首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of hydroperoxy fatty acids on reactions involved in the acylation-deacylation cycle of synaptic phospholipids was studied in vitro, using nerve ending fraction isolated from rat forebrain. 15-Hydroperoxyeicosatetraenoic acid (15-HPETE), 13-hydroperoxylinoleic acid (13-HP 18: 2), and hydroperoxydocosahexaenoic acid (22:6 Hpx), at 25 microM final concentration, all inhibited the incorporation of [1-14C]arachidonate into synaptosomal phosphatidylinositol (PI), phosphatidylcholine (PC), and triacylglycerides by 50-80%. The lowest effective concentration of 15-HPETE and 13-HP 18:2 resulting in significant inhibition of the reacylation of PI was 5 microM, whereas the inhibition of [1-14C]arachidonate incorporation into PC required 10 and 5 microM hydroperoxy fatty acids, respectively. Cumene hydroperoxide and tert-butyl hydroperoxide at concentrations of 100 microM did not inhibit reacylation of PI and PC. Synthesis of labeled arachidonoyl-CoA from [1-14C]arachidonate was decreased by about 50% by 25 microM hydroperoxy fatty acids both in synaptosomes and in the microsomal fraction. Use of [1-14C]arachidonoyl-CoA as a substrate, to bypass the fatty acid activation reaction, revealed that activity of acyltransferase was not affected significantly by 25 microM 15-HPETE and 13-HP 18:2. At the same time, however, the hydrolysis of labeled arachidonoyl-CoA was substantially enhanced. Exposure of synaptosomes to 25 microM fatty acid hydroperoxides did not affect significantly the endogenous concentrations of five major free fatty acids. It is concluded that (1) among synaptic phospholipids, reacylation of PI and PC is the most susceptible to the inhibitory action of fatty acid hydroperoxides, and (2) the enzymes affected by these compounds in nerve endings are arachidonoyl-CoA synthetase and hydrolase.  相似文献   

2.
LH regulates luteal progesterone secretion during the estrous cycle in ewes and cows. However, PGE, not LH, stimulated ovine luteal progesterone secretion in vitro at day 90 of pregnancy and at day 200 in cows. The hypophysis is not obligatory after day 50 nor the ovaries after day 55 to maintain pregnancy in ewes. LH has been reported to regulate ovine placental PGE secretion up to day 50 of pregnancy and by pregnancy-specific protein B (PSPB) after day 50 of pregnancy. The objective of this experiment was to determine if and when a switch from LH to PGE occurred as the luteotropin regulating luteal progesterone secretion during pregnancy in ewes. Ovine luteal tissue slices of the estrous cycle (days 8, 11, 13, and 15) or pregnancy (days 8, 11, 13, 15, 20, 30, 40, 50, 60, and 90) were incubated in vitro with vehicle, LH, AA (precursor to PGE(2) and PGF(2alpha) synthesis), or PSPB in M199 for 4 h and 8 h. Concentrations of progesterone in jugular venous plasma of bred ewes increased (P< or =0.05) after day 50 and continued to increase through day 90. Secretion of progesterone by luteal tissue of non-bred ewes on days 8, 11, 13 and 15 and by bred ewes on days 8, 11, 13, 15, 20, 30, 40, and 50 was increased (P< or =0.05) by LH, but not by luteal tissue from pregnant ewes after day 50 (P> or =0.05). LH-stimulated progesterone secretion by luteal tissue from day 15 bred ewes was greater (P< or =0.05) than day 15 luteal tissue from non-bred ewes. Concentrations of progesterone in media were increased (P< or =0.05) when luteal tissue from pregnant ewes on day 50, 60, or 90 were incubated with AA or PSPB. Concentrations of PGE in media of non-bred ewes on days 8, 11, 13, or 15 and bred ewes on days 8 and 11 did not differ (P> or =0.05). Concentrations of PGE were increased (P< or =0.05) in media by luteal slices from bred ewes on days 13, 15, 20, 30, 40, 50, 60, and 90 of vehicle, LH, AA or PSPB-treated ewes. In addition, PSPB increased (P< or =0.05) PGE in media by luteal slices from pregnant ewes only on days 40, 50, 60, and 90. Concentrations of PGF(2alpha) were increased in media (P<0.05) of vehicle, AA, LH, or PSPB-treated luteal tissue from non-bred ewes and bred ewes on day 15 and by luteal tissue from bred ewes on days 20 and 30 after which concentrations of PGF(2alpha) in media declined (P< or =0.05) and did not differ (P> or =0.05) from non-bred or bred ewes on days 8, 11, or 13. It is concluded that LH regulates luteal progesterone secretion during the estrous cycle of non-bred ewes and up to day 50 of pregnancy, while only PGE regulates luteal progresterone secretion by ovine corpora lutea from days 50 to 90 of pregnancy. In addition, PSPB appears to regulate luteal secretion of progesterone from days 50 to 90 of pregnancy through stimulation of PGE secretion by ovine luteal tissue.  相似文献   

