首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FTY720 has immunosuppressive activity in experimental organ transplantation and shows a prompt and protracted decrease of blood T lymphocytes upon oral administration. The blood lymphocyte decrease in vivo was mainly a result of FTY720-induced apoptosis. However, this apoptotic mechanism is not well understood. We examined the mechanism of FTY720-induced apoptosis in lymphoma. Western blotting and fluorescent caspase-specific substrate revealed that caspase-3 is involved in FTY720-induced apoptosis, whereas caspase-1 is not. Apoptotic cell death was inhibited by the pan-caspase inhibitor, Z-VAD-FMK, suggesting that caspase activation is essential for FTY720-induced apoptosis. FTY720 reduced mitochondrial transmembrane potential and released cytochrome c from the mitochondria of intact cells as well as in a cell-free system even in the presence of Z-VAD-FMK. As these mitochondrial reactions occurred before caspase activation, we concluded that FTY720 directly influences mitochondrial functions. The inhibition of mitochondrial permeability transition by Bcl-2 overexpression or by chemical inhibitors prevented all apoptotic events occurring in intact cells and in a cell-free system. Moreover, using a cell-free system, FTY720 did not directly affect isolated nuclei or cytosol. These results indicate that FTY720 directly affects mitochondria and triggers permeability transition to induce further apoptotic events.  相似文献   

2.
Clostridium difficile toxin B (TcdB) inactivates the small GTPases Rho, Rac and Cdc42 during intoxication of mammalian cells. In the current work, we show that TcdB has the potential to stimulate caspase-dependent and caspase-independent apoptosis. The apoptotic pathways became evident when caspase-3-processed-vimentin was detected in TcdB-treated HeLa cells. Caspase-3 activation was subsequently confirmed in TcdB-intoxicated HeLa cells. Interestingly, caspase inhibitor delayed TcdB-induced cell death, but did not alter the time-course of cytopathic effects. A similar effect was also observed in MCF-7 cells, which are deficient in caspase-3 activity. The time-course to cell death was almost identical between cells treated with TcdB plus caspase inhibitor and cells intoxicated with the TcdB enzymatic domain (TcdB1-556). Unlike TcdB treated cells, intoxication with TcdB1-556 or expression of TcdB1-556 in a transfected cell line, did not stimulate caspase-3 activation yet cells exhibited cytopathic effects and cell death. Although TcdB1-556 treated cells did not demonstrate caspase-3 activation these cells were apoptotic as determined by differential annexin-V/propidium iodide staining and nucleosomal DNA fragmentation. These data indicate TcdB triggers caspase-independent apoptosis as a result of substrate inactivation and may evoke caspase-dependent apoptosis due to a second, yet undefined, activity of TcdB. This is the first example of a bacterial virulence factor with the potential to stimulate multiple apoptotic pathways in host cells.  相似文献   

3.
Rho GTPases are key transducers of integrin/extracellular matrix and growth factor signaling. Although integrin-mediated adhesion and trophic support suppress neuronal apoptosis, the role of Rho GTPases in neuronal survival is unclear. Here, we have identified Rac as a critical pro-survival GTPase in cerebellar granule neurons (CGNs) and elucidated a death pathway triggered by its inactivation. GTP-loading of Rac1 was maintained in CGNs by integrin-mediated (RGD-dependent) cell attachment and trophic support. Clostridium difficile toxin B (ToxB), a specific Rho family inhibitor, induced a selective caspase-mediated degradation of Rac1 without affecting RhoA or Cdc42 protein levels. Both ToxB and dominant-negative N17Rac1 elicited CGN apoptosis, characterized by cytochrome c release and activation of caspase-9 and -3, whereas dominant-negative N19RhoA or N17Cdc42 did not cause significant cell death. ToxB stimulated mitochondrial translocation and conformational activation of Bax, c-Jun activation, and induction of the BH3-only protein Bim. Similarly, c-Jun activation and Bim induction were observed with N17Rac1. A c-jun N-terminal protein kinase (JNK)/p38 inhibitor, SB203580, and a JNK-specific inhibitor, SP600125, significantly decreased ToxB-induced Bim expression and blunted each subsequent step of the apoptotic cascade. These results indicate that Rac acts downstream of integrins and growth factors to promote neuronal survival by repressing c-Jun/Bim-mediated mitochondrial apoptosis.  相似文献   

