首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human parainfluenza virus type 2 (HPIV-2), an important pediatric respiratory pathogen, encodes a V protein that inhibits type I interferon (IFN) induction and signaling. Using reverse genetics, we attempted the recovery of a panel of V mutant viruses that individually contained one of six cysteine-to-serine (residues 193, 197, 209, 211, 214, and 218) substitutions, one of two paired charge-to-alanine (R175A/R176A and R205A/K206A) substitutions, or a histidine-to-phenylalanine (H174F) substitution. This mutagenesis was performed using a cDNA-derived HPIV-2 virus that expressed the V and P coding sequences from separate mRNAs. Of the cysteine substitutions, only C193S, C214S, and C218S yielded viable virus, and only the C214S mutant replicated well enough for further analysis. The H174F, R175A/R176A, and R205A/K206A mutants were viable and replicated well. The H174F and R205A/K206A mutants did not differ from the wild-type (WT) V in their ability to physically interact with MDA5, a cytoplasmic sensor of nonself RNA that induces type I IFN. Like WT HPIV-2, these mutants inhibited IFN-β induction and replicated efficiently in African green monkeys (AGMs). In contrast, the C214S and R175A/R176A mutants did not bind MDA5 efficiently, did not inhibit interferon regulatory factor 3 (IRF3) dimerization or IFN-β induction, and were attenuated in AGMs. These findings indicate that V binding to MDA5 is important for HPIV-2 virulence in nonhuman primates and that some V protein residues involved in MDA5 binding are not essential for efficient HPIV-2 growth in vitro. Using a transient expression system, 20 additional mutant V proteins were screened for MDA5 binding, and the region spanning residues 175 to 180 was found to be essential for this activity.  相似文献   

2.
Pichia stipitis NAD(+)-dependent xylitol dehydrogenase (XDH), a medium-chain dehydrogenase/reductase, is one of the key enzymes in ethanol fermentation from xylose. For the construction of an efficient biomass-ethanol conversion system, we focused on the two areas of XDH, 1) change of coenzyme specificity from NAD(+) to NADP(+) and 2) thermostabilization by introducing an additional zinc atom. Site-directed mutagenesis was used to examine the roles of Asp(207), Ile(208), Phe(209), and Asn(211) in the discrimination between NAD(+) and NADP(+). Single mutants (D207A, I208R, F209S, and N211R) improved 5 approximately 48-fold in catalytic efficiency (k(cat)/K(m)) with NADP(+) compared with the wild type but retained substantial activity with NAD(+). The double mutants (D207A/I208R and D207A/F209S) improved by 3 orders of magnitude in k(cat)/K(m) with NADP(+), but they still preferred NAD(+) to NADP(+). The triple mutant (D207A/I208R/F209S) and quadruple mutant (D207A/I208R/F209S/N211R) showed more than 4500-fold higher values in k(cat)/K(m) with NADP(+) than the wild-type enzyme, reaching values comparable with k(cat)/K(m) with NAD(+) of the wild-type enzyme. Because most NADP(+)-dependent XDH mutants constructed in this study decreased the thermostability compared with the wild-type enzyme, we attempted to improve the thermostability of XDH mutants by the introduction of an additional zinc atom. The introduction of three cysteine residues in wild-type XDH gave an additional zinc-binding site and improved the thermostability. The introduction of this mutation in D207A/I208R/F209S and D207A/I208R/F209S/N211R mutants increased the thermostability and further increased the catalytic activity with NADP(+).  相似文献   

