首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Streptococcus agalactiae is a common pathogen that causes bovine mastitis. The aims of this study were to evaluate the antibody response against S. agalactiae extracellular proteins in the whey and serum of naturally infected bovines and to identify possible immunodominant extracellular antigens. IgG1 antibodies against S. agalactiae extracellular proteins were elevated in the whey and serum of naturally infected bovines. In the whey, the levels of IgG1 specific for S. agalactiae extracellular proteins were similar in infected and noninfected milk quarters from the same cow, and the production of antibodies specific for S. agalactiae extracellular proteins was induced only by infection with this bacterium. The immunoreactivity of extracellular proteins with bovine whey was clearly different in infected versus control animals. Group B protective surface protein and 5'-nucleotidase family protein were 2 major immunoreactive proteins that were detected only in the whey of infected cows, suggesting that these proteins may be important in the pathogenesis of S. agalactiae-induced mastitis. This information could be used to diagnose S. agalactiae infection. In addition, these antigens may be useful as carrier proteins for serotype-specific polysaccharides in conjugate vaccines.  相似文献   

2.
本研究旨在调查新冠疫情期间我国部分地区犬新型冠状病毒(SARS-CoV-2)以及犬冠状病毒(CCoV)感染状况。从14个城市的动物医院收集表现为呼吸道症状和或腹泻症状的犬的鼻拭子和直肠拭子样品,RTPCR检测样品是否存在SARS-CoV-2和CCoV核酸。结果显示,206只犬鼻拭子和直肠拭子样品均未检出SARS-CoV-2,24只犬检出CCoV,阳性率为11.65%,以犬肠道冠状病毒(CECoV)感染为主(19/24),CECoVⅠ和Ⅱ型均在我国流行。CECoV的M基因序列与人α冠状病毒属病毒相似性为47.3-61.3%,犬呼吸道冠状病毒(CRCoV)的M和N基因的部分基因序列与人β冠状病毒属病毒相似性为9.2%-46.2%。结果说明,新冠疫情期间,我国14个城市动物医院就诊犬未感染SARS-CoV-2,CCoV与SARS-CoV-2亲缘关系较远,表现呼吸道和消化道症状的犬应高度关注CCoV感染。  相似文献   

3.
The aim of the present study was to analyze the antibody response against excretory-secretory antigens (ES-Ag) from Echinococcus granulosus protoscoleces, using sera from dogs infected with E. granulosus and other helminths. ES-Ag were obtained from the first 50 h maintenance of protoscoleces in vitro. Immunochemical characterization was performed by immunoblotting with sera from dogs naturally infected with E. granulosus (n = 12), sera from dogs infected with helminths other than E. granulosus (n = 30), and helminth-free dog sera (n = 20). These findings were compared to those obtained from a somatic extract of protoscoleces (S-Ag). ES-Ag only showed four cross-reacting proteins of 65, 61, 54, and 45-46 kDa. Antigens with apparent masses of 89 and 50 kDa in ES-Ag and of 130 and 67 kDa in S-Ag were identified by sera of dogs infected with E. granulosus only, whereas a protein of 41-43 kDa was recognised by the majority of the sera from dogs with non-echinococcal infection. Employing ELISA to study the same sera, S-Ag revealed higher immunoreactivity than ES-Ag, but also showed higher cross-reactivity levels when sera from dogs with non-echinococcal infection were assayed in immunoblotting.  相似文献   

4.
Brucella abortus is a Gram-negative intracellular bacterium that causes infectious abortion in food-producing animals and chronic infection in humans. This study aimed to characterize a B. abortus S19 antigen preparation obtained by Triton X-114 (TX-114) extraction through immunoproteomics to differentiate infected from vaccinated cattle. Three groups of bovine sera were studied: GI, 30 naturally infected cows; GII, 30 S19-vaccinated heifers; and GIII, 30 nonvaccinated seronegative cows. One-dimensional (1D) and two-dimensional electrophoretic profiles of TX-114 hydrophilic phase antigen revealed a broad spectrum of polypeptides (10-79 kDa). 1D immunoblot showed widespread seroreactivity profile in GI compared with restricted profile in GII. Three antigenic components (10, 12, 17 kDa) were recognized exclusively by GI sera, representing potential markers of infection and excluding vaccinal response. The proteomic characterization revealed 56 protein spots, 27 of which were antigenic spots showing differential seroreactivity profile between GI and GII, especially polypeptides <20 kDa that were recognized exclusively by GI. MS/MS analysis identified five B. abortus S19 proteins (Invasion protein B, Sod, Dps, Ndk, and Bfr), which were related with antigenicity in naturally infected cattle. In conclusion, immunoproteomics of this new antigen preparation enabled the characterization of proteins that could be used as tools to develop sensitive and specific immunoassays for serodiagnosis of bovine brucellosis, with emphasis on differentiation between S19 vaccinated and infected cattle.  相似文献   