3.
Changes in lipid contents and fatty acid compositions of each lipid fraction were examined in corpora lutea from 34 unmated ewes between Days 8 and 16 of the estrous cycle and from 6 ewes at Day 16 of pregnancy. Four patterns were observed during advancement of the estrous cycle. Luteal concentrations of free cholesterol and triglyceride (neutral lipids) increased between Days 14 and 16, during luteal regression, in a manner approximated by exponential functions of time, whereas luteal concentrations of phospholipid (polar lipids) increased and then decreased between Days 8 and 16 in a manner approximated by a sin function of time. Likewise, within the various lipid class component fatty acids, changes in palmitic acid weight percentages were approximated by sin functions of time, whereas arachidonic acid weight percentages increased between Days 14 and 16 in a manner approximated by exponential functions of time. Pregnancy either inhibited or reversed the changes in luteal lipid profiles, especially arachidonic acid percentages, between Days 14 and 16 of the estrous cycle. Luteal lipid profiles of corpora lutea from Day 16 pregnant sheep approximated lipid profiles of corpora lutea recovered from sheep between Days 12 and 14 of the estrous cycle. Comparison of luteal lipid profiles after tissue incubations at either 0 or 37 degrees C for 2 h revealed an effect of reproductive status on fatty acid metabolisms at Day 16. Changes observed in luteal lipid contents and fatty acid compositions during advancement of the estrous cycle represent aspects of lutein cell maturation and impending senescence that can be inhibited or reversed by pregnancy.  相似文献   

4.
Pulsatile secretion of progesterone has been observed during the late luteal phase of the menstrual cycle in the rhesus monkey and human. As the luteal phase progresses in each of these species, there is a pattern of decreased frequency and increased amplitude of progesterone pulses. The present study was designed to determine the pattern of progesterone secretion during the late luteal phase (Days 10-16) of the normal ovine estrous cycle. Five unanesthetized ewes, each bearing an indwelling cannula in the utero-ovarian vein, were bled every 15 min from 0800 h on Day 10 through 0800 h on Day 16 of the estrous cycle. With the computer program PULSAR, it was determined that progesterone secretion was episodic, with pulsations observed on all days. Analysis of variance was used to determine differences in frequency, amplitude, and interpeak interval (IPI) of progesterone pulses among ewes and days. The ewes averaged 8.0 +/- 0.63 pulses of progesterone per 24 h. Mean frequency of pulses was not different between days but showed differences between ewes. Mean amplitude of progesterone pulses was 7.0 +/- 0.27 ng/ml, with no differences observed either between days or between ewes. Mean IPI was 197 +/- 7.1 min, and, like frequency, the IPI was not different between days, but varied between ewes. No consistent temporal relationship was found between progesterone pulses and luteinizing hormone (LH), as determined by bioassay and radioimmunoassay, on Day 14 of the cycle in one ewe. The results indicate that progesterone secretion is episodic during the luteal phase of the ovine estrous cycle and is independent of LH pulses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Experiments were conducted to determine the in vivo and in vitro effects of metabolites of eicosapentaenoic acid on ovine luteal function. Injection of 750 micrograms methyl eicosapentaenoic acid (EPA) or methyl 12(R),13(S)-dihydroxyeicosapentaenoic acid (12,13-diHEPE) into the ovarian artery of ewes on day 10 of the estrous cycle caused a reduction in serum concentrations of progesterone by 48 h posttreatment compared with levels of this steroid in arachidic acid-treated controls (p < 0.005). Although mean serum concentrations of progesterone in methyl EPA-treated ewes during the remainder of the cycle did not differ from those in control ewes, levels in methyl 12,13-diHEPE-treated ewes remained significantly suppressed. Duration of the estrous cycle did not differ among treatment groups (p > 0.05), but more of the methyl 12,13-diHEPE-treated animals (3/5) had exhibited estrus within 3 days after injection than methyl EPA-treated (1/5) or control ewes (0/5). Slices of corpus luteum removed from ewes on day 10 of the estrous cycle were incubated with arachidic acid (controls), 12,13-diHEPE or docosatetraenoic acid (DTA). Regardless of fatty acid treatment, all tissues retained the ability to produce basal levels of progesterone during subsequent incubation. Luteal slices previously exposed to arachidic acid or DTA exhibited an increase in progesterone production in response to subsequent treatment with LH (p < 0.05). In contrast, luteal slices incubated with 12,13-diHEPE did not respond to LH with a significant increase in production of this steroid above that observed in controls. All tissues displayed a marked increase in progesterone synthesis upon treatment with 8-Br-cAMP relative to incubation of tissue alone (p < 0.001). Subcellular distribution of [14C]-12,13-diHEPE in luteal cells after incubation revealed that the majority of the fatty acid was associated with the plasma membrane. These data suggest that metabolites of eicosapentaenoic acid with hydroxyl groups on adjacent carbon atoms interfere with luteal function in the ewe, perhaps in part by altering luteal response to LH.  相似文献   