3.
Insulin-like growth factor binding protein-5 (IGFBP-5) and thrombospondin-1 (TS-1) are both present in extracellular matrix (ECM). Both proteins have been shown to bind to one another with high affinity. The purpose of these studies was to determine how the interaction between IGFBP-5 and TS-1 modulates IGF-I actions in porcine aortic smooth muscle cells (pSMC) in culture. The addition of increasing concentrations of TS-1 to pSMC cultures enhanced the protein synthesis and cell migration responses to IGF-I; whereas the addition of IGFBP-5 alone resulted in minimal changes. In contrast, the addition of IGFBP-5 to cultures that were also exposed to IGF-I and TS-1 resulted in inhibition of protein synthesis. When the cell migration response was assessed, the response to IGF-I plus TS-1 was also significantly inhibited by the addition of IGFBP-5, whereas 1.0 microg/ml of IGFBP-5 alone had no effect on the response to IGF-I.To determine the molecular mechanism by which this inhibition occurred, a mutant form of IGFBP-5 that does not bind to IGF-I was tested. This mutant was equipotent compared to native IGFBP-5 in its ability to inhibit both protein synthesis and cell migration responses to IGF-I plus TS-1 thus excluding the possibility that IGFBP-5 was inhibiting the response to TS-1 and IGF-I by inhibiting IGF-I binding to the IGF-I receptor. To determine if an interaction between TS-1 and IGFBP-5 was the primary determinant of the inhibitory effect of IGFBP-5, an IGFBP-5 mutant that bound poorly to TS-1 was utilized. The addition of 1.0 microg/ml of this mutant did not inhibit the protein synthesis or cell migration responses to IGF-I plus TS-1. To determine the mechanism by which IGFBP-5 binding to TS-1 inhibited cellular responses to TS-1 plus IGF-I, TS-1 binding to integrin associated protein (IAP) was assessed. The addition of IGFBP-5 (1.0 microg/ml) inhibited TS-1-IAP association. In contrast, a mutant form of IGFBP-5 that bound poorly to TS-1 had a minimal effect on TS-1 binding to IAP. Further analysis showed that IGFBP-5 addition altered the ability of TS-1 to modulate the SHPS-1/IAP interaction. When the IGFBP-5 mutant that did not bind to IGF-I was incubated with TS-1 and IGF-I, it inhibited the capacity of TS-1 to enhance the IGF-I receptor phosphorylation and MAP kinase activation in response to IGF-I. In contrast, the IGFBP-5 mutant that did not bind to TS-1 had no effect on IGF-I stimulated IGF-I receptor phosphorylation or MAP kinase activation. These results indicate that IGFBP-5 inhibits the binding of TS-1 to IAP, and this results in an alteration of the ability of TS-1 to modulate the disruption of the IAP/SHPS-1 interaction which leads to attenuation of the ability of TS-1 to enhance cellular responsiveness to IGF-I.  相似文献   

4.
X-ray diffraction data on a few retroviral integrases show a flexible loop near the active site. By sequence alignment, the peptide region 207-218 of Mo-MLV IN appears to correspond to this flexible loop. In this study, residues H208, Y211, R212, Q214, S215 and S216 of Mo-MLV IN were mutated to determine their role on enzyme activity. We found that Y211A, R212A, R212K and Q214A decreased integration activity, while disintegration and 3′-processing were not significantly affected. By contrast H208A was completely inactive in all the assays. The core domain of Mo-MLV integrase was modeled and the flexibility of the region 207-216 was analyzed. Substitutions with low integration activity showed a lower flexibility than wild type integrase. We propose that the peptide region 207-216 is a flexible loop and that H208, Y211, R212 and Q214 of this loop are involved in the correct assembly of the DNA-integrase complex during integration.  相似文献   