4.
Caspase-2 is one of the earliest identified caspases, but the mechanism of caspase-2-induced apoptosis remains unknown. We show here that caspase-2 engages the mitochondria-dependent apoptotic pathway by inducing the release of cytochrome c (Cyt c) and other mitochondrial apoptogenic factors into the cell cytoplasm. In support of these observations we found that Bcl-2 and Bcl-xL can block caspase-2- and CRADD (caspase and RIP adaptor with death domain)-induced cell death. Unlike caspase-8, which can process all known caspase zymogens directly, caspase-2 is completely inactive toward other caspase zymogens. However, like caspase-8, physiological levels of purified caspase-2 can cleave cytosolic Bid protein, which in turn can trigger the release of Cyt c from isolated mitochondria. Interestingly, caspase-2 can also induce directly the release of Cyt c, AIF (apoptosis-inducing factor), and Smac (second mitochondria-derived activator of caspases protein) from isolated mitochondria independent of Bid or other cytosolic factors. The caspase-2-released Cyt c is sufficient to activate the Apaf-caspase-9 apoptosome in vitro. In combination, our data suggest that caspase-2 is a direct effector of the mitochondrial apoptotic pathway.  相似文献   

5.
6.
We have previously reported that CD40 stimulation sensitizes human memory B cells to undergo apoptosis upon subsequent B cell receptor (BCR) ligation. We have proposed that activation stimuli connect the BCR to an apoptotic pathway in mature B cells and that BCR-induced apoptosis of activated B cells could serve a similar function as activation-induced cell death in the mature T cell compartment. Although it has been reported that caspases are activated during this process, the early molecular events that link the Ag receptor to these apoptosis effectors are largely unknown. In this study, we report that acquisition of susceptibility to BCR-induced apoptosis requires entry of memory B cells into the S phase of the cell cycle. We also show that transduction of the death signal via the BCR sequentially proceeds through a caspase-independent and a caspase-dependent phase, which take place upstream and downstream of the mitochondria, respectively. Furthermore, our data indicate that the BCR-induced alterations of the mitochondrial functions are involved in activation of the caspase cascade. We have found both caspases-3 and -9, but not caspase-8, to be involved in the BCR apoptotic pathway, thus supporting the notion that initiation of the caspase cascade could be under the control of the caspase-9/Apaf-1/cytochrome c multimolecular complex. Altogether, our findings establish the mitochondria as the connection point through which the Ag receptor can trigger the executioners of apoptotic cell death in mature B lymphocytes.  相似文献   

7.
8.
Recent studies have suggested a possible role for presenilin proteins in apoptotic cell death observed in Alzheimer's disease. The mechanism by which presenilin proteins regulate apoptotic cell death is not well understood. Using the yeast two-hybrid system, we previously isolated a novel protein, presenilin-associated protein (PSAP) that specifically interacts with the C terminus of presenilin 1 (PS1), but not presenilin 2 (PS2). Here we report that PSAP is a mitochondrial resident protein sharing homology with mitochondrial carrier protein. PSAP was detected in a mitochondria-enriched fraction, and PSAP immunofluorescence was present in a punctate pattern that colocalized with a mitochondrial marker. More interestingly, overexpression of PSAP caused apoptotic death. PSAP-induced apoptosis was documented using multiple independent approaches, including membrane blebbing, chromosome condensation and fragmentation, DNA laddering, cleavage of the death substrate poly(ADP-ribose) polymerase, and flow cytometry. PSAP-induced cell death was accompanied by cytochrome c release from mitochondria and caspase-3 activation. Moreover, the general caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone, which blocked cell death, did not block the release of cytochrome c from mitochondria caused by overexpression of PSAP, indicating that PSAP-induced cytochrome c release was independent of caspase activity. The mitochondrial localization and proapoptotic activity of PSAP suggest that it is an important regulator of apoptosis.  相似文献   

9.
In our previous study, the sphingosine-like immunosuppressant ISP-1 was shown to induce apoptosis in the mouse cytotoxic T cell line CTLL-2. In this study, we characterized the ISP-1-induced apoptotic pathway. Although caspase-3-like protease activity increases concomitantly with ISP-1-induced apoptosis in CTLL-2 cells, the apoptosis is not inhibited by caspase-3-like protease inhibitors, i.e. DEVD-cho and z-DEVD-fmk. In contrast, sphingosine-induced apoptosis in CTLL-2 cells is caspase-3-like protease-dependent. A caspase inhibitor with broad specificity, z-VAD-fmk, protects cells from apoptosis induced by ISP-1, indicating that ISP-1-induced apoptosis is dependent on caspase(s) other than caspase-3. Overexpression of Bcl-2 or Bcl-xL suppresses the apoptosis induced by ISP-1, although sphingosine-induced apoptosis is not efficiently inhibited by Bcl-2. Finally, ISP-1-induced mitochondrial depolarization, which is thought to be a checkpoint dividing the apoptotic pathway into upstream and downstream stages, is not inhibited by DEVD-cho, but is inhibited by z-VAD-fmk. These data suggest that a pathway dependent on caspase(s) other than caspase-3 is involved upstream of mitochondrial depolarization in ISP-1-induced apoptosis.  相似文献   

