共查询到20条相似文献,搜索用时 0 毫秒
1.
Varlamov O Volchuk A Rahimian V Doege CA Paumet F Eng WS Arango N Parlati F Ravazzola M Orci L Söllner TH Rothman JE 《The Journal of cell biology》2004,164(1):79-88
A new functional class of SNAREs, designated inhibitory SNAREs (i-SNAREs), is described here. An i-SNARE inhibits fusion by substituting for or binding to a subunit of a fusogenic SNAREpin to form a nonfusogenic complex. Golgi-localized SNAREs were tested for i-SNARE activity by adding them as a fifth SNARE together with four other SNAREs that mediate Golgi fusion reactions. A striking pattern emerges in which certain subunits of the cis-Golgi SNAREpin function as i-SNAREs that inhibit fusion mediated by the trans-Golgi SNAREpin, and vice versa. Although the opposing distributions of the cis- and trans-Golgi SNAREs themselves could provide for a countercurrent fusion pattern in the Golgi stack, the gradients involved would be strongly sharpened by the complementary countercurrent distributions of the i-SNAREs. 相似文献
2.
Exocytosis in yeast requires the assembly of the secretory vesicle soluble N-ethylmaleimide-sensitive factor attachment protein receptor (v-SNARE) Sncp and the plasma membrane t-SNAREs Ssop and Sec9p into a SNARE complex. High-level expression of mutant Snc1 or Sso2 proteins that have a COOH-terminal geranylgeranylation signal instead of a transmembrane domain inhibits exocytosis at a stage after vesicle docking. The mutant SNARE proteins are membrane associated, correctly targeted, assemble into SNARE complexes, and do not interfere with the incorporation of wild-type SNARE proteins into complexes. Mutant SNARE complexes recruit GFP-Sec1p to sites of exocytosis and can be disassembled by the Sec18p ATPase. Heterotrimeric SNARE complexes assembled from both wild-type and mutant SNAREs are present in heterogeneous higher-order complexes containing Sec1p that sediment at greater than 20S. Based on a structural analogy between geranylgeranylated SNAREs and the GPI-HA mutant influenza virus fusion protein, we propose that the mutant SNAREs are fusion proteins unable to catalyze fusion of the distal leaflets of the secretory vesicle and plasma membrane. In support of this model, the inverted cone-shaped lipid lysophosphatidylcholine rescues secretion from SNARE mutant cells. 相似文献
3.
For over a decade SNARE hypotheses have been proposed to explain the mechanism of membrane fusion, yet the field still lacks sufficient evidence to conclusively identify the minimal components of native fusion. Consequently, debate concerning the postulated role(s) of SNAREs in membrane fusion continues. The focus of this review is to revisit original literature with a current perspective. Our analysis begins with the earliest studies of clostridial toxins, leading to various cellular and molecular approaches that have been used to test for the roles of SNAREs in exocytosis. We place much emphasis on distinguishing between specific effects on membrane fusion and effects on other critical steps in exocytosis. Although many systems can be used to study exocytosis, few permit selective access to specific steps in the pathway, such as membrane fusion. Thus, while SNARE proteins are essential to the physiology of exocytosis, assay limitations often prevent definitive conclusions concerning the molecular mechanism of membrane fusion. In all, the SNAREs are more likely to function upstream as modulators or priming factors of fusion. 相似文献
4.
In recent years, the simple picture of a viral fusion protein interacting with the cell and/or viral membranes by means of only two localized segments (i.e. the fusion peptide and the transmembrane domain) has given way to a more complex picture in which multiple regions from the viral proteins interact with membranes. Indeed, possible roles in membrane binding and/or destabilization have been postulated for the N-terminal heptad repeats, pre-transmembrane segments, and other internal regions of fusion proteins from distant viruses (such as orthomyxo-, retro-, paramyxo-, or flaviviruses). This review focuses on the experimental evidence and functional models postulated so far about the role of these regions in the process of virus-induced membrane fusion. 相似文献
5.
Sergio G. Peisajovich 《生物化学与生物物理学报:生物膜》2003,1614(1):122-129
In recent years, the simple picture of a viral fusion protein interacting with the cell and/or viral membranes by means of only two localized segments (i.e. the fusion peptide and the transmembrane domain) has given way to a more complex picture in which multiple regions from the viral proteins interact with membranes. Indeed, possible roles in membrane binding and/or destabilization have been postulated for the N-terminal heptad repeats, pre-transmembrane segments, and other internal regions of fusion proteins from distant viruses (such as orthomyxo-, retro-, paramyxo-, or flaviviruses). This review focuses on the experimental evidence and functional models postulated so far about the role of these regions in the process of virus-induced membrane fusion. 相似文献
6.