5.
To understand the ligand binding properties of the human GnRH receptor (hGnRH-R), 24 site-specific mutants within transmembrane helices (TMH) 1, 2, and 5 and the extracellular loop 2 (E2) were generated. These mutants were analyzed by using a functional reporter gene assay, monitoring receptor signaling via adenylate cyclase to a cAMP-responsive element fused to Photinus pyralis luciferase. The functional behavior of 14 receptor mutants, capable of G-protein coupling and signaling, was studied in detail with different well described agonistic and antagonistic peptide ligands. Furthermore, the binding constants were determined in displacement binding experiments with the antagonist [125I]Cetrorelix. The substitution of residues K36, Q204, W205, H207, Q208, F20, F213, F216, and S217 for alanine had no or only a marginal effect on ligand binding and signaling. In contrast, substitution of N87, Eg9, D9, R179, W206, Y211, F214, and T215 for alanine resulted in receptor proteins neither capable of ligand binding nor signal transduction. Within those mutants affecting ligand binding and signaling to various degrees, W101A, N102A, and N212Q differentiate between agonists and antagonists. Thus, in addition to N102 already described, the residues W101 in TMH2 and N212 in TMH5 are important for the architecture of the ligand-binding pocket. Based on the experimental data, three-dimensional models for binding of the superagonist D-Trp6-GnRH (Triptorelin) and the antagonist Cetrorelix to the hGnRH-R are proposed. Both decapeptidic ligands are bound to the receptor in a bent conformation with distinct interactions within the binding pocket formed by all TMHs, E2, and E3. The antagonist Cetrorelix with bulky hydrophobic N-terminal amino acids interacts with quite different receptor residues, a hint at the failure to induce an active, G protein-coupling receptor conformation.  相似文献   

6.
We have developed a novel system for expressing recombinant actin in Dictyostelium. In this system, the C terminus of actin is fused to thymosin beta via a glycine-based linker. The fusion protein is purified using a His tag attached to the thymosin beta moiety and then cleaved by chymotrypsin immediately after the native final residue of actin to yield intact actin. Wild-type actin prepared in this way was functionally normal in terms of its polymerization kinetics and muscle myosin-mediated motility. We expected that this system would be particularly useful for expressing toxic actin mutants, because the actin moiety of the fusion protein is unlikely to interact with the actin cytoskeleton of the host cells. We therefore chose to express the E206A/R207A/E208A mutant, which appears to be dominant lethal in yeast, as a model case of a toxic actin mutant that is difficult to express. We found that the E206A/R207A/E208A mutant could be expressed and purified with a yield comparable to the wild-type molecule (3-4 mg/20 g cells), even though green fluorescent protein-fused actin carrying the E206A/R207A/E208A mutation was expressed at a much lower level than wild-type actin. Purified E206A/R207A/E208A actin did not polymerize, even in the presence of muscle actin; however, it accelerated polymerization of muscle actin and inhibited the nucleating and severing activities of gelsolin. Given that the location of the substituted residues is near the pointed end face of the mutant, we suggest that E206A/R207A/E208A actin behaves like a weak pointed end-capping protein that perturbs the actin cytoskeleton of the host cells.  相似文献   

7.
Tryptophan 214, the only tryptophan residue in human serum albumin, is located in the physiologically important subdomain 2A ligand binding site. In the present study the fluorescence lifetime of tryptophan 214 in the following human serum albumin (HSA) mutants with substitutions in subdomain 2A were determined: K195M, K199M, F211V, R218M, R218H, R218A, R222M, H242V, and R257M. An HSA mutant in which tryptophan was moved from subdomain 2A to subdomain 3A (W214L/Y411W) was also examined. Additionally, the fluorescence lifetime of tryptophan 214 in an HSA fragment consisting of subdomains 1A, 1B, and 2A (1A-1B-2A HSA) was determined. For those species expected to have the most dramatic changes in tryptophan microenvironment, W214L/Y411W and 1A-1B-2A HSA, clear changes in tryptophan lifetimes were observed. Significant changes were also seen for those species with mutations at position 218, which is next to tryptophan in the X-ray structure of HSA. However, significant changes were also observed for H242V and R257M, which contain substitutions at positions not immediately adjacent to tryptophan 214, highlighting the conformational flexibility of subdomain 2A.  相似文献   