6.
The purpose of this study was to evaluate whether the insertion of a continuous-release melatonin implant into ewes provides a short-day photoperiodic signal or acts as a functional pinealectomy (provides no specific photoperiodic signal but renders ewes incapable of responding to changes in photoperiod). Ewes primed with 60 long days (18L:6D) during the spring were moved to intermediate day length (13L:11D) for 66 days and then given one of five treatments: 1) short-day control, second drop in photoperiod to 8L:16D; 2) intermediate-photoperiod control, kept on 13L:11D; 3) pinealectomy and kept on 13L:11D; 4) melatonin implant and kept on 13L:11D; 5) melatonin implant and moved to 8L:16D. Mean number of estrous cycles per group and total duration of reproductive activity were determined. Ewes in all groups began to exhibit estrous cycles after the initial reduction in photoperiod. The number of estrous cycles and duration of reproductive activity differed among groups. The number of estrous cycles and duration of reproductive activity was extended in ewes receiving the second drop in photoperiod compared to that of the intermediate-photoperiod controls. Pinealectomized ewes had a number of estrous cycles and duration of reproductive activity similar to those of ewes maintained on the intermediate photoperiod. Melatonin implants increased the number of estrous cycles and prolonged reproductive activity in ewes maintained on the intermediate photoperiod; melatonin implants did not prevent the extension of reproductive activity in ewes receiving the second photoperiodic drop to the short daylength.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The objective was to determine if "clamping" ewes onto a 12L:12D photoperiod resulted in expression of circannual rhythms of reproductive activity. On 24 February, 1986, two groups of 6 yearling ewes each were placed in isolated adjacent photochambers under a 12L:12D photoperiod and controlled temperature. Six control ewes were kept outdoors. Blood samples taken thrice weekly were analyzed for progesterone. Data from Days 0-1056 are reported. The mean number of cycles by control and 12L:12D ewes did not differ (32.8 +/- 1.7 vs. 29.7 +/- 4.0). The ranges were 27-39 vs. 4-51, respectively. Ten 12L:12D ewes started cycling coincidentally or later than the controls, and then cycled either regularly or irregularly throughout the study. Two of the 12L:12D ewes cycled continuously. The mean number of cycles during the period 15 April-15 August (anestrus) in Years 1, 2, and 3 were 0.7, 0.7, 0.2 for controls versus 0.3, 5.1, and 4.5 for 12L:12D ewes. The mean number of cycles during the period 15 September-15 January (breeding season) in Years 1, 2, and 3 were 7.3, 7.7, and 7.3 for controls versus 2.8, 4.8, and 4.0 for 12L:12D ewes. All controls showed distinct, alternating annual periods of anestrus and ovarian cycles whereas only two 12L:12D ewes showed a similar pattern. Estrous cycles were distributed nonrandomly in all controls and in 2 ewes exposed to 12L:12D. In the 12L:12D ewes, melatonin concentrations rose immediately after the lights-off and fell immediately after on. Lengths of the luteal phases of the cycles did not differ between groups. In summary, estrous cycles of most ewes clamped on a 12L:12D photoperiod occurred throughout the year at variable intervals rather than in distinct breeding seasons.  相似文献   