《Critical reviews in biochemistry and molecular biology》2013,48(3):231-241
AbstractProteoliposomes have been widely used for in vitro studies of membrane fusion mediated by synaptic proteins. Initially, such studies were made with large unsynchronized ensembles of vesicles. Such ensemble assays limited the insights into the SNARE-mediated fusion mechanism that could be obtained from them. Single particle microscopy experiments can alleviate many of these limitations but they pose significant technical challenges. Here we summarize various approaches that have enabled studies of fusion mediated by SNAREs and other synaptic proteins at a single-particle level. Currently available methods are described and their advantages and limitations are discussed. 相似文献
7.
Reconstituted membrane fusion requires regulatory lipids, SNAREs and synergistic SNARE chaperones 总被引:2,自引:0,他引:2
The homotypic fusion of yeast vacuoles, each with 3Q- and 1R-SNARE, requires SNARE chaperones (Sec17p/Sec18p and HOPS) and regulatory lipids (sterol, diacylglycerol and phosphoinositides). Pairs of liposomes of phosphatidylcholine/phosphatidylserine, bearing three vacuolar Q-SNAREs on one and the R-SNARE on the other, undergo slow lipid mixing, but this is unaffected by HOPS and inhibited by Sec17p/Sec18p. To study these essential fusion components, we reconstituted proteoliposomes of a more physiological composition, bearing vacuolar lipids and all four vacuolar SNAREs. Their fusion requires Sec17p/Sec18p and HOPS, and each regulatory lipid is important for rapid fusion. Although SNAREs can cause both fusion and lysis, fusion of these proteoliposomes with Sec17p/Sec18p and HOPS is not accompanied by lysis. Sec17p/Sec18p, which disassemble SNARE complexes, and HOPS, which promotes and proofreads SNARE assembly, act synergistically to form fusion-competent SNARE complexes, and this synergy requires phosphoinositides. This is the first chemically defined model of the physiological interactions of these conserved fusion catalysts. 相似文献
8.
In eukaryotic endomembrane systems, Qabc-SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) on one membrane and R-SNARE on the opposing membrane assemble into a trans-QabcR-SNARE complex to drive membrane fusion. However, it remains ambiguous whether pairing of Qabc- and R-SNAREs mediates membrane fusion specificity. Here, we explored the fusion specificity of reconstituted proteoliposomes bearing purified SNAREs in yeast vacuoles and other organelles. We found that not only vacuolar R-SNARE Nyv1p but also the non-cognate R-SNAREs, endosomal Snc2p, and endoplasmic reticulum-Golgi Sec22p caused efficient fusion with vacuolar Qabc-SNAREs. In contrast, their fusion is blocked completely by replacing vacuolar Qc-SNARE Vam7p with the non-cognate endosomal Tlg1p and Syn8p, although these endosomal Qc-SNAREs fully retained the ability to form cis-SNARE complexes with vacuolar SNAREs in solution and on membranes. Thus, our current study establishes that an appropriate assembly of Qabc-SNAREs is crucial for regulating fusion specificity, whereas R-SNARE itself has little contribution to specificity. 相似文献
9.
Sergio G Peisajovich Raquel F Epand Richard M Epand Yechiel Shai 《European journal of biochemistry》2002,269(17):4342-4350
The N-terminal fusion peptide of Sendai virus F1 envelope glycoprotein is a stretch of 14 amino acids, most of which are hydrophobic. Following this region, we detected a segment of 11 residues that are strikingly similar to the N-terminal fusion peptide. We found that, when anchored to the membrane by palmitoylation of its N-terminus, this segment (WT-palm-19-33) induces membrane fusion of large unilamellar liposomes to almost the same extent as a segment that includes the N-terminal fusion peptide. The activity of WT-palm-19-33 was dependent on its specific sequence, as a palmitoylated peptide with the same amino-acid composition but a scrambled sequence was inactive. Interestingly, two mutations (G7A and G12A) known to increase F1- induced cell-cell fusion, also increased the homology between the N-terminal fusion peptide and WT-palm-19-33. The role of the amino-acid sequence on the fusogenicity, secondary structure, and mechanism of membrane fusion was analyzed by comparing a peptide comprising both homologous segments (WT 1-33), a G12A mutant (G12A 1-33), a G7A-G12A double mutant (G7A-G12A 1-33), and a peptide with a scrambled sequence (SC 1-33). Based on these experiments, we postulate that replacement of Gly 7 and Gly12 by Ala increases the alpha helical content of the N-terminal region, with a concomitant increase in its fusogenic activity. Furthermore, the dissimilar abilities of the different peptides to induce membrane negative curvature as well as to promote isotropic 31P NMR signals, suggest that these mutations might also alter the extent of membrane penetration of the 33-residue peptide. Interestingly, our results serve to explain the effect of the G7A and G12A mutations on the fusogenic activity of the parent F1 protein in vivo. 相似文献
10.