8.
Insulin-like growth factor binding protein-5 (IGFBP-5) is synthesized and secreted by smooth muscle cells (SMC). IGFBP-5 synthesis is stimulated five- to sixfold by IGF-I, and IGFBP-5 has been shown to augment IGF-I–stimulated DNA synthesis in this cell type. The ability of IGFBP-5 to augment the SMC response to IGF-I is dependent upon its binding to extracellular matrix. A highly charged region of IGFBP-5 that contains amino acids in positions 201–218 has been shown to mediate binding of IGFBP-5 to human fibroblast extracellular matrix (ECM), and a synthetic peptide containing this sequence inhibits IGFBP-5 binding to fibroblast ECM. In this study we show that exposure of SMC cultures that are constituitively synthesizing IGFBP-5 to a synthetic peptide (termed peptide A) containing this sequence has no effect on its synthesis but reduces its abundance within the ECM. The addition of increasing concentrations of the peptide to SMC cultures resulted in a concentration-dependent reduction in ECM-associated IGFBP-5. In contrast, a control peptide (peptide B), which contained the region of amino acids in positions 131–141 and had a similar charge-to-mass ratio, caused a minimal decrease in ECM binding. This effect was functionally significant since the addition of 10 μg/ ml of peptide A inhibited the cellular replication response to 10 ng/ ml IGF-I by 51%, and peptide B had no effect. The effects of peptide A were not due to nonspecific cytotoxicity since it had no inhibitory effect on the response of these cells to human serum and was associated with only minimal inhibition of the cellular response to platelet-derived growth factor. The findings suggest that inhibiting IGFBP-5 binding to porcine SMC ECM results in reduced cellular responses to IGF-I. J. Cell. Biochem. 71:375–381, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
Structural analysis of glucose dehydrogenase from Haloferax mediterranei revealed that the adenosine 2′-phosphate of NADP+ was stabilized by the side chains of Arg207 and Arg208. To investigate the structural determinants for coenzyme specificity, several mutants involving residues Gly206, Arg207 and Arg208 were engineered and kinetically characterized. The single mutants G206D and R207I were less efficient with NADP+ than the wild type, and the double and triple mutants G206D/R207I and G206D/R207I/R208N showed no activity with NADP+.In the single mutant G206D, the relation kcat/KNAD+ was 1.6 times higher than in the wild type, resulting in an enzyme that preferred NAD+ over NADP+. The single mutation was sufficient to modify coenzyme specificity, whereas other dehydrogenases usually required more than one or two mutations to change coenzyme specificity. However, the highest reaction rates were reached with the double mutant G206D/R207I and with coenzyme NAD+, where the kcat was 1.6 times higher than the kcat of the wild-type enzyme with NADP+. However, catalytic efficiency with NAD+ was lower, as the Km value for coenzyme was 77 times higher than the wild type with NADP+.  相似文献   

10.
Equilibrium constants for the binding of anions to apotransferrin, to the recombinant N-lobe half transferrin molecule (Tf/2N), and to a series of mutants of Tf/2N have been determined by difference UV titrations of samples in 0.1 M Hepes buffer at pH 7.4 and 25 degrees C. The anions included in this study are phosphate, sulfate, bicarbonate, pyrophosphate, methylenediphosphonic acid, and ethylenediphosphonic acid. There are no significant differences between anion binding to Tf/2N and anion binding to the N-lobe of apotransferrin. The binding of simple anions like phosphate appears to be essentially equivalent for the two apotransferrin binding sites. The binding of pyrophosphate and the diphosphonates is inequivalent, and the studies on the recombinant Tf/2N show that the stronger binding is associated with the N-terminal site. Anion binding constants for phosphate, pyrophosphate, and the diphosphonates with the N-lobe mutants K206A, K296A, and R124A have been determined. Anion binding tends to be weakest for the K296A mutant, but the variation in log K values among the three mutants is surprisingly small. It appears that the side chains of K206, K296, and R124 all make comparable contributions to anion binding. There are significant variations in the intensities of the peaks in the difference UV spectra that are generated by the titrations of the mutant apoproteins with these anions. These differences appear to be related more to variations in the molar extinction coefficients of the anion-protein complexes rather than to differences in binding constants.  相似文献   