8.
Plasma membrane receptors for prostaglandins (PG) F2 alpha and E2 were quantified in ovine corpora lutea obtained from nonpregnant and pregnant ewes on Days 10, 13, and 15 post-estrus, and from additional ewes on Days 25 and 40 of pregnancy. Regardless of reproductive status or day post-estrus, concentrations of luteal receptors for PGF2 alpha were 7- to 10-fold greater than those for PGE2. In pregnant ewes the concentration of receptors for PGF2 alpha was highest on Day 10 (35.4 +/- 2.8 fmol/mg) and lowest on Day 25 (22.3 +/- 2.5 fmol/mg). A difference in the concentration of luteal receptors for PGF2 alpha between pregnant and nonpregnant ewes was apparent only on Day 15 post-estrus, at which time the concentration of receptors for PGF2 alpha was higher in pregnant ewes than in nonpregnant ewes (27.1 +/- 2.7 vs. 17.7 +/- 2.7 fmol/mg). Concentrations of receptors for PGE2 in pregnant ewes were similar (p > 0.05; 2.8 +/- 0.3 to 3.7 +/- 0.2 fmol/mg) between Days 13 and 40 but were higher (p < 0.05) than in corpora lutea obtained from nonpregnant ewes on Days 10 (5.0 +/- 0.4 vs. 4.1 +/- 0.2 fmol/mg) and 15 (3.7 +/- 0.2 vs. 2.0 +/- 0.4 fmol/mg) post-estrus. Although concentrations of receptors for both PGF2 alpha and PGE2 were lowest in corpora lutea obtained from nonpregnant ewes on Day 15, this was not due to luteal regression since the weights and concentrations of progesterone in corpora lutea on Day 15 were not lower than those for corpora lutea obtained on Days 10 and 13.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Essential fatty acid metabolism in cultured human airway epithelial cells.   总被引:3,自引:0,他引:3  
To characterize essential fatty acid metabolism of human airway epithelium, we examined the capacity of epithelial cells to incorporate and desaturate/elongate 18:2(n - 6) and the turnover of phospholipid fatty acyl chains in these cells. Epithelial cells were cultured for 5-7 days and incubated with [1-14C]18:2(n - 6) (1 microCi, 100 nmol). The essential fatty acid profile of the cells was readily modified by 18:2(n - 6) supplementation to culture medium. After 4 h incubation, 32 +/- 5.6 nmol of [1-14C]18:2(n - 6) was incorporated into phospholipids (65 +/- 9.5%, of which 74% was incorporated into phosphatidylcholine (PC)) and neutral lipid (31 +/- 10%) per mg protein of cultured cells. 30 +/- 8% of [1-14C]18:2(n - 6) incorporated, was converted to homologous trienes, tetraenes and pentaenes, the major products being 20:3(n - 6) and 20:4(n - 6). The conversion of 18:2(n - 6) was time-dependent and donor age-related. A higher proportion of 20:3(n - 6) and 20:4(n - 6) was incorporated into phosphatidylinositol (PI) and phosphatidylethanolamine (PE). About 10-15% of total products formed from 18:2(n - 6) was released from membrane to culture medium. Both 20:4(n - 6) and 20:5(n - 3) inhibited 18:2(n - 6) incorporation and desaturation. Rate of incorporation of 18:2(n - 6) was more than either 18:1(n - 9) or 16:0. With pulse-chase studies, the half-life of 18:2(n - 6) in PC, PI and PE was estimated to be 5.5, 6.0 and 7.3 h, respectively. These data indicate active metabolism of essential fatty acids in human airway epithelial cells. This metabolism may play a key role in the regulation of membrane properties and function in these cells.  相似文献   