11.
Mast cells play a pivotal role in allergic responses. Antigen stimulation causes elevation of the intracellular Ca(2+) concentration, which triggers the exocytotic release of inflammatory mediators such as histamine. Recent research, including our own, has revealed that SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins such as syntaxin-3, -4, SNAP-23, and VAMP-8 are involved in exocytosis. Although exocytosis in mast cells is Ca(2+) dependent, the target molecule that interacts with Ca(2+) is not clear. Synaptotagmin is a Ca(2+) sensor and regulates exocytosis in neuronal cells. However, the role of synaptotagmin 2, a member of the synaptotagmin family, in exocytosis in mast cells remains controversial. In this study, we investigated the role of synaptotagmin 2 by a liposome-based fusion assay. SNARE proteins (SNAP-23, syntaxin-3, VAMP-8) and synaptotagmin 2 were expressed in Escherichia coli and purified as GST-tagged or His-tagged fusion proteins. These SNARE proteins were incorporated by a detergent dialysis method. Membrane fusion between liposomes was monitored by fluorescence resonance energy transfer between fluorescent-labeled phospholipids. In the presence of Ca(2+), low synaptotagmin 2 concentration inhibited membrane fusion between SNARE-containing liposomes, while high synaptotagmin 2 concentration enhanced membrane fusion. This enhancement required phosphatidylserine as a membrane component. These results suggest that synaptotagmin 2 regulates membrane fusion of SNARE-containing liposomes involved in exocytosis in mast cells, and that this regulation is dependent on synaptotagmin 2 concentration, Ca(2+), and phosphatidylserine. 相似文献
12.
Synaptic transmission requires the controlled release of neurotransmitter from synaptic vesicles by membrane fusion with the presynaptic plasma membrane. SNAREs are the core constituents of the protein machinery responsible for synaptic membrane fusion. The mechanism by which SNAREs drive membrane fusion is thought to involve a hemifusion intermediate, a condition in which the outer leaflets of two bilayers are combined and the inner leaflets remain intact; however, hemifusion has been observed only as an end point rather than as an intermediate. Here, we examined the kinetics of membrane fusion of liposomes mediated by recombinant neuronal SNAREs using fluorescence assays that monitor both total lipid mixing and inner leaflet mixing. Our results demonstrate that hemifusion is dominant at the early stage of the fusion reaction. Over time, hemifusion transitioned to complete fusion, showing that hemifusion is a true intermediate. We also show that hemifusion intermediates can be trapped, likely as unproductive outcomes, by modulating the surface concentration of the SNARE proteins. 相似文献
13.
Miriam Lee Young-Joon Ko Yeojin Moon Minsoo Han Hyung-Wook Kim Sung Haeng Lee KyeongJin Kang Youngsoo Jun 《The Journal of cell biology》2015,210(3):451-470
Dynamin-like GTPases of the atlastin family are thought to mediate homotypic endoplasmic reticulum (ER) membrane fusion; however, the underlying mechanism remains largely unclear. Here, we developed a simple and quantitative in vitro assay using isolated yeast microsomes for measuring yeast atlastin Sey1p-dependent ER fusion. Using this assay, we found that the ER SNAREs Sec22p and Sec20p were required for Sey1p-mediated ER fusion. Consistently, ER fusion was significantly reduced by inhibition of Sec18p and Sec17p, which regulate SNARE-mediated membrane fusion. The involvement of SNAREs in Sey1p-dependent ER fusion was further supported by the physical interaction of Sey1p with Sec22p and Ufe1p, another ER SNARE. Furthermore, our estimation of the concentration of Sey1p on isolated microsomes, together with the lack of fusion between Sey1p proteoliposomes even with a 25-fold excess of the physiological concentration of Sey1p, suggests that Sey1p requires additional factors to support ER fusion in vivo. Collectively, our data strongly suggest that SNARE-mediated membrane fusion is involved in atlastin-initiated homotypic ER fusion. 相似文献
14.
