首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nicotiana benthamiana leaves display a visible plant cell death response when infiltrated with a high titer inoculum of the non-host pathogen, Xanthomonas campestris pv. vesicatoria (Xcv). This visual phenotype was used to identify overlapping cosmid clones from a genomic cosmid library constructed from the Xcv strain, GM98-38. Individual cosmid clones from the Xcv library were conjugated into X. campestris pv. campestris (Xcc) and exconjugants were scored for an altered visual high titer inoculation response in N. benthamiana. The molecular characterization of the cosmid clones revealed that they contained a novel gene, xopX, that encodes a 74-kDa type III secretion system (TTSS) effector protein. Agrobacterium-mediated transient expression of XopX in N. benthamiana did not elicit the plant cell death response although detectable XopX protein was produced. Interestingly, the plant cell death response occurred when the xopX Agrobacterium-mediated transient expression construct was co-inoculated with strains of either XcvDeltaxopX or Xcc, both lacking xopX. The co-inoculation complementation of the plant cell death response also depends on whether the Xanthomonas strains contain an active TTSS. Transgenic 35S-xopX-expressing N. benthamiana plants also have the visible plant cell death response when inoculated with the non-xopX-expressing strains XcvDeltaxopX and Xcc. Unexpectedly, transgenic 35S-xopX N. benthamiana plants displayed enhanced susceptibility to bacterial growth of Xcc as well as other non-xopX-expressing Xanthomonas and Pseudomonas strains. This result is also consistent with the increase in bacterial growth on wild type N. benthamiana plants observed for Xcc when XopX is expressed in trans. Furthermore, XopX contributes to the virulence of Xcv on host pepper (Capsicum annuum) and tomato (Lycopersicum esculentum) plants. We propose that the XopX bacterial effector protein targets basic innate immunity in plants, resulting in enhanced plant disease susceptibility.  相似文献   

2.
Divéki Z  Salánki K  Balázs E 《Biochimie》2002,84(10):997-1002
While the green fluorescent protein (GFP) is a routinely used marker gene in higher plants, there are only a few data concerning the use of blue fluorescent protein (BFP). These proteins together are used for dual colour tagging experiments in various biological systems; however, the benefits of this technique in plant virology have not been exploited yet. In this work, our aim was to determine whether the BFP is a suitable second marker in conjunction with GFP for following the progress of virus infection. Nicotiana clevelandii, N. benthamiana and N. tabacum cv. Xanthi-nc plants were infected with potato virus X vector carrying the GFP or the Y66H type BFP gene. While GFP was brightly fluorescent in all species, the fluorescence intensity of BFP varied widely, from the bright fluorescence observed in N. clevelandii to the absence of fluorescence in N. tabacum cv. Xanthi-nc. Since at even mild acidic pH BFP rapidly fades, the more acidic cytosol of N. tabacum could be responsible for impaired in vivo fluorescence. After infiltration of the infected leaves of N. clevelandii with pH 5 phosphate buffer, the fluorescence faded thus confirming this situation.  相似文献   

3.
The model pathogen Pseudomonas syringae pv. tomato DC3000 causes bacterial speck in tomato and Arabidopsis, but Nicotiana benthamiana, an important model plant, is considered to be a non-host. Strain DC3000 injects approximately 28 effector proteins into plant cells via the type III secretion system (T3SS). These proteins were individually delivered into N. benthamiana leaf cells via T3SS-proficient Pseudomonas fluorescens, and eight, including HopQ1-1, showed some capacity to cause cell death in this test. Four gene clusters encoding 13 effectors were deleted from DC3000: cluster II (hopH1, hopC1), IV (hopD1, hopQ1-1, hopR1), IX (hopAA1-2, hopV1, hopAO1, hopG1), and native plasmid pDC3000A (hopAM1-2, hopX1, hopO1-1, hopT1-1). DC3000 mutants deleted for cluster IV or just hopQ1-1 acquired the ability to grow to high levels and produce bacterial speck lesions in N. benthamiana. HopQ1-1 showed other hallmarks of an avirulence determinant in N. benthamiana: expression in the tobacco wildfire pathogen P. syringae pv. tabaci 11528 rendered this strain avirulent in N. benthamiana, and elicitation of the hypersensitive response in N. benthamiana by HopQ1-1 was dependent on SGT1. DC3000 polymutants involving other effector gene clusters in a hopQ1-1-deficient background revealed that clusters II and IX contributed to the severity of lesion symptoms in N. benthamiana, as well as in Arabidopsis and tomato. The results support the hypothesis that the host ranges of P. syringae pathovars are limited by the complex interactions of effector repertoires with plant anti-effector surveillance systems, and they demonstrate that N. benthamiana can be a useful model host for DC3000.  相似文献   