11.
The X-ray crystallographic structures of two mutants (K206Q and H207E) of the N-lobe of human transferrin (hTF/2N) have been determined to high resolution (1.8 and 2.0 A, respectively). Both mutant proteins bind iron with greater affinity than native hTF/2N. The structures of the K206Q and H207E mutants show interactions (both H-bonding and electrostatic) that stabilize the interaction of Lys296 in the closed conformation, thereby stabilizing the iron bound forms.  相似文献   

12.
Insulin-like growth factor-binding protein-3 (IGFBP-3), the major IGFBP in the circulation, sequesters IGF in a stable ternary complex with the acid-labile subunit. The high affinity IGF-binding site is proposed to reside within an N-terminal hydrophobic domain in IGFBP-3, but C-terminal residues have also been implicated in the homologous protein IGFBP-5. We have mutated in various combinations Leu(77), Leu(80), and Leu(81) in the N terminus and Gly(217) and Gln(223) in the C terminus of IGF-BP-3. All mutants retained immunoreactivity toward a polyclonal IGFBP-3 antibody, whereas IGF ligand blotting showed that all of the mutants had reduced binding to IGFs. Both solution IGF binding assays and BIAcore analysis indicated that mutations to the N-terminal region caused greater reduction in IGF binding activity than C-terminal mutations. The combined N- and C-terminal mutants showed undetectable binding to IGF-I but retained <10% IGF-II binding activity. Reduced ternary complex formation was seen only in mutants that had considerably reduced IGF-I binding, consistent with previous studies indicating that the binary IGF.IGFBP-3 complex is required for acid-labile subunit binding. Decreased IGF binding was also reflected in the inability of the mutants to inhibit IGF-I signaling in IGF receptor overexpressing cells. However, when present in excess, IGFBP-3 analogs defined as non-IGF-binding by biochemical assays could still inhibit IGF signaling. This suggests that residual binding activity of IGFBP-3 mutants may still be sufficient to inhibit IGF biological activity and questions the use of such analogs to study IGF-independent effects of IGFBP-3.  相似文献   

13.
Insulin-like growth factor-binding protein-1 (IGFBP-1) binds to insulin-like growth factors (IGFs) and has been shown to inhibit or stimulate cellular responses to IGF-I in vitro. This capacity of IGFBP-1 to inhibit or stimulate IGF-I actions correlates with its ability to form stable high molecular weight multimers. Since the ability of some proteins to polymerize is dependent upon transglutamination, we determined if tissue transglutaminase could catalyze this reaction and the effect of polymerization of IGFBP-1 upon IGF-I action. Following incubation with pure tissue transglutaminase (Tg), IGFBP-1 formed covalently linked multimers that were stable during SDS-polyacrylamide gel electrophoresis using reducing conditions. Dephosphorylated IGFBP-1 polymerized more rapidly and to a greater extent compared with native (phosphorylated) IGFBP-1. Exposure to IGF-I stimulated transglutamination of IGFBP-1 in vitro. An IGFBP-1 mutant in which Gln(66)-Gln(67) had been altered to Ala(66)-Ala(67) (Q66A/Q67A) was relatively resistant to polymerization by Tg compared with native IGFBP-1. Tg localized in fibroblast membranes was also shown to catalyze the formation of native IGFBP-1 multimers, however, Q66A/Q67A IGFBP-1 failed to polymerize. Although the mutant IGFBP-1 potently inhibited IGF-I stimulated protein synthesis in pSMC cultures, the same concentration of native IGFBP-1 had no inhibitory effect. The addition of higher concentrations of native IGFBP-1 did inhibit the protein synthesis response, and this degree of inhibition correlated with the amount of monomeric IGFBP-1 that was present. In conclusion, IGFBP-1 is a substrate for tissue transglutaminase and Tg leads to the formation of high molecular weight covalently linked multimers. Polymerization is an important post-translational modification of IGFBP-1 that regulates cellular responses to IGF-I.  相似文献   