Yang B Gonzalez L Prekeris R Steegmaier M Advani RJ Scheller RH 《The Journal of biological chemistry》1999,274(9):5649-5653
The SNARE hypothesis proposes that membrane trafficking specificity is mediated by preferential high affinity interactions between particular v (vesicle membrane)- and t (target membrane)-SNARE combinations. The specificity of interactions among a diverse set of SNAREs, however, is unknown. We have tested the SNARE hypothesis by analyzing potential SNARE complexes between five proteins of the vesicle-associated membrane protein (VAMP) family, three members of the synaptosome-associated protein-25 (SNAP-25) family and three members of the syntaxin family. All of the 21 combinations of SNAREs tested formed stable complexes. Sixteen were resistant to SDS denaturation, and most complexes thermally denatured between 70 and 90 degreesC. These results suggest that the specificity of membrane fusion is not encoded by the interactions between SNAREs. 相似文献
15.
Gupta GD Free SJ Levina NN Keränen S Heath IB 《Fungal genetics and biology : FG & B》2003,40(3):271-286
Highly polarized exocytosis of vesicles at hyphal apices is an essential requirement of tip growth. This requirement may be met by the localization and/or activation of an apical SNARE-based machinery. We have cloned nsyn1 and nsyn2, SNAREs predicted to function at the plasma membrane in Neurospora crassa. Transformation of extra copies of nsyn1 into wild-type strains displayed effects consistent with quelling of nsyn1 expression, which was lethal in most transformants. All surviving transformants grew slowly, conidiated poorly, and were male sterile. In addition, antisense nsyn1 strains grew slowly, with abnormal hyphal diameters and polarity and defective conidiation. For nsyn2, several repeat induced point mutation (RIP) crosses produced no, or poorly germinating ascospores. Those that germinated produced slow-growing hyphae with abnormal branching. The defects in nsyn1 and nsyn2 mutants are consistent with differential impaired vesicle fusion in hyphal tips and other developmental stages. 相似文献
16.
Giraudo CG Hu C You D Slovic AM Mosharov EV Sulzer D Melia TJ Rothman JE 《The Journal of cell biology》2005,170(2):249-260
Using a cell fusion assay, we show here that in addition to complete fusion SNAREs also promote hemifusion as an alternative outcome. Approximately 65% of events resulted in full fusion, and the remaining 35% in hemifusion; of those, approximately two thirds were permanent and approximately one third were reversible. We predict that this relatively close balance among outcomes could be tipped by binding of regulatory proteins to the SNAREs, allowing for dynamic physiological regulation between full fusion and reversible kiss-and-run-like events. 相似文献
17.
An in vitro fusion assay uses fluorescence microscopy of labeled lipids to monitor single v-SNARE vesicle docking and fusion events on a planar lipid bilayer containing t-SNAREs. For vesicles and bilayer comprising phosphatidylcholine (POPC, 84-85% by mol) and phosphatidylserine (DOPS, 15% by mol), previous work demonstrated prompt, full fusion (τfus = 25 ms). Substitution of 20-60% phosphatidylethanolamine (DOPE) for phosphatidylcholine in the v-SNARE vesicle with either 0 or 20% DOPE included in the t-SNARE bilayer gives rise to hemifusion events. Labeled lipids diffuse into the planar bilayer as two temporally distinct waves, presumably hemifusion of the outer leaflet followed by inner leaflet (core) fusion. The fusion kinetics with DOPE is markedly heterogeneous. Some vesicle/docking site pairs exhibit prompt, full fusion while others exhibit hemifusion. Hemifusion events are roughly half productive (leading to subsequent core fusion within 20 s) and half dead-end. In qualitative accord with expectations from studies of protein-free vesicle-vesicle fusion, the hemifusion rate khemi is 15-20 times faster than the core fusion rate kcore, and the fraction of hemifusion events increases with increasing percentage of DOPE. This suggests similar underlying molecular pathways for protein-free and neuronal SNARE-driven fusion. Removal of phosphatidylserine from the v-SNARE vesicle has no effect on docking or fusion. 相似文献
18.