4.
Bioinformatics is now used as an umbrella term for almost all aspects of computational biology. Bioinformatics research will have an impact on all of biology, and virology is not immune from these research methods. Although virology has been slower to embrace bioinformatics this is now changing, particularly in the areas of viral sequences databasing and the systematic identification of viral and host homologous proteins. Here we will review some of these recent advances focusing mainly on the herpesvirus.  相似文献   

5.
Traditionally, developmental studies in plant biology have suffered from the lack of a convenient means to study gene function in non-model plant species. Here we show that virus-induced gene silencing (VIGS) is an effective new tool to study the function of orthologs of floral homeotic genes such as DEFICIENS (DEF) in non-model systems. We used a tobacco rattle virus (TRV)-based VIGS approach to study the function of the Nicotiana benthamiana DEF ortholog (NbDEF). Silencing of NbDEF in N. benthamiana using TRV-VIGS was similar to that of Antirrhinum def and Arabidopsis ap3 mutants and caused transformation of petals into sepals and stamens into carpels. Molecular analysis of the NbDEF -silenced plants revealed a dramatic reduction of the levels of NbDEF mRNA and protein in flowers. NbDEF silencing was specific and has no effect on the mRNA levels of NbTM6, the closest paralog of NbDEF. A dramatic reduction of the levels of N. benthamiana GLOBOSA (NbGLO) mRNA and protein was also observed in flowers of NbDEF-silenced plants, suggesting that cross-regulation of this GLO-like gene by NbDEF. Taken together, our results suggest that NbDEF is a functional homolog of Antirrhinum DEF. Our results are significant in that they show that TRV efficiently induces gene silencing in young and differentiating flowers and that VIGS is a promising new tool for analyses of developmental gene function in non-model organisms.  相似文献   

6.
7.
To elucidate the molecular mechanisms of plant immune responses, we isolated genes whose expression was regulated by inoculation with Ralstonia solanacearum. Here, we report the characterization of Nicotiana benthamiana belonging to the SEC14-gene superfamily designated as Nicotiana benthamiana SEC14 (NbSEC14). NbSEC14 rescued growth defects and impaired invertase secretion associated with the yeast sec14p temperature-sensitive mutant, while recombinant NbSec14 protein had phospholipids transfer activity. NbSEC14 expression was up-regulated in N. benthamiana leaves after inoculation with virulent or avirulent R. solanacearum. Expression of NbSEC14 was induced by treatment with chitin, flg22, and by Agrobacterium-mediated transient expression of INF1 elicitin, AvrA from R. solanacearum, and co-expression of the capsid protein from Tobacco mild green mosaic virus with its cognate resistance L1 protein. NbSEC14-silenced plants showed accelerated growth of both the virulent and avirulent R. solanacearum as well as acceleration of disease development. This study may provide useful information for the further analysis of the function of plant Sec14 protein homologs in the regulation of plant immune responses.  相似文献   