14.
Petersen CE  Ha CE  Curry S  Bhagavan NV 《Proteins》2002,47(2):116-125
The binding of warfarin to the following human serum albumin (HSA) mutants was examined: K195M, K199M, F211V, W214L, R218M, R222M, H242V, and R257M. Warfarin bound to human serum albumin (HSA) exhibits an intrinsic fluorescence that is approximately 10-fold greater than the corresponding signal for warfarin in aqueous solution. This property of the warfarin/HSA complex has been widely used to determine the dissociation constant for the interaction. In the present study, such a technique was used to show that specific substitutions in subdomain 2A altered the affinity of HSA for warfarin. The fluorescence of warfarin/mutant HSA complexes varied widely from the fluorescence of the warfarin/wild-type HSA complex at pH = 7.4, suggesting changes in the structure of the complex resulting from specific substitutions. The fluorescence of the warfarin/wild-type HSA complex increases about twofold as the pH is increased from 6.0 to 9.0 due to the neutral-to-base (N-B) transition, a conformational change that occurs in HSA as a function of pH. Changes in the fluorescence of warfarin/mutant HSA complexes as a function of pH suggests novel behavior for most HSA species examined. For the HSA mutants F211V and H242V, the midpoint of the N-B transition shifts from a wild-type pH of 7.8 to a pH value of 7.1-7.2.  相似文献   

15.
Human blood group A and B antigens are produced by two closely related glycosyltransferase enzymes. An N-acetylgalactosaminyltransferase (GTA) utilizes UDP-GalNAc to extend H antigen acceptors (Fuc alpha(1-2)Gal beta-OR) producing A antigens, whereas a galactosyltransferase (GTB) utilizes UDP-Gal as a donor to extend H structures producing B antigens. GTA and GTB have a characteristic (211)DVD(213) motif that coordinates to a Mn(2+) ion shown to be critical in donor binding and catalysis. Three GTB mutants, M214V, M214T, and M214R, with alterations adjacent to the (211)DVD(213) motif have been identified in blood banking laboratories. From serological phenotyping, individuals with the M214R mutation show the B(el) variant expressing very low levels of B antigens, whereas those with M214T and M214V mutations give rise to A(weak)B phenotypes. Kinetic analysis of recombinant mutant GTB enzymes revealed that M214R has a 1200-fold decrease in k(cat) compared with wild type GTB. The crystal structure of M214R showed that DVD motif coordination to Mn(2+) was disrupted by Arg-214 causing displacement of the metal by a water molecule. Kinetic characterizations of the M214T and M214V mutants revealed they both had GTA and GTB activity consistent with the serology. The crystal structure of the M214T mutant showed no change in DVD coordination to Mn(2+). Instead a critical residue, Met-266, which is responsible for determining donor specificity, had adopted alternate conformations. The conformation with the highest occupancy opens up the active site to accommodate the larger A-specific donor, UDP-GalNAc, accounting for the dual specificity.  相似文献   