M L?tscher H Amstutz C H Heusser K Blaser 《Journal of immunology (Baltimore, Md. : 1950)》1992,148(11):3631-3635
Based on their fine specificity, two groups of antibodies against the phosphorylcholine (PC) hapten have been described. Group I antibodies react predominantly with the PC moiety of the hapten and group II are directed against the entire hapten including the azophenyl spacer to the protein carrier. We have analyzed the VH gene segment utilization of hybridomas from the memory response to PC by Southern blot analysis and nucleotide sequencing of the functional VDJ rearrangements. Three main specificities of anti-PC antibodies could be distinguished. Anti-PC hybridomas with group I fine specificity utilize the VH1-DFL 16.1-JH1 rearrangement. A major portion of group II antibodies recognized the phenyl-PC part and expressed the same VH1 gene in combination with a member of the SP2 family and JH1 or JH2. The other anti-PC antibodies either used the PJ14-DFL16-JH3 rearrangement in combination with a lambda 1 L chain or a member of the VGam3.8 VH family rearranged to the DFL16.1 and the JH3 gene segments. The PJ14 and VGam3.8 V gene expressing antibodies were directed to the phenyl group and were either not or barely inhibitable by PC chloride. Thus, specific VDJ gene combinations contribute to the fine specificity of antibodies in the memory response to the PC hapten. The use of the S107, Q52, and VGam3.8. VH gene families, together with FL16.1 or SP2 D segments and JH1, JH2, or JH3 results in different fine specificities to the PC, phenyl-PC, or the azophenyl moiety of the PC hapten. These fine specificities of the memory response use V, D, and J segments of the initial T15Id+ response in combination with gene segments usually related to phenyl specificity. 相似文献
19.
Actin remodeling to facilitate membrane fusion 总被引:1,自引:0,他引:1
Eitzen G 《Biochimica et biophysica acta》2003,1641(2-3):175-181
Actin and its associated proteins participate in several intracellular trafficking mechanisms. This review assesses recent work that shows how actin participates in the terminal trafficking event of membrane bilayer fusion. A recent flurry of reports defines a role for Rho proteins in membrane fusion and also demonstrates that this role is distinct from any vesicle transport mechanism. Rho proteins are well known to govern actin remodeling, which implicates this process as a condition of membrane fusion. A small but significant body of work examines actin-regulated events of intracellular membrane fusion, exocytosis and endocytosis. In general, actin has been shown to act as a negative regulator of exocytosis. Cortical actin filaments act as a barrier that requires transient removal to allow vesicles to undergo docking at the plasma membrane. However, once docked, F-actin synthesis may act as a positive regulator to give the final stimulus to drive membrane fusion. F-actin synthesis is clearly needed for endocytosis and intracellular membrane fusion events. What may seem like dissimilar results are perhaps snapshots of a single mechanism of membranous actin remodeling (i.e. dynamic disassembly and reassembly) that is universally needed for all membrane fusion events. 相似文献
20.
Uridylate addition and RNA ligation contribute to the specificity of kinetoplastid insertion RNA editing
下载免费PDF全文

Igo RP Palazzo SS Burgess ML Panigrahi AK Stuart K 《Molecular and cellular biology》2000,20(22):8447-8457
RNA editing in Trypanosoma brucei inserts and deletes uridylates (U's) in mitochondrial pre-mRNAs under the direction of guide RNAs (gRNAs). We report here the development of a novel in vitro precleaved editing assay and its use to study the gRNA specificity of the U addition and RNA ligation steps in insertion RNA editing. The 5' fragment of substrate RNA accumulated with the number of added U's specified by gRNA, and U addition products with more than the specified number of U's were rare. U addition up to the number specified occurred in the absence of ligation, but accumulation of U addition products was slowed. The 5' fragments with the correct number of added U's were preferentially ligated, apparently by adenylylated RNA ligase since exogenously added ATP was not required and since ligation was eliminated by treatment with pyrophosphate. gRNA-specified U addition was apparent in the absence of ligation when the pre-mRNA immediately upstream of the editing site was single stranded and more so when it was base paired with gRNA. These results suggest that both the U addition and RNA ligation steps contributed to the precision of RNA editing. 相似文献