10.
Patterns of luteal lipid and arachidonic acid accumulation were examined in relation to luteal progesterone and prostaglandin F synthesis in 30 sows and gilts between days 8 and 18 of the estrous cycle. Net release of progesterone from luteal tissue declined from 722 ng/100 mg tissue at day 8 to 81 ng/100 mg tissue at day 18. Although statistical significance was not present, net prostaglandin F release increased slightly from 8.6 to 13.9 ng/100 mg tissue. Luteal free cholesterol, esterified cholesterol, and free fatty acid contents did not change between days 8 and 18 whereas triglycerides accumulated rapidly between days 14 and 18 of the estrous cycle. Phospholipids increased between days 8 and 12, plateaued at 20.2 mg/g between days 14 and 16, and decreased to 15.4 mg/g on day 18. Between days 12 and 18, arachidonic acid increased from 19.4 to 34.8% in cholesterol esters, from 10.1 to 22.5% in triglycerides, and from 12.3 to 27.2% in luteal free fatty acids. Arachidonic acid in luteal phospholipids increased from 21.3 to 25.1% between days 14 and 16 of the estrous cycle. Luteal regression was associated with conservation of arachidonic acid. Based on blood plasma lipid fatty acid compositions, the corpus luteum elongated and desaturated essential fatty acids. Within porcine corpora lutea, calculated free arachidonic acid content was adequate for maintenance of prostaglandin synthesis.  相似文献   

11.
Application of the ram effect during the breeding season has been previously disregarded because the ewe reproductive axis is powerfully inhibited by luteal phase progesterone concentrations. However, anovulatory ewes treated with exogenous progestagens respond to ram introduction with an increase in LH concentrations. We therefore tested whether cyclic ewes would respond to ram introduction with an increase in pulsatile LH secretion at all stages of the estrous cycle. We did two experiments using genotypes native to temperate or Mediterranean regions. In Experiment 1 (UK), 12 randomly cycling, North of England Mule ewes were introduced to rams midway through a frequent blood-sampling regime. Ewes in the early (EL; n=3) [corrected] and late luteal (LL; n=6) phase responded to ram introduction with an increase in LH pulse frequency and mean and basal concentration [corrected] of LH (at least P<0.05). In Experiment 2 (Australia), the cycles of 32 Merino ewes were synchronised using intravaginal progestagen pessaries. Pessary insertion was staggered to produce eight ewes at each stage of the estrous cycle: follicular (F), early luteal (EL), mid-luteal (ML) and late luteal (LL). In all stages of the cycle, ewes responded to ram introduction with an increase in LH pulse frequency (P<0.01); EL, ML and LL ewes also had an increase in mean LH concentration (P<0.05). In conclusion, ram introduction to cyclic ewes stimulated an increase in pulsatile LH secretion, independent of ewe genotype or stage of the estrous cycle.  相似文献   

12.
Nitric oxide (NO) has been reported to be luteolytic in vitro and in vivo in cows. However, an NO donor reversed PGF2alpha-induced inhibition of rat luteal progesterone secretion in vitro and an NO donor or endothelin-1 stimulated bovine luteal tissue secretion of prostaglandins E (PGE; PGE1, PGE2) in vitro without affecting progesterone or PGF2alpha secretion. In addition, chronic infusion of an NO donor into the interstitial tissue of the ovarian vascular pedicle adjacent the luteal-containing ovary prevented the decline in circulating progesterone, while a nitric oxide synthase (NOS) inhibitor did not affect luteolysis. The objective of this experiment was to determine whether an NO donor or NOS inhibitor infused chronically intrauterine adjacent to the luteal-containing ovary during the ovine estrous cycle was luteolytic or antiluteolytic. Ewes were treated either with vehicle (N=5), diethylenetriamine (DETA-control for DETANONOate; N=5), (Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETANONOate-long acting NO donor; N=6), l-arginine (N=5), l-nitro-arginine methyl ester (l-NAME-NOS inhibitor; N=6), or NG-monomethyl-l-arginine acetate (l-NMMA; NOS inhibitor; N=5) every 6h from 2400h (0h) on day 8 through 1800h on day 18 of the estrous cycle. Jugular venous blood and inferior vena cava plasma via a saphenous vein cathether 5cm anterior to the juncture of the ovarian vein and inferior vena cava were collected every 6h for analysis for progesterone and PGF2alpha and PGE, respectively, by RIA. Corpora lutea were collected at 1800h on day 18 and weighed. Weights of corpora lutea were heavier (P< or =0.05) in DETANONOate-treated ewes when compared to vehicle, DETA, l-arginine, l-NAME, or l-NMMA-treated ewes, l-arginine luteal weights were heavier than vehicle, DETA, l-arginine, l-NAME, or l-NMMA-treated ewes, and luteal weights of vehicle, DETA, l-NAME, or l-NMMA-treated ewes did not differ amongst each other (P> or =0.05). Profiles of progesterone in jugular venous blood on days 8-18 differed (P< or =0.05) in DETANONOate-treated ewes when compared to vehicle, DETA, l-arginine, l-NMMA or l-NAME-treated ewes, which did not differ (P> or =0.05) amongst each other. The PGE:PGF2alpha ratio profile in inferior vena cava plasma of DETANONOate-treated ewes was increased (P< or =0.05) when compared to all other treatment groups. In a second experiment, conversion of [3H PGE2] to [3H PGF2alpha] by day 15 ovine caruncular endometrium in vitro was determined in vehicle, DETA, or DETANONOate-treatment groups. Conversion of [3H PGE2] to [3H PGF2alpha] was decreased (P< or =0.05) only by DETANONOate. It is concluded that NO is not luteolytic during the ovine estrous cycle, but may instead be antiluteolytic and prevent luteolysis by altering the PGE:PGF2alpha ratio secreted by the uterus.  相似文献   