5.
6.
Type II feline coronavirus (FCoV) emerged via double recombination between type I FCoV and type II canine coronavirus (CCoV). In this study, two type I FCoVs, three type II FCoVs and ten type II CCoVs were genetically compared. The results showed that three Japanese type II FCoVs, M91-267, KUK-H/L and Tokyo/cat/130627, also emerged by homologous recombination between type I FCoV and type II CCoV and their parent viruses were genetically different from one another. In addition, the 3′-terminal recombination sites of M91-267, KUK-H/L and Tokyo/cat/130627 were different from one another within the genes encoding membrane and spike proteins, and the 5′-terminal recombination sites were also located at different regions of ORF1. These results indicate that at least three Japanese type II FCoVs emerged independently. Sera from a cat experimentally infected with type I FCoV was unable to neutralize type II CCoV infection, indicating that cats persistently infected with type I FCoV may be superinfected with type II CCoV. Our previous study reported that few Japanese cats have antibody against type II FCoV. All of these observations suggest that type II FCoV emerged inside the cat body and is unable to readily spread among cats, indicating that these recombination events for emergence of pathogenic coronaviruses occur frequently.  相似文献   

7.
8.
The CRISPR/Cas system, comprised of clustered regularly interspaced short palindromic repeats along with their associated (Cas) proteins, protects bacteria and archaea from viral predation and invading nucleic acids. While the mechanism of action for this acquired immunity is currently under investigation, the response of Cas protein expression to phage infection has yet to be elucidated. In this study, we employed shotgun proteomics to measure the global proteome expression in a model system for studying the CRISPR/Cas response in S. thermophilus DGCC7710 infected with phage 2972. Host and viral proteins were simultaneously measured following inoculation at two different multiplicities of infection and across various time points using two-dimensional liquid chromatography tandem mass spectrometry. Thirty-seven out of forty predicted viral proteins were detected, including all proteins of the structural virome and viral effector proteins. In total, 1,013 of 2,079 predicted S. thermophilus proteins were detected, facilitating the monitoring of host protein synthesis changes in response to virus infection. Importantly, Cas proteins from all four CRISPR loci in the S. thermophilus DGCC7710 genome were detected, including loci previously thought to be inactive. Many Cas proteins were found to be constitutively expressed, but several demonstrated increased abundance following infection, including the signature Cas9 proteins from the CRISPR1 and CRISPR3 loci, which are key players in the interference phase of the CRISPR/Cas response. Altogether, these results provide novel insights into the proteomic response of S. thermophilus, specifically CRISPR-associated proteins, upon phage 2972 infection.  相似文献   

9.
Feline coronavirus (FCoV), porcine transmissible gastroenteritis coronavirus (TGEV), canine coronavirus (CCoV), and human coronavirus HCoV-229E, which belong to the group 1 coronavirus, use aminopeptidase N (APN) of their natural host and feline APN (fAPN) as receptors. Using mouse-feline APN chimeras, we identified three small, discontinuous regions, amino acids (aa) 288 to 290, aa 732 to 746 (called R1), and aa 764 to 788 (called R2) in fAPN that determined the host ranges of these coronaviruses. Blockade of infection with anti-fAPN monoclonal antibody RG4 suggested that these three regions lie close together on the fAPN surface. Different residues in fAPN were required for infection with each coronavirus. HCoV-229E infection was blocked by an N-glycosylation sequon present between aa 288 to 290 in murine APN. TGEV required R1 of fAPN, while FCoV and CCoV required both R1 and R2 for entry. N740 and T742 in fAPN and the homologous R741 in human APN (hAPN) were key determinants of host range for FCoV, TGEV, and CCoV. Residue N740 in fAPN was essential only for CCoV receptor activity. A conservative T742V substitution or a T742R substitution in fAPN destroyed receptor activity for the pig, dog, and cat coronaviruses, while a T742S substitution retained these receptor activities. Thus, the hydroxyl on T742 is required for the coronavirus receptor activity of fAPN. In hAPN an R741T substitution caused a gain of receptor activity for TGEV but not for FCoV or CCoV. Therefore, entry and host range of these group 1 coronaviruses depend on the ability of the viral spike glycoproteins to recognize small, species-specific amino acid differences in the APN proteins of different species.  相似文献   

