首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a healthy woman with two abortions who is a carrier for a rare heterozygous double recombinant of an inv(5) chromosome, karyotype 46,XX,rec(5)dup(5p) inv(5)(p13q22),rec(5)dup(5q)inv(5)(p13q22). Her father had a 46,XY,inv(5)(p13q22) karyotype; his consanguineous wife had died. Molecular investigation of 11 highly polymorphic markers spanning chromosome 5 revealed biparental inheritance for two markers (D5S406, D5S681) on 5p15.3 and 5q13.1, and an allele constellation not compatible with paternal heterodisomy for marker D5S623 on 5q11.2. Eight markers were not informative. Three mechanisms of formation are proposed: First, fertilization of a normal oocyte by a sperm carrying the two recombinant chromosomes 5, followed by postzygotic recombination between the normal maternal homologue and the rec(5)dup(5p), and by loss of the mitotically recombined maternal homologue, leading to segmental paternal heterodisomy 5q13-->qter (trisomic rescue). Second, postzygotic recombination in a 46,XX,inv(5)(p13q22) zygote resulting in the 46,XX,rec(5)dup(5p)inv(5)(p13q22),rec(5) dup(5q)inv(5)(p13q22) karyotype, followed by absence of the original cell line in lymphocytes. Third and most likely, both parents were inv(5) carriers and complementary recombinations in maternal and paternal meiosis resulted in a zygote with two recombinant chromosomes 5. Our patient refused any further studies but later reported the birth of a phenotypically normal child. This is the first report known to us of complementation by two non-homologous recombinant chromosomes in a phenotypically normal woman, and the first example of a child born to a carrier of complementary recombinant chromosomes.  相似文献   

2.
Summary An abnormal infant had a dicentric chromosome 14 with an inverted tandem duplication [46,XY,inv dup(14) (pterq32.3::q24.2pter)], thus making him trisomic for the proximal two-thirds of chromosome 14. This abnormality was derived from a maternal paracentric inversion in chromosome 14 [46,XX,inv(14)(q24.2q32.3)]. To our knowledge, this is the first report of a liveborn infant carrying a stable, dicentric product of crossing over within a paracentric inversion loop. A review of the reproductive outcomes of paracentric inversion carriers in the literature suggests that they are at some risk for pregnancy wastage. The risk for liveborn recombinants is small but such births have occurred, at least to female carriers.  相似文献   

3.
We report on a balanced complex chromosomal aberration detected in a fetus after amniocentesis. The pregnancy was achieved after intracytoplasmic sperm injection. GTG-banding revealed a complex structurally rearranged karyotype with a translocation between chromosomes 5 and 15 and an additional paracentric inversion in the der(15) between bands 5q11.2 and 5q15. Ag-NOR staining showed an interstitial active nuclear organizer region in the der(15). Molecular cytogenetic analyses using whole-chromosome-painting probes, comparative genomic hybridization, and multicolor banding did not point to further structural aberrations or imbalances. Therefore, a complex rearrangement with three breakpoints has occurred, and the karyotype can be described as 46,XX,der(5)t(5;15) (q11.2;p12),der(15)t(5;15)(q11.2;p12)inv(5)(q11.2q15).  相似文献   

4.
Paracentric inversions in human chromosome 7   总被引:1,自引:1,他引:0  
M. Schmid  T. Haaf  M. Zorn 《Human genetics》1986,74(2):197-199
Summary A paracentric inversion (7)(q11q22) and mosaicism 46,XX/45,X was detected in a female with minor malformations. The same inversion was observed in the mother of the patient. The analysis of high resolution banded chromosmes revealed no visible imbalance in the inverted long arm of the chromosome 7. All published cases of paracentric inversions in the human chromosome 7 are reviewed and the relationship between this inversion and the occurrence of an aneuploidy of the sex chromosomes is discussed.  相似文献   

5.
Summary A cytogenetic survey was carried out on 200 patients with mental retardation and multiple congenital anomalies, and on 200 normal adult controls. Patients with a known syndrome were excluded from the survey. Chromosome analyses were carried out on blind-coded slides using the ASG banding technique as the routine stain. After the initial analyses (at least 15 cells per person) the slides were decoded, destained and reused for C and Q band polymorphism studies.Five major chromosome abnormalities were detected in the patient group during the survey. They included three patients with de novo, apparently balanced, reciprocal translocations, karyotypes 46,XY,rcp(3;16)(q21;p12); 46,XX,rcp(5;8)(p15;q22); and 46,XX,rcp(5;12)(p11;q24); one with karyotype 47,XX,+mar and one with karyotype 46,XX,der(13),t(13;?)(q34;?). One additional patient whose karyotype in lymphocytes was 46,XX,inv(9)(p11;q13) was found to have a mosaic karyotype 46,XX,inv(9)(p11;q13)/46,XX,inv(9) (p11;q13),der(12),t(12;?)(p13;?) in cultured skin fibroblasts. None of the 200 controls had a major chromosome abnormality.From the combined results of this and previous surveys it is now apparent that about 6.2% of the unclassifiable mentally retarded patients with three or more congenital anomalies and about 0.7% of the controls reveal major chromosome abnormalities.  相似文献   