13.
Human lipid intake contains various amounts of trans fatty acids. Refined vegetable and frying oils, rich in linoleic acid and/or alpha-linolenic acid, are the main dietary sources of trans-18:2 and trans-18:3 fatty acids. The aim of the present study was to compare the oxidation of linoleic acid, alpha-linolenic acid, and their major trans isomers in human volunteers. For that purpose, TG, each containing two molecules of [1-(13)C]linoleic acid, alpha-[1-(13)C]linolenic acid, [1-(13)C]-9cis,12trans-18:2, or [1-(13)C]-9cis,12cis,15trans-18:3, were synthesized. Eight healthy young men ingested labeled TG mixed with 30 g of olive oil. Total CO(2) production and (13)CO(2) excretion were determined over 48 h. The pattern of oxidation was similar for the four fatty acids, with a peak at 8 h and a return to baseline at 24 h. Cumulative oxidation over 8 h of linoleic acid, 9cis,12trans-18:2, alpha-linolenic acid, and 9cis,12cis,15trans-18:3 were, respectively, 14.0 +/- 4.1%, 24.7 +/- 6.7%, 23.6 +/- 3.3%, and 23.4 +/- 3.7% of the oral load, showing that isomerization increases the postprandial oxidation of linoleic acid but not alpha-linolenic acid in men.  相似文献   

14.
Intrauterine administration of the 5-lipoxygenase inhibitor nordihydroguariaretic acid (NDGA; 5 mg, bid) on Days 9-14 of the ovine estrous cycle (estrus = Day 0) delayed luteolysis and extended the duration of the estrous cycle (20+/-1, SD, vs. 16+/-1 days; P < 0.01). In control ewes, plasma concentrations of 13,14,dihydro-15-keto prostaglandin F2alpha increased significantly (P < 0.001) following i.v. administration of oxytocin (10 i.u.) on Day 14; in the nordihydroguariaretic acid-treated ewes, however, there was no such increase. In addition, concentrations of endometrial oxytocin receptors were significantly less (P < 0.01) in the nordihydroguariaretic acid-treated ewes (218+/-60 vs. 579+/-66 fmol/mg tissue). These results suggest that 5-lipoxygenase products of arachidonate metabolism may be involved in the control of ovine luteal function.  相似文献   

15.
Development and demise of luteal structures were monitored using daily transrectal ultrasonography in 2 breeds of sheep differing in ovulation rates (nonprolific Western white-faced cross-bred, n = 12 and prolific pure-bred Finn sheep, n = 7), during 1 estrous cycle in the mid-breeding season. Jugular blood samples were collected once a day for radioimmunoassay (RIA) of progesterone. The mean diameter of ovulatory follicles was higher in Western white-faced than in Finn ewes (6.4 +/- 0.2 and 5.3 +/- 0.2 mm, respectively; P < 0.001). The mean volume of luteal structures was higher (P < 0.05) in Western white-faced compared with Finn sheep from Days 5 to 15 of the cycle (Day 0 = day of ovulation). This accounted for the higher (P < 0.05) total luteal volumes recorded in Western white-faced ewes on Day 7 and from Days 11 to 15, despite the higher ovulation rate in Finn ewes (2.7 +/- 0.3 and 1.7 +/- 0.2, respectively; P < 0.05). Mean serum progesterone concentrations were higher (P < 0.05) in Western white-faced than in Finn ewes from Days 4 to 14. Daily total luteal volumes were positively correlated with daily serum progesterone concentrations throughout the cycle in Finn sheep (r > or = 0.40, P < 0.02), and during luteal growth and regression (r > 0.60, P < or = 0.00001) but not during mid-cycle in white-faced ewes (r = 0.16; P = 0.22). During the growth of the corpora lutea (CL), luteal tissue volume increased faster (P < 0.05) than serum progesterone concentrations in both breeds of sheep. During luteolysis, the decrease in luteal volumes parallelled that in serum progesterone concentrations in Finn (P = 0.11) but not in Western white-faced ewes, where luteal volumes decreased more slowly (P = 0.02) in relation to progesterone secretion. Increased ovulation rate in prolific Finn ewes resulted in more but smaller CL, and lower serum progesterone levels compared with nonprolific Western white-faced ewes. We conclude that breed-specific mechanisms exist to control the formation of luteal tissue and progesterone secretion in cyclic ewes differing in prolificacy. The mechanisms may involve ovulation of Graafian follicles at different sizes and inhibitory paracrine effects of CL on co-existing CL.  相似文献   