8.
The Thirties testified on the outstanding development of plant virology: the new discoveries formalized the concept of virus on a physicochemical background. Plant viruses, which had received their own taxonomical position at the end of the Twenties, were no longer considered as simple "infective pathogens" as their size, shape and chemical nature were determined, particularly for one of them--tobacco mosaic virus (TMV). This paramount contribution was achieved as a consequence of a functional interaction between biology on one side, and chemistry and physics on the other side, from the development of which molecular biology was born. The chemical characterization of TMV developed from the first determination of nitrogen presence in purified virus, performed by Carl Vinson, through the identification of TMV as Wendell Stanley's infective, autoreplicative protein macromolecule, to the final discovery of its nucleoprotein nature by the British group of Frederick Bawden. Thorough analytical techniques--in particular electron microscopy--led to disclose the exact shape and size of TMV particle. These discoveries, that opened a new era of virology, were corroborated by new knowledge that, although less explosive, can be considered of great importance for the development of plant virology. The methodologies to estimate viral activity; the study of the relationships between viruses and insect vectors; the studies on virus spread within plants; the identification of non-sterile type of resistance and of correlation between single plant genes and viral pathogenesis benefited plant virology of a set of knowledge that, together with the discoveries on the physico-chemical properties of TMV, raised plant virology from a secondary branch of plant pathology to a new independent science by itself.  相似文献   

9.
The broad-host-range bacterial soft rot pathogen Pectobacterium carotovorum causes a DspE/F-dependent plant cell death on Nicotiana benthamiana within 24 h postinoculation (hpi) followed by leaf maceration within 48 hpi. P. carotovorum strains with mutations in type III secretion system (T3SS) regulatory and structural genes, including the dspE/F operon, did not cause hypersensitive response (HR)-like cell death and or leaf maceration. A strain with a mutation in the type II secretion system caused HR-like plant cell death but no maceration. P. carotovorum was unable to impede callose deposition in N. benthamiana leaves, suggesting that P. carotovorum does not suppress this basal immunity function. Within 24 hpi, there was callose deposition along leaf veins and examination showed that the pathogen cells were localized along the veins. To further examine HR-like plant cell death induced by P. carotovorum, gene expression profiles in N. benthamiana leaves inoculated with wild-type and mutant P. carotovorum and Pseudomonas syringae strains were compared. The N. benthamiana gene expression profile of leaves infiltrated with Pectobacterium carotovorum was similar to leaves infiltrated with a Pseudomonas syringae T3SS mutant. These data support a model where Pectobacterium carotovorum uses the T3SS to induce plant cell death in order to promote leaf maceration rather than to suppress plant immunity.  相似文献   

10.
Phosphomannomutase (PMM) catalyzes the interconversion of mannose-6-phosphate and mannose-1-phosphate. However, systematic molecular and functional investigations on PMM from higher plants have hitherto not been reported. In this work, PMM cDNAs were isolated from Arabidopsis, Nicotiana benthamiana, soybean, tomato, rice and wheat. Amino acid sequence comparisons indicated that plant PMM proteins exhibited significant identity to their fungal and mammalian orthologs. In line with the similarity in primary structure, plant PMM complemented the sec53-6 temperature sensitive mutant of Saccharomyces cerevisiae. Histidine-tagged Arabidopsis PMM (AtPMM) purified from Escherichia coli converted mannose-1-phosphate into mannose-6-phosphate and glucose-1-phosphate into glucose-6-phosphate, with the former reaction being more efficient than the latter one. In Arabidopsis and N. benthamiana, PMM was constitutively expressed in both vegetative and reproductive organs. Reducing the PMM expression level through virus-induced gene silencing caused a substantial decrease in ascorbic acid (AsA) content in N. benthamiana leaves. Conversely, raising the PMM expression level in N. benthamiana using viral-vector-mediated ectopic expression led to a 20-50% increase in AsA content. Consistent with this finding, transgenic expression of an AtPMM-GFP fusion protein in Arabidopsis also increased AsA content by 25-33%. Collectively, this study improves our understanding on the molecular and functional properties of plant PMM and provides genetic evidence on the involvement of PMM in the biosynthesis of AsA in Arabidopsis and N. benthamiana plants.  相似文献   