10.
To characterize the antigenicity of nucleocapsid proteins (NP) derived from canine coronavirus (CCoV) and canine respiratory coronavirus (CRCoV) in China, the N genes of CCoV (CCoV-BJ70) and CRCoV (CRCoV-BJ202) were cloned from swabs obtained from diseased pet dogs in Beijing and then sequenced. The recombinant NPs (rNPs) were expressed in Escherichia coli and purified by nickel-affinity column and size exclusion chromatography. Sequencing data indicated that the N genes of CCoV-BJ70 and CRCoV-BJ202 belonging to two distinctly different groups were relatively conserved within each subgroup. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results showed that rNPs of CCoV and CRCoV were expressed efficiently and isolated with a final purity of over 95%. Western blot analysis revealed the rNP from CRCoV could cross-react with mice antisera against human coronavirus (HCoV-229E, NL63, OC43, HKU1), while rNP of CCoV had cross-reactivity with only anti-sera against viruses belonging to the same group (HCoV-229E and NL63). In summary, CCoV and CRCoV rNPs were successfully expressed in E. coli and showed antigenic cross-reactivity with antisera raised against human coronaviruses. These findings indicate that further serologic studies on coronavirus infections at the animal-human interface are needed.  相似文献   

11.

Background

New interventions tools are a priority for schistosomiasis control and elimination, as the disease is still highly prevalent. The identification of proteins associated with active infection and protective immune response may constitute the basis for the development of a successful vaccine and could also indicate new diagnostic candidates. In this context, post-genomic technologies have been progressing, resulting in a more rational discovery of new biomarkers of resistance and antigens for diagnosis.

Methodology/Principal Findings

Two-dimensional electrophoresed Schistosoma mansoni adult worm protein extracts were probed with pooled sera of infected and non-infected (naturally resistant) individuals from a S. mansoni endemic area. A total of 47 different immunoreactive proteins were identified by mass spectrometry. Although the different pooled sera shared most of the immunoreactive protein spots, nine protein spots reacted exclusively with the serum pool of infected individuals, which correspond to annexin, major egg antigen, troponin T, filamin, disulphide-isomerase ER-60 precursor, actin and reticulocalbin. One protein spot, corresponding to eukaryotic translation elongation factor, reacted exclusively with the pooled sera of non-infected individuals living in the endemic area. Western blotting of two selected recombinant proteins, major egg antigen and hemoglobinase, showed a similar recognition pattern of that of the native protein.

Concluding/Significance

Using a serological proteome analysis, a group of antigens related to the different infection status of the endemic area residents was identified and may be related to susceptibility or resistance to infection.  相似文献   

12.
冠状病毒感染调控细胞凋亡机制研究进展   总被引:3,自引:0,他引:3  
冠状病毒是常见的感染人类和动物并造成健康危害的主要病原性微生物之一,冠状病毒感染细胞后,细胞产生免疫应答,病毒为了在细胞内转录翻译和装配下一代,应对细胞免疫应答的同时,还参与到许多细胞活动中,当细胞特定受体与病毒蛋白结合后,细胞即启动凋亡程序。冠状病毒的许多蛋白在细胞凋亡程序中起促进或抑制凋亡的不同作用,如病毒S蛋白与细胞膜死亡受体作用诱导细胞启动外在凋亡途径,病毒感染细胞后产生的M、S蛋白引起细胞内质网应激、Ca2+失衡,诱导细胞启动内在凋亡途径,而E蛋白则抑制细胞凋亡的发生。本文综述了冠状病毒对侵染细胞的促凋亡或抑制凋亡作用及其作用机制,通过了解病毒不同蛋白在各种凋亡途径中的不同作用,希望为人工干预调控细胞研究提供思路,为冠状病毒感染防控提供理论支持。  相似文献   