6.
Here we report a 15-year-old girl patient who had severe mental and growth retardation, cleft palate, hemifacial microsomia, skin tags, hypoplasia of the external auditory canal, scoliosis and renal agenesis. Our patient was the fourth child of nonconsanguineous marriage. Peripheral blood chromosomal analysis of the patient revealed 47,XX,+der(22)t(11;22)(q23;q11). The maternal karyotype was reported as 46,XX,t(11;22)(q23;q11). Maternal balanced translocation t(11;22)(q23;q11) causing Goldenhar syndrome with 47,XX,+der(22) has not been reported previously. The presented case clearly indicates that in every case with Goldenhar syndrome, chromosome analysis should be done for the possibility of unbalanced translocations.  相似文献   

7.
In this case report we present a child with an additional chromosome in the karyotype. The karyotypes of the boy and his parents were analyzed by use of a conventional banding technique (GTG) and fluorescence in situ hybridization (FISH). Probes painting whole chromosomes 12 and 18 were used in FISH. Cytogenetic examination of the parents revealed that his mother was carrying balanced reciprocal translocation between chromosomes 12 and 18. Her karyotype was described as 46,XX,t(12;18)(p13;q12). Father's karyotype was normal, described as 46,XY. The boy's karyotype was defined as 47,XY,+der(18)t(12;18)(p13;q12). The additional chromosome appeared probably due to 3:1 meiotic disjunction of the maternal balanced translocation, known as tertiary trisomy. The mother displayed a normal phenotype and delivered earlier a healthy child. However, the boy with the unbalanced karyotype shows multiple congenital abnormalities.  相似文献   

8.
A couple presenting with habitual spontaneous abortion both showed a chromosome rearrangement. The male had an apparently balanced paracentric inversion of chromosome 14 - 46,XY,inv(14) (q11q32). The female had a karyotype with a rare large short arm variant of chromosome 9 - 46,XX,var(9) (p11p21). Testing of a living normal child showed that he had inherited both rearrangements. Family testing showed the chromosome 9 variant in three generations, with all carriers being of normal phenotype and intelligence. This study confirms that the presence of more than one chromosomal rearrangement can be compatible with normal development. This is useful for genetic counselling. Nevertheless when such cases arise, each must be individually assessed.  相似文献   

9.
Summary A phenotypically otherwise normal homosexual man with a 46,XY,inv(2)(q21q33) karyotype inherited from his mother is described. The breakpoints were different from those observed in the only other case of familial paracentric inversion of chromosome 2 reported in the literature, but in our case they seem to correspond to constitutive and aphidicolin-induced fragile sites.  相似文献   

10.
We report a recurrent partial monosomy of 18p10-->11.2 and proximal partial trisomy of 18q10-->21.3 caused by a maternal pericentric inversion of chromosome 18, involving breakpoints p11.2 and q21q21.3 Based on cytogenetics and FISH analysis, we speculate that the recurrent chromosome abnormality in the proband and in the fetus was the result of a translocation, possibly in a germ cell or germ cell precursor, between the maternal normal 18 and her inverted 18, resulting in maternal germinal mosaicism, i.e. 46,XX,inv(18)/46,XX,t[18;inv(18)][q10;q10]. The unbalanced karyotype of the proband and the fetus is 46,XY,+18,der[18;inv(18)][q10;q10]. To the best of our knowledge, there are no reports of this combination of proximal 18p monosomy and proximal 18q trisomy. The other interesting observation was association of Hirschsprung's disease in the proband.  相似文献   

11.
In a family in which a large pericentric inversion of chromosome 7 is segregating, two of the four progeny of inversion heterozygotes show severe psychomotor retardation and have the karyotype 46,XX,rec(7),dup q,inv(7)(p22q32), derived from crossing-over within the inversion. Meiotic analysis in one of the heterozygotes revealed no evidence of inversion loops in well-spread pachytene cells. In approximately 20% of cells in diakinesis, the presumptive bivalent 7 had only one chiasma. Two alternatives to the reversed loop mode of meiotic pairing of inversions are proposed. Review of the literature supports the view that "small" pericentric inversions have a much better genetic prognosis than "large" pericentric inversions.  相似文献   