10.
BACKGROUND: Antimycin A (AMA) inhibits mitochondrial electron transport, collapses the mitochondrial membrane potential, and causes the production of reactive oxygen species. Previous work by me and my colleagues has demonstrated that AMA causes an array of typical apoptotic phenomena in HL-60 cells. The hypothesis that AMA causes HL-60 apoptosis by the intrinsic apoptotic pathway has now been tested. METHODS: Z-LEHD-FMK and Z-IETD-FMK were used as specific inhibitors of the initiator caspases 9 and 8, respectively. Caspase 3 activation, DNA fragmentation, and cellular disintegration were measured by flow cytometry. Cytochrome c release, chromatin condensation, and nuclear fragmentation were measured by microscopy. RESULTS: AMA caused mitochondrial cytochrome c release and neither Z-LEHD-FMK nor Z-IETD-FMK inhibited that. In the absence of caspase inhibition there was a very close correlation between cytochrome c release and caspase 3 activation. Z-LEHD-FMK blocked caspase 3 activation but enhanced DNA fragmentation and failed to stop nuclear or cellular disintegration. Z-IETD-FMK also blocked caspase 3 activation but, in contrast to Z-LEHD-FMK, delayed DNA fragmentation and disintegration of the nucleus and the cell. CONCLUSIONS: The hypothesis to explain AMA-induced HL-60 apoptosis was clearly inadequate because: (a) caspase 9 inhibition did not prevent DNA fragmentation or cell death, (b) apoptosis proceeded in the absence of caspase-3 activation, (c) the main pathway leading to activation of the executioner caspases was by caspase-8 activation, but caspase 8 inhibition only delayed apoptosis, and (d) activation of caspases 8 and 9 may be necessary for caspase-3 activation. Thus, in this cell model, apoptosis triggered from within the mitochondria does not necessarily proceed by caspase 9, and caspase 3 is not critical to apoptosis. The results provide further evidence that, when parts of the apoptotic network are blocked, a cell is able to complete the program of cell death by alternate pathways.  相似文献   

11.
12.
ASK1 activates JNK and p38 mitogen-activated protein kinases and constitutes a pivotal signaling pathway in cytokine- and stress-induced apoptosis. However, little is known about the mechanism of how ASK1 executes apoptosis. Here we investigated the roles of caspases and mitochondria in ASK1-induced apoptosis. We found that benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD-fmk), a broad-spectrum caspase inhibitor, mostly inhibited ASK1-induced cell death, suggesting that caspases are required for ASK1-induced apoptosis. Overexpression of ASK1DeltaN, a constitutively active mutant of ASK1, induced cytochrome c release from mitochondria and activation of caspase-9 and caspase-3 but not of caspase-8-like proteases. Consistently, caspase-8-deficient (Casp8 (-/-)) cells were sensitive to ASK1-induced caspase-3 activation and apoptosis, suggesting that caspase-8 is dispensable for ASK1-induced apoptosis, whereas ASK1 failed to activate caspase-3 in caspase-9-dificient (Casp9 (-/-)) cells. Moreover, mitochondrial cytochrome c release, which was not inhibited by zVAD-fmk, preceded the onset of caspase-3 activation and cell death induced by ASK1. ASK1 thus appears to execute apoptosis mainly by the mitochondria-dependent caspase activation.  相似文献   

13.
Cytotoxic necrotizing factor 1 (CNF1) is a protein toxin produced by some pathogenic strains of Escherichia coli that specifically activates Rho, Rac, and Cdc42 GTPases. We previously reported that this toxin prevents the ultraviolet-B-induced apoptosis in epithelial cells, with a mechanism that remained to be defined. In this work, we show that the proteasomal degradation of the Rho GTPase is necessary to achieve cell death protection, because inhibition of Rho degradation abolishes the prosurvival activity of CNF1. We hypothesize that Rho inactivation allows the activity of Rac to become dominant. This in turn leads to stimulation of the phosphoinositide 3-kinase/Akt/IkappaB kinase/nuclear factor-kappaB prosurvival pathway and to a remarkable modification in the architecture of the mitochondrial network, mainly consisting in the appearance of elongated and interconnected mitochondria. Importantly, we found that Bcl-2 silencing reduces the ability of CNF1 to protect cells against apoptosis and that it also prevents the CNF1-induced mitochondrial changes. It is worth noting that the ability of a bacterial toxin to induce such a remodeling of the mitochondrial network is herein reported for the first time. The possible pathophysiological relevance of this finding is discussed.  相似文献   