13.
14.
15.
The presence of Aspergillus species is an indicator of storage conditions, which also suggests the possibility of several biochemical changes in grains. A comparative change in total soluble proteins and protease activity was determined in commercial peanut seeds collected from Georgia State. Protein contents of healthy peanuts, naturally contaminated peanuts and then artificially inoculated peanut seeds with A. flavus were estimated by Bradford method, and protease activity was also determined by using the Protease Detection Kits. Protein contents and the protease activity of the peanuts varied from sample to sample. The soluble protein content of seeds was significantly higher in healthy peanuts than in artificially inoculated or naturally infected peanuts with A. flavus. Protease activity was found to be higher in artificially inoculated seeds than in either naturally infected or healthy peanuts. Level of soluble proteins in buffer extracts of contaminated seeds decreased with incubation time, and protease activity increased with incubation time. These changes may be attributed to host response due to infection, contribution by A. flavus or due to biochemical alterations that occur naturally during the transition from endosperm to seedling during incubation period.  相似文献   

16.
Hepatozoon canis is an apicomplexan protozoan parasite of dogs, prevalent in Asia, Africa, and southern Europe. Experimental transmission of H. canis to dogs was performed with laboratory-reared Rhipicephalus sanguineus nymphs that fed on a naturally infected dog or were percutaneously injected with canine blood containing H. canis gamonts. Dogs were inoculated by oral ingestion of adult ticks containing H. canis oocysts. Transstadial transmission of H. canis was recorded, whereas transovarial transmission could not be demonstrated. Oocysts were detected in 85% of the adult ticks that had engorged as nymphs on an infected dog and in 61% of the adult ticks resulting from nymphs injected percutaneously with blood from the same dog. Nine of 12 dogs (75%) inoculated with naturally fed or percutaneously injected ticks became parasitologically positive, and all showed seroconversion. Meronts were initially detected in the bone marrow 13 days postinoculation and gamonts 28 days after infection. The variation in the time of initial detection of parasitemia among infected dogs and the rapid appearance of gamonts in dogs immunosuppressed with corticosteroids suggest that immune mechanisms play an important role in controlling H. canis parasitism. The artificial acquisition of Hepatozoon parasites by percutaneous injection of ticks, demonstrated here for the first time, may serve as a useful tool for studies on transmission, vector-host relationships, and the immunology of infection with Hepatozoon species.  相似文献   

17.
Virus entry into and release from epithelial cells are polarized as a result of the distribution of the viral receptors. In order to establish the polarity of entry and release of CCoV from epithelial cells, the interactions of the virus with A72 and CrFK cells grown on permeable supports was evaluated, and the amount of infective virus in the apical and in the basolateral media was determined and compared. Infection of A72 cells after different times post seeding demonstrated that CCoV grow after infection from both apical and basolateral sides. In CrFK cells, CCoV was observed in both compartments only in the later phase of the infection. To establish the reciprocal binding of CCoV on plasma membrane, A72 cells on a permeable support were preincubated with a mAb specific for CCoV. Infection from the apical side was blocked by mAb applied to that side; in contrast, such treatment on the basolateral side had no effect on the infectious process. Similarly, the low levels of CCoV observed after basolateral exposure to virus was abolished following mAb treatment of that side. The identification of CCoV into the basolateral medium could play an important role in the viral pathogenesis.  相似文献   

18.
Ehrlichia chaffeensis, transmitted from Amblyomma americanum ticks, causes human monocytic ehrlichiosis. It also infects white-tailed deer, dogs and several other vertebrates. Deer are its reservoir hosts, while humans and dogs are incidental hosts. E. chaffeensis protein expression is influenced by its growth in macrophages and tick cells. We report here infection progression in deer or dogs infected intravenously with macrophage- or tick cell-grown E. chaffeensis or by tick transmission in deer. Deer and dogs developed mild fever and persistent rickettsemia; the infection was detected more frequently in the blood of infected animals with macrophage inoculum compared to tick cell inoculum or tick transmission. Tick cell inoculum and tick transmission caused a drop in tick infection acquisition rates compared to infection rates in ticks fed on deer receiving macrophage inoculum. Independent of deer or dogs, IgG antibody response was higher in animals receiving macrophage inoculum against macrophage-derived Ehrlichia antigens, while it was significantly lower in the same animals against tick cell-derived Ehrlichia antigens. Deer infected with tick cell inoculum and tick transmission caused a higher antibody response to tick cell cultured bacterial antigens compared to the antibody response for macrophage cultured antigens for the same animals. The data demonstrate that the host cell-specific E. chaffeensis protein expression influences rickettsemia in a host and its acquisition by ticks. The data also reveal that tick cell-derived inoculum is similar to tick transmission with reduced rickettsemia, IgG response and tick acquisition of E. chaffeensis.  相似文献   