16.
Thirty to forty percent of ruminant pregnancies are lost during the first third of gestation due to inadequate progesterone secretion. During the estrous cycle, luteinizing hormone (LH) regulates progesterone secretion by small luteal cells (SLC). Loss of luteal progesterone secretion during the estrous cycle is increased via uterine secretion of prostaglandin F(2α) (PGF(2α)) starting on days 12-13 post-estrus in ewes with up to 4-6 pulses per day. Prostaglandin F(2α) is synthesized from arachidonic acid, which is released from phospholipids by phospholipase A2. Endocannabinoids are also derived from phospholipids and are associated with infertility. Endocannabinoid-induced infertility has been postulated to occur primarily via negative effects on implantation. Cannabinoid (CB) type 1 (CB1) or type 2 (CB2) receptor agonists and an inhibitor of the enzyme fatty acid amide hydrolase, which catabolizes endocannabinoids, decreased luteal progesterone, prostaglandin E (PGE), and prostaglandin F(2α) (PGF(2α)) secretion by the bovine corpus luteum in vitro by 30 percent. The objective of the experiment described herein was to determine whether CB1 or CB2 receptor agonists given in vivo affect circulating progesterone, luteal weights, luteal mRNA for LH receptors, and luteal occupied and unoccupied LH receptors during the estrous cycle of ewes. Treatments were: Vehicle, Methanandamide (CB1 agonist; METH), or 1-(4-chlorobenzoyl)-5-methoxy-1H-indole-3-acetic acid morpholineamide (CB2 agonist; IMMA). Ewes received randomized treatments on day 10 post-estrus. A single treatment (500 μg; N=5/treatment group) in a volume of 1 ml was given into the interstitial tissue of the ovarian vascular pedicle adjacent to the luteal-containing ovary. Jugular venous blood was collected at 0 h and every 6-48 h for the analysis of progesterone by radioimmunoassay (RIA). Corpora lutea were collected at 48 h, weighed, bisected, and frozen in liquid nitrogen until analysis of unoccupied and occupied LH receptors and mRNA for LH receptors. Profiles of jugular venous progesterone, luteal weights, luteal mRNA for LH receptors, and luteal occupied and unoccupied LH receptors were decreased (P≤0.05) by CB1 or CB2 receptor agonists when compared to Vehicle controls. Progesterone in 80 percent of CB1 or CB2 receptor agonist-treated ewes was decreased (P≤0.05) below 1 ng/ml by 48 h post-treatment. It is concluded that the stimulation of either CB1 or CB2 receptors in vivo affected negatively luteal progesterone secretion by decreasing luteal mRNA for LH receptors and also decreasing occupied and unoccupied receptors for LH on luteal membranes. The corpus luteum may be an important site for endocannabinoids to decrease fertility as well as negatively affect implantation, since progesterone is required for implantation.  相似文献   

17.
The purpose of this study was to determine whether adult humans can recycle carbon from alpha-linolenic acid (18:3n-3) into saturated (SFA) and monounsaturated (MUFA) fatty acids. Six men and six women consumed 700 mg [U-13C]-18:3n-3. Blood was collected over 21 days and breath over 24h. [13C]-labelled SFA and MUFA were detected in plasma phosphatidylcholine (PC) and triacylglycerol (TAG). Total labelled fatty acid incorporation into SFA and MUFA was five- and 25-fold greater in PC than TAG in men and women, respectively. [13C]-16:0 was the major labelled fatty acid in both fractions. Total [13C] incorporation into SFA and MUFA was 20% greater in men than women, and related positively (r(2) = 0.35, P<0.05) to the fractional recovery of labelled 18:3n-3 as 13CO2 on breath. These results suggest that the extent of partitioning towards beta-oxidation and carbon recycling may regulate the availability of 18:3n-3 for conversion to longer-chain fatty acids.  相似文献   