14.
Expression of HSV-1 genes leads to the induction of apoptosis in human epithelial HEp-2 cells but the subsequent synthesis of infected cell protein prevents the process from killing the cells. Thus, viruses unable to produce appropriate prevention factors are apoptotic. We now report that the addition of either a pancaspase inhibitor or caspase-9-specific inhibitor prevented cells infected with an apoptotic HSV-1 virus from undergoing cell death. This result indicated that HSV-1-dependent apoptosis proceeds through the mitochondrial apoptotic pathway. However, the pancaspase inhibitor did not prevent the release of cytochrome c from mitochondria, implying that caspase activation is not required for this induction of cytochrome c release by HSV-1. The release of cytochrome c was first detected at 9 hpi while caspase-9, caspase-3 and PARP processing were detected at 12 hpi. Finally, Bax accumulated at mitochondria during apoptotic, but not wild type HSV-1 infection. Together, these findings indicate that HSV-1 blocks apoptosis by precluding mitochondrial cytochrome c release in a caspase-independent manner and suggest Bax as a target in infected human epithelial cells.  相似文献   

15.
We identified apoptosis as being a significant mechanism of toxicity following the exposure of HeLa cell cultures to abrin holotoxin, which is in addition to its inhibition of protein biosynthesis by N-glycosidase activity. The treatment of HeLa cell cultures with abrin resulted in apoptotic cell death, as characterized by morphological and biochemical changes, i.e., cell shrinkage, internucleosomal DNA fragmentation, the occurrence of hypodiploid DNA, chromatin condensation, nuclear breakdown, DNA single strand breaks by TUNEL assay, and phosphatidylserine (PS) externalization. This apoptotic cell death was accompanied by caspase-9 and caspase-3 activation, as indicated by the cleavage of caspase substrates, which was preceded by mitochondrial cytochrome c release. The broad-spectrum caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVADfmk), prevented abrin-triggered caspase activation and partially abolished apoptotic cell death, but did not affect mitochondrial cytochrome c release. These results suggest that the release of mitochondrial cytochrome c, and the sequential caspase-9 and caspase-3 activations are important events in the signal transduction pathway of abrin-induced apoptotic cell death in the HeLa cell line.  相似文献   

16.
When the gastric mucosa is exposed to various irritants, apoptosis and subsequent gastric mucosal lesion can result in vivo. We here show that gastric irritants induced apoptosis in gastric mucosal cells in primary culture and examined its molecular mechanism. Ethanol, hydrogen peroxide, and hydrochloric acid all induced, in a dose-dependent manner, cell death, apoptotic DNA fragmentation, and chromatin condensation, suggesting that each of these gastric irritants induced apoptosis in vitro. Since each of these irritants decreased the mitochondrial membrane potential and stimulated the release of cytochrome c from mitochondria, gastric irritant-induced apoptosis seems to be mediated by mitochondrial dysfunction. Caspase-3, caspase-8, and caspase-9-like activities were all activated simultaneously by each of these irritants and the activation was concomitantly with cell death and apoptotic DNA fragmentation. Furthermore, pre-treatment of gastric mucosal cells with an inhibitor of caspase-8 suppressed the onset of cell death as well as the stimulation of caspase-3- and caspase-9-like activities caused by each of these gastric irritants. Based on these results, we consider that caspase-8, an initiator caspase, plays an important role in gastric irritant-induced apoptosis.  相似文献   

17.
Inhibitor of apoptosis (IAP) gene products play an evolutionarily conserved role in regulating programmed cell death in diverse species ranging from insects to humans. Human XIAP, cIAP1 and cIAP2 are direct inhibitors of at least two members of the caspase family of cell death proteases: caspase-3 and caspase-7. Here we compared the mechanism by which IAPs interfere with activation of caspase-3 and other effector caspases in cytosolic extracts where caspase activation was initiated by caspase-8, a proximal protease activated by ligation of TNF-family receptors, or by cytochrome c, which is released from mitochondria into the cytosol during apoptosis. These studies demonstrate that XIAP, cIAP1 and cIAP2 can prevent the proteolytic processing of pro-caspases -3, -6 and -7 by blocking the cytochrome c-induced activation of pro-caspase-9. In contrast, these IAP family proteins did not prevent caspase-8-induced proteolytic activation of pro-caspase-3; however, they subsequently inhibited active caspase-3 directly, thus blocking downstream apoptotic events such as further activation of caspases. These findings demonstrate that IAPs can suppress different apoptotic pathways by inhibiting distinct caspases and identify pro-caspase-9 as a new target for IAP-mediated inhibition of apoptosis.  相似文献   