16.
Tanaka A  Nakamura H  Shiro Y  Fujii H 《Biochemistry》2006,45(8):2515-2523
FixL is a heme-based O(2) sensor, in which the autophosphorylation is regulated by the binding of exogenous ligands such as O(2) and CN(-). In this study, mutants of the heme distal Arg200, Arg208, Ile209, Ile210, and Arg214 residues of SmFixL were characterized biochemically and physicochemically, because it has been suggested that they are significant residues in ligand-linked kinase regulation. Measurements of the autoxidation rate, affinities, and kinetics of ligand binding revealed that all of the above residues are involved in stabilization of the O(2)-heme complex of FixL. However, Arg214 was found to be the only residue that is directly relevant to the ligand-dependent regulation of kinase activity. Although the wild type and R214K and R214Q mutants exhibited normal kinase regulation, R214A, R214M, R214H, and R214Y did not. (13)C and (15)N NMR analyses for (13)C(15)N(-) bound to the truncated heme domains of the Arg214 mutants indicated that, in the wild type and the foregoing two mutants, the heme moiety is present in a single conformation, but in the latter four, the conformations fluctuate possibly because of the lack of an interaction between the iron-bound ligand and residue 214. It is likely that such a rigid conformation of the ligand-bound form is important for the downregulation of histidine kinase activity. Furthermore, a comparison of the NMR data between the wild type and R214K and R214Q mutants suggests that a strong electrostatic interaction between residue 214 and the iron-bound ligand is not necessarily required for the single convergent structure and eventually for the downregulation of FixL.  相似文献   

17.
Protein C (PC) is activated to an essential anticoagulant enzyme (activated PC or APC) by thrombin (T) bound to thrombomodulin (TM), a membrane receptor present on the surface of endothelial cells. The understanding of this complex biological system is in part limited due to the lack of integration of experimental and structural data. In the work presented here, we analyze the PC-T-TM pathway in the context of both types of information. First, structural analysis of the serine protease domain of PC suggests that a positively charged cluster of amino acids could be involved in the activation process. To investigate the importance of these basic amino acids, two recombinant PC mutants were constructed using computer-guided site-directed mutagenesis. The double mutant had the K62[217]N/K63[218]D substitution and in the single mutant, K86[241] was changed to S. Both mutants were activated by free thrombin at rates equivalent to that of wild-type PC (wt-PC) and they demonstrated similar calcium-dependent inhibition of their activation. The K86[241]S mutant and wt-PC were activated by thrombin bound to soluble TM at a similar rate. In contrast, the K62[217]N/ K63[218]D mutant was activated by the T-TM complex at a 10-fold lower catalytic efficiency due to a lowering in k(cat) and increase in Km. Molecular models for PC and thrombin bound to a segment of TM were developed. The experimental results and the modeling data both indicate that electrostatic interactions are of crucial importance to orient PC onto the T-TM complex. A key electropositive region centered around loops 37[191] and 60[214] of PC is defined. PC loop 37[191] is located 7-8 A from the TM epidermal growth factor (EGF) 4 while the loop 60[214] is about 10 A away from TM EGF4. Both loops are far from thrombin. A key function of TM could be to create an additional binding site for PC. The Gla domain of PC points toward the membrane and away from thrombin or the EGF modules of TM during the activation process.  相似文献   

18.
Human Connexin26 gene mutations cause hearing loss. These hereditary mutations are the leading cause of childhood deafness worldwide. Mutations in gap junction proteins (connexins) can impair intercellular communication by eliminating protein synthesis, mis-trafficking, or inducing channels that fail to dock or have aberrant function. We previously identified a new class of mutants that form non-functional gap junction channels and hemichannels (connexons) by disrupting packing and inter-helix interactions. Here we analyzed fourteen point mutations in the fourth transmembrane helix of connexin26 (Cx26) that cause non-syndromic hearing loss. Eight mutations caused mis-trafficking (K188R, F191L, V198M, S199F, G200R, I203K, L205P, T208P). Of the remaining six that formed gap junctions in mammalian cells, M195T and A197S formed stable hemichannels after isolation with a baculovirus/Sf9 protein purification system, while C202F, I203T, L205V and N206S formed hemichannels with varying degrees of instability. The function of all six gap junction-forming mutants was further assessed through measurement of dye coupling in mammalian cells and junctional conductance in paired Xenopus oocytes. Dye coupling between cell pairs was reduced by varying degrees for all six mutants. In homotypic oocyte pairings, only A197S induced measurable conductance. In heterotypic pairings with wild-type Cx26, five of the six mutants formed functional gap junction channels, albeit with reduced efficiency. None of the mutants displayed significant alterations in sensitivity to transjunctional voltage or induced conductive hemichannels in single oocytes. Intra-hemichannel interactions between mutant and wild-type proteins were assessed in rescue experiments using baculovirus expression in Sf9 insect cells. Of the four unstable mutations (C202F, I203T, L205V, N206S) only C202F and N206S formed stable hemichannels when co-expressed with wild-type Cx26. Stable M195T hemichannels displayed an increased tendency to aggregate. Thus, mutations in TM4 cause a range of phenotypes of dysfunctional gap junction channels that are discussed within the context of the X-ray crystallographic structure.  相似文献   