12.
We report a five-year-old girl who has been clinically diagnosed as Joubert syndrome. Her cytogenetic analysis showed 46,XX,der(2)add(2q37) karyotype. Cytogenetic analysis of her mother and maternal grandmother revealed a karyogram designated as 46,X,t (X;2)(p11.2;q37). The proband's derivative chromosome was further confirmed to be a translocation chromosome 2 carrying segments from chromosome X, which originated from a segregation event of the maternal grandmother's balanced translocation passed on as a balanced translocation to the proband's mother either. So far, a number of candidate genes including EN1 on 2q were analyzed for Joubert syndrome. Based on our proband's abnormal karyotype, we suggest that further mapping studies for the syndrome should also be directed towards the chromosome X segments present on the derivative chromosome 2 of our proband.  相似文献   

13.
We report on a Yq/15p translocation in a 23-year-old infertile male referred for Klinefelter Syndrome testing, who had azoospermia and bilateral small testes. Hormonal studies revealed hypergonadotropic hypogonadism. Conventional cytogenetic procedures giemsa trypsin giemsa (GTG) and high resolution banding (HRB) and molecular cytogenetic techniques Fluorescence In Situ Hybridization (FISH) performed on high-resolution lymphocyte chromosomes revealed the karyotype 46,XX, t(Y;15)(q12;p11). SRY-gene was confirmed to be present by classical Polymerase Chain Reaction (PCR) methods. His father carried de novo derivative chromosome 15 [45,X, t(Y;15)(q12;p11)] and was fertile; the karyotype of the father using G-band technique confirmed a reciprocal balanced translocation between chromosome Y and 15. In the proband, the der (15) has been inherited from the father because the mother had a normal karyotype (46,XX). In the proband, the der (15) could have produced genetic imbalance leading to unbalanced robertson translocation between chromosome Y and 15, which might have resulted in azoospermia and infertility in the proband. The paternal translocation might have lead to formation of imbalanced ova, which might be resulted infertility in the proband. Sister''s karyotypes was normal (46,XX) while his brother was not analyzed.  相似文献   

14.
15.
Partial Trisomy 14q is a rare chromosomal disorder that mostly results from a parental translocation. We report here a newborn boy with partial trisomy 14q and dysmorphic features that are compatible with previously reported cases. Conventional cytogenetic analysis revealed an extra chromosomal segment at the end of the short arm of chromosome 4. In order to determine the origin of this chromosome region we used subtelomeric FISH technique. Based on the results of these cytogenetic studies and the physical examination, this dysmorphic case was diagnosed as partial trisomy of 14q and his karyotype determined as 46 XY, der(4)t(4;14)(p16;q32) resulting from a balanced maternal translocation identified as 46,XX, t(4;14)(p16;q32).  相似文献   

16.
Summary The parental origin of the extra chromosome 21 was studied in 20 patients with trisomy 21-associated transient myeloproliferative syndrome (TMS) using chromosomal heteromorphisms as markers; this was combined with a study of DNA polymorphisms in 5 patients. Of these, 10 were shown to result from duplication of a parental chromosome 21, viz., maternal in 8 and paternal in 2. A patient with Down syndrome-associated TMS had a paracentric inversion in two of his three chromosomes 21 [47,XY,-21, +inv(21)(q11.2q22.13)mat, +inv(21)(q11.2 q22.13)mat). These findings support our hypothesis of disomic homozygosity of a mutant gene on chromosome 21 in 21-trisomic cells as being a mechanism responsible for the occurrence of TMS. The finding also suggests that the putative TMS gene locus is at either 21q11.2 or 21q22.13, assuming that the gene is interrupted at either site because of the inversion. The study of 5 TMS patients using DNA polymorphic markers detected a cross-over site on the duplicated chromosomes 21 between 21q11.2 (or q21.2) and 21q21.3 in one patient, and a site between 21q21.3 and q22.3 in another patient, evidence that confined the gene locus to the 21cen-q21.3 segment. These findings suggest that the putative TMS gene is located at 21q11.2. The extra chromosome 21 in the latter two TMS patients probably resulted from maternal second meiotic non-disjunction, in view of the presence of recombinant heterozygous segments on their duplicated chromosomes 21.  相似文献   

17.

Background

The etiology of premature ovarian failure (POF) still remains undefined. Although the majority of clinical cases are idiopathic, there are possibilities of the underestimation of the most common etiologies, probably genetic causes. By reporting a case of POF with a partial Xp duplication and Xq deletion in spite of a cytogenetically 46,XX normal karyotype, we look forward that the genetic cause of POF will be investigated more methodically.