19.
Overview of avian influenza DIVA test strategies   总被引:9,自引:0,他引:9  
David L. Suarez   《Biologicals》2005,33(4):221-226
The use of vaccination in poultry to control avian influenza has been increasing in recent years. Vaccination has been primarily with killed whole virus-adjuvanted vaccines. Proper vaccination can reduce or prevent clinical signs, reduce virus shedding in infected birds, and increase the resistance to infection. Historically, one limitation of the killed vaccines is that vaccinated birds cannot be differentiated serologically from naturally infected birds using the commonly available diagnostic tests. Therefore, surveillance for avian influenza becomes much more difficult and often results in trade restrictions because of the inability to differentiate infected from vaccinated animals (DIVA). Several different DIVA strategies have been proposed for avian influenza to overcome this limitation. The most common is the use of unvaccinated sentinels. A second approach is the use of subunit vaccines targeted to the hemagglutinin protein that allows serologic surveillance to the internal proteins. A third strategy is to vaccinate with a homologous hemagglutinin to the circulating field strain, but a heterologous neuraminidase subtype. Serologic surveillance can then be performed for the homologous NA subtype as evidence of natural infection. The fourth strategy is to measure the serologic response to the nonstructural protein 1 (NS1). The NS1 protein is produced in large quantities in infected cells, but it is not packaged in the virion. Since killed vaccines for influenza are primarily made with whole virions, a differential antibody response can be seen between naturally infected and vaccinated animals. However, poultry vaccines are not highly purified, and they contain small amounts of the NS1 protein. Although vaccinated chickens will produce low levels of antibody to the NS1 protein, virus infected chickens will produce higher levels of NS1 antibody, and the two groups can be differentiated. All four DIVA strategies have advantages and disadvantages, and further testing is needed to identify the best strategy to make vaccination a more viable option for avian influenza.  相似文献   

20.
The dog is the major reservoir for human visceral leishmaniasis caused by Leishmania infantum. Interleukin-12 is considered to have an essential role in the development of both innate and adaptive immunity to Leishmania spp. and other intracellular pathogens. This study focused on the influence of IL-12 in experimental and natural canine visceral leishmaniasis. Responses of peripheral blood mononuclear cells to IL-12, interleukin-10 and Leishmania soluble antigen were evaluated in L. infantum experimentally infected oligosymptomatic beagles, uninfected beagles, naturally infected polysymptomatic dogs, and their matched uninfected controls. Leishmania soluble antigen induced strong peripheral blood mononuclear cells proliferation both in experimentally infected dogs (median stimulation index [SI]=15.01), and in naturally infected dogs (SI=8.86), but not by cells from the control groups. IL-12 addition further enhanced cell proliferation in naturally (SI=14.95), but not in experimentally infected animals. Peripheral blood mononuclear cells from experimentally infected dogs were able to produce significant amounts of IFN-gamma (3.39 ng/ml) upon LSA stimulation, but no such production was detected in cells from naturally infected or control animals. Interestingly, addition of IL-12 reversed the inhibitory effect of LSA on IFN-gamma production by cells from polysymptomatic naturally infected dogs and the uninfected beagles (4.84 and 7.45 ng/ml, respectively), and further increased IFN-gamma production by peripheral blood mononuclear cells from experimentally infected oligosymptomatic dogs (29.28 ng/ml). IFN-gamma mRNA expression correlated well with IFN-gamma production. Addition of IL-10 to Leishmania soluble antigen stimulated peripheral blood mononuclear cells inhibited proliferation and IFN-gamma production in experimentally infected dogs. Thus, the ability of IL-12 to augment IFN-gamma production by peripheral blood mononuclear cells from dogs with experimental or natural symptomatic canine visceral leishmaniasis makes it a good candidate for cytokine therapy in dogs that are refractory to current therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号