11.
Pepper plants (Capsicum annuum) containing the Bs2 resistance gene are resistant to strains of Xanthomonas campestris pv vesicatoria (Xcv) expressing the bacterial effector protein AvrBs2. AvrBs2 is delivered directly to the plant cell via the type III protein secretion system (TTSS) of Xcv. Upon recognition of AvrBs2 by plants expressing the Bs2 gene, a signal transduction cascade is activated leading to a bacterial disease resistance response. Here, we describe a novel pathosystem that consists of epitope-tagged Bs2-expressing transgenic Nicotiana benthamiana plants and engineered strains of Pseudomonas syringae pv tabaci that deliver the effector domain of the Xcv AvrBs2 protein via the TTSS of P. syringae. This pathosystem has allowed us to exploit N. benthamiana as a model host plant to use Agrobacterium tumefaciens-mediated transient protein expression in conjunction with virus-induced gene silencing to validate genes and to identify protein interactions required for the expression of plant host resistance. In this study, we demonstrate that two genes, NbSGT1 and NbNPK1, are required for the Bs2/AvrBs2-mediated resistance responses but that NbRAR1 is not. Protein localization studies in these plants indicate that full-length Bs2 is primarily localized in the plant cytoplasm. Three protein domains of Bs2 have been identified: the N terminus, a central nucleotide binding site, and a C-terminal Leu-rich repeat (LRR). Co-immunoprecipitation studies demonstrate that separate epitope-tagged Bs2 domain constructs interact in trans specifically in the plant cell. Co-immunoprecipitation studies also demonstrate that an NbSGT1-dependent intramolecular interaction is required for Bs2 function. Additionally, Bs2 has been shown to associate with SGT1 via the LRR domain of Bs2. These data suggest a role for SGT1 in the proper folding of Bs2 or the formation of a Bs2-SGT1-containing protein complex that is required for the expression of bacterial disease resistance.  相似文献   

12.
13.
Virus-induced gene silencing (VIGS) is a rapid and robust method for determining and studying the function of plant genes or expressed sequence tags (ESTs). However, only a few plant species are amenable to VIGS. There is a need for a systematic study to identify VIGS-efficient plant species and to determine the extent of homology required between the heterologous genes and their endogenous orthologs for silencing. Two approaches were used. First, the extent of phytoene desaturase (PDS) gene silencing was studied in various Solanaceous plant species using Nicotiana benthamiana NbPDS sequences. In the second approach, PDS sequences from a wide range of plant species were used to silence the PDS gene in N. benthamiana. The results showed that tobacco rattle virus (TRV)-mediated VIGS can be performed in a wide range of Solanaceous plant species and that heterologous gene sequences from far-related plant species can be used to silence their respective orthologs in the VIGS-efficient plant N. benthamiana. A correlation was not always found between gene silencing efficiency and percentage homology of the heterologous gene sequence with the endogenous gene sequence. It was concluded that a 21-nucleotide stretch of 100% identity between the heterologous and endogenous gene sequences is not absolutely required for gene silencing.  相似文献   

14.
DspA/E is a pathogenicity factor of Erwinia amylovora that is translocated into the plant cell cytoplasm through an Hrp type III secretion system. Transient expression of dspA/E in Nicotiana benthamiana or yeast induced cell death, as it does in N. tabacum and apple as described previously. DspA/E-induced cell death in N. benthamiana was not inhibited by coexpression of AvrPtoB of Pseudomonas syringae pv. tomato , which inhibits programmed cell death (PCD) induced by several other elicitors in plants. Silencing of NbSGT1 , the expression of which is required for PCD mediated by several resistance proteins of plants, prevented DspA/E-induced cell death in N. benthamiana. However, silencing of NbRAR1 , or two MAP kinase kinase genes, which are required for PCD associated with many resistance genes in plants, did not prevent cell death induced by DspA/E. Silencing of NbSGT1 also compromised non-host resistance against E. amylovora . E. amylovora grew rapidly within the first 24 h after infiltration in N. benthamiana , and DspA/E was required for this early rapid growth. However, bacterial cell numbers decreased after 24 h in TRV-vector-transformed plants, whereas a dspA/E mutant strain grew to high populations in NbSGT1 -silenced plants. Our results indicate that DspA/E enhances virulence of E. amylovora in N. benthamiana, but the bacteria are then recognized by the plant, resulting in PCD and death of bacterial cells or restriction of bacterial cell growth.  相似文献   

