline cleaners used in the food processing industry, 0.025 M NaOH, and 0.025 M KOH on viability of wild-type (EDL 933) and rpoS-deficient (FRIK 816-3) strains of Escherichia coli O157:H7 in logarithmic and stationary phases of growth were determined. Cells were treated at 4 or 23°C for 2, 10, or 30 min. Cleaners 2, 4, 6, and 7, which contained hypochlorite and <11% NaOH and/or KOH (pH 11.2 to 11.7), killed significantly higher numbers of cells than treatment with cleaner 3, containing sodium metasilicate (pH 11.4) and <10% KOH, and cleaner 5, containing ethylene glycol monobutyl ether (pH 10.4). There were no differences in the sensitivities of logarithmic and stationary-phase cells to the alkaline cleaners. Treatment with KOH or NaOH (pH 12.2) was not as effective as four out of seven commercial cleaners in killing E. coli O157:H7, indicating that chlorine and other cleaner components have bactericidal activity at high pH. Stationary-phase cells of strain EDL 933 that had been exposed to cleaner 7 at 4 or 23°C and strain FRIK 816-3 exposed to cleaner 7 at 23°C had significantly higher D55°C (decimal reduction time, minutes at 55°C) values than control cells or cells exposed to cleaner 5, indicating that exposure to cleaner 7 confers cross-protection to heat. Cells of EDL 933 treated with cleaner 7 at 12°C showed significantly higher D55°C values than cells of FRIK 816-3, indicating that rpoS may play a role in cross-protection. Stationary-phase cells treated with cleaner 5 or cleaner 7 at 4 or 12°C were not cross-protected against subsequent exposure to sanitizers containing quaternary ammonium compounds or sodium hypochlorite, or to cetylpyridinium chloride and benzalkonium chloride.  相似文献   

20.
Ninety-one infants with respiratory failure secondary to primary pulmonary disease and with a birth weight of 1000 g. or over have been managed in a negative-pressure respirator (Air-Shields) over a three-year period. Of these the failure in 87 was due to respiratory distress syndrome (RDS) and in four it resulted from massive meconium aspiration. Respiratory failure was indicated initially by arterial blood gas tensions (while breathing 100% O2) of Po2 <40 mm. Hg, pH <7.10 and Pco2 >75 mm. Hg in the initial 47 cases; these levels were subsequently raised to Po2 < 50 mm. Hg, pH <7.20 and Pco2 >70 mm. Hg for the remainder. Fifty-four (59.3%) of the infants survived the use of the respirator and 47 of these (51.6%) were subsequently discharged alive and well. Mean time in hours to normalization of blood gas values while on the respirator were as follows: for Po2, 10.5; for pH, 11.6; and for Pco2, 22.6. These values indicate that the respirator is more efficient in promoting oxygenation (raising Po2) than ventilation (lowering Pco2). They also suggest that the observed acidosis is in large part secondary to the hypoxia rather than the result of co2 retention. For the survivors the average time of total respirator dependency before commencement of weaning was 53.7 hours. All the infants were managed without the use of endotracheal tubes although the use of the respirator and/or administration of 100% oxygen were either continuous or intermittent for periods of up to two weeks. There have been no instances of so-called respirator lung disease in the survivors or in those who died, which suggests that the use of high oxygen concentration by itself is not the major factor in the pathogenesis of this complication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号