18.
Recent studies have suggested that neuronal death in Alzheimer's disease or ischemia could arise from dysfunction of the endoplasmic reticulum (ER). Although caspase-12 has been implicated in ER stress-induced apoptosis and amyloid-beta (Abeta)-induced apoptosis in rodents, it is controversial whether similar mechanisms operate in humans. We found that human caspase-4, a member of caspase-1 subfamily that includes caspase-12, is localized to the ER membrane, and is cleaved when cells are treated with ER stress-inducing reagents, but not with other apoptotic reagents. Cleavage of caspase-4 is not affected by overexpression of Bcl-2, which prevents signal transduction on the mitochondria, suggesting that caspase-4 is primarily activated in ER stress-induced apoptosis. Furthermore, a reduction of caspase-4 expression by small interfering RNA decreases ER stress-induced apoptosis in some cell lines, but not other ER stress-independent apoptosis. Caspase-4 is also cleaved by administration of Abeta, and Abeta-induced apoptosis is reduced by small interfering RNAs to caspase-4. Thus, caspase-4 can function as an ER stress-specific caspase in humans, and may be involved in pathogenesis of Alzheimer's disease.  相似文献   

19.
Targeting to mitochondria is emerging as a common strategy that bacteria utilize to interact with these central executioners of apoptosis. Several lines of evidence have in fact indicated mitochondria as specific targets for bacterial protein toxins, regarded as the principal virulence factors of pathogenic bacteria. This work shows, for the first time, the ability of the Clostridium difficile toxin B (TcdB), a glucosyltransferase that inhibits the Rho GTPases, to impact mitochondria. In living cells, TcdB provokes an early hyperpolarization of mitochondria that follows a calcium-associated signaling pathway and precedes the final execution step of apoptosis (i.e. mitochondria depolarization). Importantly, in isolated mitochondria, the toxin can induce a calcium-dependent mitochondrial swelling, accompanied by the release of the proapoptogenic factor cytochrome c. This is consistent with a mitochondrial targeting that does not require the Rho-inhibiting activity of the toxin. Of interest, the mitochondrial ATP-sensitive potassium channels are also involved in the apoptotic response to TcdB and appear to be crucial for the cell death execution phase, as demonstrated by using specific modulators of these channels. To our knowledge, the involvement of these mitochondrial channels in the ability of a bacterial toxin to control cell fate is a hitherto unreported finding.  相似文献   

20.
The synthetic retinoid-related molecule CD437-induced apoptosis in human epithelial airway respiratory cells: the 16HBE bronchial cell line and normal nasal epithelial cells. CD437 caused apoptosis in S-phase cells and cell cycle arrest in S phase. Apoptosis was abolished by caspase-8 inhibitor z-IETD-fmk which preserved S-phase cells but was weakly inhibited by others selective caspase-inhibitors, indicating that caspase-8 activation was involved. z-VAD and z-IETD prevented the nuclear envelope fragmentation but did not block the chromatin condensation. The disruption of mitochondrial transmembrane potential was also induced by CD437 treatment. The translocation of Bax to mitochondria was demonstrated, as well as the release of cytochrome c into the cytosol and of apoptosis-inducing factor (AIF) translocated into the nucleus. z-VAD and z-IETD did not inhibit mitochondrial depolarization, Bax translocation or release of cytochrome c and AIF from mitochondria. These results suggest that CD437-induced apoptosis is executed by two converging pathways. AIF release is responsible for chromatin condensation, the first stage of apoptotic cell, via a mitochondrial pathway independent of caspase. But final stage of apoptosis requires the caspase-8-dependent nuclear envelope fragmentation. In addition, using SP600125, JNK inhibitor, we demonstrated that CD437 activates the JNK-MAP kinase signaling pathway upstream to mitochondrial and caspase-8 pathways. Conversely, JNK pathway inhibition, which suppresses S-phase apoptosis, did not prevent cell cycle arrest within S phase, confirming that these processes are triggered by distinct mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号