18.
Lipolytic activity measured at pH 8.6 in bovine corpora lutea exhibited classical properties of lipoprotein lipase (LPL) in terms of serum and heparin stimulation and NaCl inhibition. LPL activity was measured in 23 corpora lutea collected at different stages of the estrous cycle and early pregnancy. The LPL activity in cyclic corpora lutea (mumole FA released/hr/100 mg acetone powder) was low at Days 4-8 of the estrous cycle (3.1 +/- 1.5: mean +/- SE) and at Days 19-20 (1.6 +/- 0.6). However, high activity of the enzyme was found at Days 12-15 of the cycle (11.8 +/- 1.8); these concentrations were significantly (P less than 0.01) elevated over those found at Days 4-8 and 19-20. The enzyme activity began to decline at Days 16-18 of the estrous cycle (5.1 +/- 1.7). Low enzyme activity was found in the corpora lutea removed from two cows at Day 22 of pregnancy. Progesterone concentrations were measured in 16 of the 23 corpora lutea and a good correlation (r = 0.75, P less than 0.01) was found between lipoprotein lipase and progesterone concentrations of the tissue. The data suggest that LPL may be involved in controlling the transfer of fatty acids, including arachidonic, from plasma lipoproteins to luteal tissue.  相似文献   

19.
The aim of the present study was to examine the effect of steroid-free bovine follicular fluid (bFF) on both ovulation and lambing rates. For this purpose, 30 adult ewes of the Karaguniki breed were randomly allocated to three treatment groups (A,B and C; n=10 ewes each) during the breeding season of 1988. The ewes in Group A received bFF (6 ml iv) twice daily during their luteal phase, starting on Day 5 and lasting until Day 9. The ewes in Group B received a mixture of bFF/arachid oil (3 ml sc, 2:1) on Days 3, 4, 5, 10 and 12 of the estrous cycle. The ewes in Group C (Controls) were treated subcutanecusly with a mixture of steroid-free bovine plasma and arachid oil (2:1) on the same days as the ewes in Group B. Plasma concentrations of progesterone showed that the luteal function during the treatment cycle was normal in all treated and control ewes. The ovulation and lambing rates, however, were greater in Group A (2.5 +/- 0.2 and 1.9 +/- 0.3, respectively) and in Group B (2.1 +/- 0.2 and 1.6 +/- 0.1, respectively) than in Group C (1.5 +/- 0.2 and 1.2 +/- 0.3, respectively). Precipitating antibodies were detected in the plasma of Group B ewes only.  相似文献   

20.
Patterns of luteal lipid and arachidonic acid accumulation were examined in relation to luteal progesterone and prostaglandin F synthesis in 30 sows and gilts between days 8 and 18 of the estrous cycle. Net in vitro release of progesterone from luteal tissue declined from 722 ng/100 mg tissue at day 8 to 81 ng/100 mg tissue at day 18. Although statistical significance was not present, net prostaglandin F release increased slightly from 8.6 to 13.9 ng/100 mg tissue. Luteal free cholesterol, esterified cholesterol, and free fatty acid contents did not change between days 8 and 18 whereas triglycerides accumulated rapidly between days 14 and 18 of the estrous cycle. Phospholipids increased between days 8 and 12, plateaued at 20.2 mg/g between days 14 and 16, and decreased to 15.4 mg/g on day 18. Between days 12 and 18, arachidonic acid increased from 19.4 to 34.8% in cholesterol esters, from 10.1 to 22.5% in triglycerides, and from 12.3 to 27.2% in luteal free fatty acids. Arachidonic acid in luteal phospholipids increased from 21.3 to 25.1% between days 14 and 16 of the estrous cycle. Luteal regression was associated with conservation of arachidonic acid. Based on blood plasma lipid fatty acid compositions, the corpus luteum elongated and desaturated essential fatty acids. Within porcine corpora lutea, calculated free arachidonic acid content was adequate for maintenance of prostaglandin synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号