19.
Escherichia coli pH 2.5 acid phosphatase gene (appA) and three mutants were expressed in Pichia pastoris to assess the effect of strategic mutations or deletion on the enzyme (EcAP) biochemical properties. Mutants A131N/ V134N/D207N/S211N, C200N/D207N/S211N, and A131N/ V134N/C200N/D207N/S211N had four, two, and four additional potential N-glycosylation sites, respectively. Extracellular phytase and acid phosphatase activities were produced by these mutants and the intact enzyme r-AppA. The N-glycosylation level was higher in mutants A131N/V134N/D207N/S211N (48%) and A131N/V134N/ C200N/D207N/S211N (89%) than that in r-AppA (14%). Despite no enhancement of glycosylation, mutant C200N/ D207N/S211N was different from r-AppA in the following properties. First, it was more active at pH 3.5-5.5. Second, it retained more (P < 0.01) phytase activity than that of r-AppA. Third, its specific activity of phytase was 54% higher. Lastly, its apparent catalytic efficiency kcat/Km for either p-nitrophenyl phosphate (5.8 x 10(5) vs 2.0 x 10(5) min(-1) M(-1)) or sodium phytate (6.9 x 10(6) vs 1.1 x 10(6) min(-1) M(-1)) was improved by factors of 1.9- and 5.3-fold, respectively. Based on the recently published E. coli phytase crystal structure, substitution of C200N in mutant C200N/D207N/S211N seems to eliminate the disulfide bond between the G helix and the GH loop in the alpha-domain of the protein. This change may modulate the domain flexibility and thereby the catalytic efficiency and thermostability of the enzyme.  相似文献   

20.
Bovine pancreatic deoxyribonuclease I (DNase I) is an endonuclease which cleaves double-stranded DNA. Cocrystal structures of DNase I with oligonucleotides have revealed interactions between the side chains of several amino acids (N74, R111, N170, S206, T207, and Y211) and the DNA phosphates. The effects these interactions have on enzyme catalysis and DNA hydrolysis selectivity have been investigated by site-directed mutagenesis. Mutations to R111, N170, T207, and Y211 severely compromised activity toward both DNA and a small chromophoric substrate. A hydrogen bond between R111 (which interacts with the phosphate immediately 5' to the cutting site) and the essential amino acid H134 is probably required to maintain this histidine in the correct orientation for efficient hydrolysis. Both T207 and Y211 bind to the phosphate immediately 3' to the cleavage site. Additionally, T207 is involved in binding an essential, structural, calcium ion, and Y211 is the nearest neighbor to D212, a critical catalytic residue. N170 interacts with the scissile phosphate and appears to play a direct role in the catalytic mechanism. The mutation N74D, which interacts with a phosphate twice removed from the scissile group, strongly reduced DNA hydrolysis. However, a comparison of DNase I variants from several species suggests that certain amino acids, which allow interaction with phosphates (positively charged or hydrogen bonding), are tolerated. S206, which binds to a DNA phosphate two positions away from the cleavage site, appears to play a relatively unimportant role. None of the enzyme variants, including a triple mutation in which N74, R111, and Y211 were altered, affected DNA hydrolysis selectivity. This suggests that phosphate binding residues play no role in the selection of DNA substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号