Methods

We performed a basic and clinical study at a university hospital-affiliated fertility center. The study population was a POF patient and her family. Cytogenetic analysis, FMR1 gene analysis, multiplex ligation-dependent probe amplification (MLPA), fluorescent in situ hybridization (FISH), and oligonucleotide-array based comparative genomic hybridization (array CGH) were performed.

Results

In spite of normal cytogenetic analysis in the proband and her mother and younger sister, FMR1 gene was not detected in the proband and her younger sister. In Southern blot analysis, the mother showed a normal female band pattern, but the proband and her younger sister showed no 5.2 kb methylated band. The abnormal X chromosome of the proband and her sister was generated from the recombination of an inverted X chromosome of the mother during maternal meiosis, and the karyotype of the proband was 46,XX,rec(X)dup(Xp)inv(X)(p22.1q27.3).

Conclusion

Array CGH followed by FISH allowed precise characterization of the der(X) chromosome and the initial karyotype of the proband had been changed to 46,XX,rec(X)dup(Xp)inv(X)(p22.3q27.3)mat.arr Xp22.33p22.31(216519–8923527)x3,Xq27.3q28(144986425–154881514)x1. This study suggests that further genetic investigation may be needed in the cases of POF with a cytogenetically 46,XX normal karyotype to find out the cause and solution for these disease entities.  相似文献   

18.
Summary We describe the phenotype of a child having a recombinant chromosome 3 with a duplication 3q13.2 q25 derived from a paternal inv ins(3)(p25.3q25q13.2). A review of 27 reported cases of intrachromosomal insertions has revealed that for a carrier of intrachromosomal insertion the risk of a child with an unbalanced karyotype is 15%. This risk may be higher for particular insertions. The recombinant chromosome can have a duplication or a deletion of different segments depending on whether the insertion is direct or inverted, paracentric or pericentric, and whether there is meiotic crossing over in the inserted or the interstitial non-inserted segment. Several of the insertions have been difficult to interpret and some of them have been mistaken for paracentric inversions. Caution is therefore indicated in interpreting parental karyotypes of a child with a deletion or a duplication, particularly if it is interstitial. This is because, whereas a risk of recurrence of a child with an unbalanced karyotype is low in de novo cases and for carriers of paracentric inversions, it is high for carriers of insertions.  相似文献   

19.
Chromosome 14 is often involved in various chromosome rearrangements, most of them balanced. Human chromosome 14 is acrocentric, so its pericentric inversions are extremely rare (only few cases have been described in the literature). Here we report on a boy with congenital malformations and recombinant chromosome 14 inherited from his mother carrying a pericentric inversion. The proband's G-banded chromosome analysis revealed derivative chromosome 14. Comparative genomic hybridization analysis identified duplication of the terminal part of chromosome 14q ish cgh dup(14)(q32.1qter). This abnormality has been confirmed by custom BAC FISH analysis. His mother's karyotype was 46,XX,inv(14)(p11.2q32.1).  相似文献   

20.
Summary We describe two female siblings with similar clinical features consisting of hydrocephalus, scaphocephaly, hypotonia, mongoloid eye slant, blepharophimosis, micrognathia, supernumerary mouth frenula and mental retardation. Routine cytogenetic studies in the elder patient did not reveal any abnormality, and initially it was assumed that the syndrome had an autosomal recessive inheritance. However, a slightly larger chromosome 13 was seen in routine G-banded metaphases of the mother and the youngest of the two siblings. A shorter chromosome 15 was detected in the mother only. High resolution banding showed that the abnormal chromosome 13 contained an extra G-positive band at 13q12. The short chromosome 15 in the mother appeared to have a deletion of band q12. Fluorescence in situ hybridization using DNA markers specific to chromosomes 13 and 15 unequivocally showed that the mother was a carrier of a balanced reciprocal translocation t(13;15)(q12;q13), whereas the youngest sibling's karyotype was 46,XX,-13,+der(15)t(13;15)(q12;q13)mat, resulting in partial monosomy 13pterq12 and partial trisomy 15pterq13. The proband is thus trisomie for the critical region responsible for Prader-Willi syndrome and Angelman syndrome; this was confirmed by DNA analysis demonstrating one paternal and two maternal alleles from multiallelic marker loci mapping to 15q11-q13. This report illustrates the sensitivity and specificity offered by fluorescence in situ hybridization and its usefulness in the diagnosis and delineation of subtle chromosomal rearrangements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号