15.
Upon infection, Tomato spotted wilt virus (TSWV) forms ribonucleoprotein particles (RNPs) that consist of nucleoprotein (N) and viral RNA. These aggregates result from the homopolymerization of the N protein, and are highly stable in plant cells. These properties feature the N protein as a potentially useful protein fusion partner. To evaluate this potential, the N protein was fused to the Aequorea victoria green fluorescent protein (GFP), either at the amino or carboxy terminus, and expressed in plants from binary vectors in Nicotiana benthamiana leaves were infiltrated with Agrobacterium tumefaciens and evaluated after 4 days, revealing an intense GFP fluorescence under UV light. Microscopic analysis revealed that upon expression of the GFP:N fusion a small number of large aggregates were formed, whereas N:GFP expression led to a large number of smaller aggregates scattered throughout the cytoplasm. A simple purification method was tested, based on centrifugation and filtration, yielding a gross extract that contained large amounts of N:GFP aggregates, as confirmed by GFP fluorescence and Western blot analysis. These results show that the homopolymerization properties of the N protein can be used as a fast and simple way to purify large amounts of proteins from plants.  相似文献   

16.
Although cyclic glucans have been shown to be important for a number of symbiotic and pathogenic bacterium-plant interactions, their precise roles are unclear. Here, we examined the role of cyclic beta-(1,2)-glucan in the virulence of the black rot pathogen Xanthomonas campestris pv campestris (Xcc). Disruption of the Xcc nodule development B (ndvB) gene, which encodes a glycosyltransferase required for cyclic glucan synthesis, generated a mutant that failed to synthesize extracellular cyclic beta-(1,2)-glucan and was compromised in virulence in the model plants Arabidopsis thaliana and Nicotiana benthamiana. Infection of the mutant bacterium in N. benthamiana was associated with enhanced callose deposition and earlier expression of the PATHOGENESIS-RELATED1 (PR-1) gene. Application of purified cyclic beta-(1,2)-glucan prior to inoculation of the ndvB mutant suppressed the accumulation of callose deposition and the expression of PR-1 in N. benthamiana and restored virulence in both N. benthamiana and Arabidopsis plants. These effects were seen when cyclic glucan and bacteria were applied either to the same or to different leaves. Cyclic beta-(1,2)-glucan-induced systemic suppression was associated with the transport of the molecule throughout the plant. Systemic suppression is a novel counterdefensive strategy that may facilitate pathogen spread in plants and may have important implications for the understanding of plant-pathogen coevolution and for the development of phytoprotection measures.  相似文献   

17.
Type III effector proteins (T3Es) of many Gram-negative pathogenic bacteria manipulate highly conserved cellular processes, indicating conservation in virulence mechanisms during the infection of hosts of divergent evolutionary origin. In order to identify conserved effector functions, we used a cross-kingdom approach in which we expressed selected T3Es from the mammalian pathogen Salmonella enterica in leaves of Nicotiana benthamiana and searched for possible virulence or avirulence phenotypes. We show that the T3E SseF of S. enterica triggers hypersensitive response (HR)-like symptoms, a hallmark of effector-triggered immunity in plants, either when transiently expressed in leaves of N. benthamiana by Agrobacterium tumefaciens infiltration or when delivered by Xanthomonas campestris pv vesicatoria (Xcv) through the type III secretion system. The ability of SseF to elicit HR-like symptoms was lost upon silencing of suppressor of G2 allele of skp1 (SGT1), indicating that the S. enterica T3E is probably recognized by an R protein in N. benthamiana. Xcv translocating an AvrRpt2-SseF fusion protein was restricted in multiplication within leaves of N. benthamiana. Bacterial growth was not impaired but symptom development was rather accelerated in a compatible interaction with susceptible pepper (Capsicum annuum) plants. We conclude that the S. enterica T3E SseF is probably recognized by the plant immune system in N. benthamiana, resulting in effector-triggered immunity.  相似文献   

18.
Barley stripe mosaic virus-induced gene silencing in a monocot plant   总被引:35,自引:0,他引:35  
RNA silencing of endogenous plant genes can be achieved by virus-mediated, transient expression of homologous gene fragments. This powerful, reverse genetic approach, known as virus-induced gene silencing (VIGS), has been demonstrated only in dicot plant species, where it has become an important tool for functional genomics. Barley stripe mosaic virus (BSMV) is a tripartite, positive-sense RNA virus that infects many agriculturally important monocot species including barley, oats, wheat and maize. To demonstrate VIGS in a monocot host, we modified BSMV to express untranslatable foreign inserts downstream of the gammab gene, in either sense or antisense orientations. Phytoene desaturase (PDS) is required for synthesizing carotenoids, compounds that protect chlorophyll from photo-bleaching. A partial PDS cDNA amplified from barley was 90, 88 and 74% identical to PDS cDNAs from rice, maize and Nicotiana benthamiana, respectively. Barley infected with BSMV expressing barley, rice or maize PDS fragments became photo-bleached and accumulated phytoene (the substrate for PDS) in a manner similar to plants treated with the chemical inhibitor of PDS, norflurazon. In contrast, barley infected with wild-type BSMV, or BSMV expressing either N. benthamiana PDS or antisense green fluorescent protein (GFP), did not photo-bleach or accumulate phytoene. Thus BSMV silencing of the endogenous PDS was homology-dependent. Deletion of the coat protein enhanced the ability of BSMV to silence PDS. This is the first demonstration of VIGS in a monocot, and suggests that BSMV can be used for functional genomics and studies of RNA-silencing mechanisms in monocot plant species.  相似文献   

19.
We have constructed a matched set of binary vectors designated pGD, pGDG and pGDR for the expression and co-localization of native proteins and GFP or DsRed fusions in large numbers of plant cells. The utility of these vectors following agroinfiltration into leaves has been demonstrated with four genes from Sonchus yellow net virus, a plant nucleorhabdovirus, and with a nucleolar marker protein. Of the three SYNV proteins tested, sc4 gave identical localization patterns at the cell wall and nucleus when fused to GFP or DsRed. However, some differences in expression patterns were observed depending on whether DsRed or GFP was the fusion partner. In this regard, the DsRed:P fusion showed a similar pattern of localization to GFP:P, but localized foci appeared in the nucleus and near the periphery of the nucleus. Nevertheless, the viral nucleocapsid protein, expressed as a GFP:N fusion, co-localized with DsRed:P in a subnuclear locale in agreement with our previous observations (Goodin et al., 2001). This locale appears to be distinct from the nucleolus as indicated by co-expression of the N protein, DsRed:P and a nucleolar marker AtFib1 fused to GFP. The SYNV M protein, which is believed to be particularly prone to oligomerization, was detectable only as a GFP fusion. Our results indicate that agroinfiltration with bacteria containing the pGD vectors is extremely useful for transient expression of several proteins in a high proportion of the cells of Nicotiana benthamiana leaves. The GFP and DsRed elements incorporated into the pGD system should greatly increase the ease of visualizing co-localization and interactions of proteins in a variety of experimental dicotyledonous hosts.  相似文献   

20.
Medicago truncatula, the model plant of legumes, is well characterized, but there is only a little knowledge about it as a viral host. Viral vectors can be used for expressing foreign genes or for virus-induced gene silencing (VIGS), what is a fast and powerful tool to determine gene functions in plants. Viral vectors effective on Nicotiana benthamiana have been constructed from a number of viruses, however, only few of them were effective in other plants. A Tobamovirus, Sunnhemp mosaic virus (SHMV) systemically infects Medicago truncatula without causing severe symptoms. To set up a viral vector for Medicago truncatula, we prepared an infectious cDNA clone of SHMV. We constructed two VIGS vectors differing in the promoter element to drive foreign gene expression. The vectors were effective both in the expression and in the silencing of a transgene Green Fluorescent Protein (GFP) and in silencing of an endogenous gene Phytoene desaturase (PDS) on N. benthamiana. Still only one of the vectors was able to successfully silence the endogenous Chlorata 42 gene in M. truncatula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号