首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Excessive generation of reactive oxygen species (ROS) in the central nervous system (CNS) is a leading cause of neuronal injury. Despite yet unknown mechanisms, oxidant compounds such as H2O2 have been shown to stimulate the release of arachidonic acid (AA) in a number of cell systems. In this study, H2O2 and menadione, a compound known to release H2O2 intracellularly, were used to examine the phospholipases A2 (PLA2) responsible for AA release from primary murine astrocytes. Both H2O2 and menadione dose-dependently stimulated AA release, and the release mediated by H2O2 was completely inhibited by catalase. H2O2 also stimulated phosphorylation of extracellular signal-regulated kinases (ERK1/2) and cytosolic phospholipase A2 (cPLA2). However, complete inhibition of cPLA2 phosphorylation by U0126, an inhibitor for mitogen-activated protein kinase kinase (MEK) and GF109203x, a nonselective PKC inhibitor preferring the conventional and novel isoforms, only reduced H2O2-stimulated AA release by 50%. MAFP, a selective, active, site-directed, irreversible inhibitor of both cPLA2 and the Ca2+-independent iPLA2, nearly completely inhibited H2O2-mediated AA release; but, HELSS, a potent irreversible inhibitor of iPLA2, only inhibited H2O2-mediated AA release by 40%. Along with the observation that H2O2-mediated AA release was only partially inhibited upon chelating intracellular Ca2+ by BAPTA, these results indicate the involvement of both cPLA2 and iPLA2 in H2O2-mediated AA release in murine astrocytes.  相似文献   

2.
Methylmercury (MeHg) is a neurotoxic agent acting via diverse mechanisms, including oxidative stress. MeHg also induces astrocytic dysfunction, which can contribute to neuronal damage. The cellular effects of MeHg were investigated in human astrocytoma D384 cells, with special reference to the induction of oxidative-stress-related events. Lysosomal rupture was detected after short MeHg-exposure (1 μM, 1 h) in cells maintaining plasma membrane integrity. Disruption of lysosomes was also observed after hydrogen peroxide (H2O2) exposure (100 μM, 1 h), supporting the hypothesis that lysosomal membranes represent a possible target of agents causing oxidative stress. The lysosomal alterations induced by MeHg and H2O2 preceded a decrease of the mitochondrial potential. At later time points, both toxic agents caused the appearance of cells with apoptotic morphology, chromatin condensation, and regular DNA fragmentation. However, MeHg and H2O2 stimulated divergent pathways, with caspases being activated only by H2O2. The caspase inhibitor z-VAD-fmk did not prevent DNA fragmentation induced by H2O2, suggesting that the formation of high-molecular-weight DNA fragments was caspase independent with both MeHg and H2O2. The data point to the possibility that lysosomal hydrolytic enzymes act as executor factors in D384 cell death induced by oxidative stress.  相似文献   

3.
An electron-rich iron(III) porphyrin complex (meso-tetramesitylporphinato)iron(III) chloride [Fe(TMP)Cl], was found to catalyze the epoxidation of olefins by aqueous 30% H2O2 when the reaction was carried out in the presence of 5-chloro-1-methylimidazole (5-Cl-1-MeIm) in aprotic solvent. Epoxides were the predominant products with trace amounts of allylic oxidation products, indicating that Fenton-type oxidation reactions were not involved in the olefin epoxidation reactions. cis-Stilbene was stereospecifically oxidized to cis-stilbene oxide without giving isomerized trans-stilbene oxide product, demonstrating that neither hydroperoxy radical (HOO·) nor oxoiron(IV) porphyrin [(TMP)FeIV=O] was responsible for the olefin epoxidations. We also found that the reactivities of other iron(III) porphyrin complexes such as (meso-tetrakis(2,6-dichlorophenyl)porphinato)iron(III) chloride [Fe(TDCPP)Cl], (meso-tetrakis(2,6-difluorophenyl)porphinato)iron(III) chloride [Fe(TDFPP)Cl], and (meso-tetrakis(pentafluorophenyl)porphinato)iron(III) chloride [Fe(TPFPP)Cl] were significantly affected by the presence of the imidazole in the epoxidation of olefins by H2O2. These iron porphyrin complexes did not yield cyclohexene oxide in the epoxidation of cyclohexene by H2O2 in the absence of 5-Cl-1-MeIm in aprotic solvent; however, addition of 5-Cl-1-MeIm to the reaction solutions gave high yields of cyclohexene oxide with the formation of trace amounts of allylic oxidation products. We proposed, on the basis of the results of mechanistic studies, that the role of the imidazole is to decelerate the O–O bond cleavage of an iron(III) hydroperoxide porphyrin (or H2O2–iron(III) porphyrin adduct) and that the intermediate transfers its oxygen to olefins prior to the O–O bond cleavage.  相似文献   

4.
[MnL](ClO4)2 (L = N,N′,N″-tris(2-hydroxypropyl)-1,4,7-triazacyclononane) has been tested for catalyzing sulfide oxidation. In the presence of this complex, ethyl phenyl sulfide, butyl sulfide and phenyl sulfide are completely oxidized to the corresponding sulfoxides and sulfones with H2O2 as the oxidant. 2-Chloroethyl phenyl sulfide oxidation yield 2-chloroethyl phenyl sulfone and phenyl vinyl sulfone. In ethyl phenyl sulfide oxidation, effects of complex and H2O2 concentration and temperature on the reaction rate have been discussed. Through controlling reaction conditions, ethyl phenyl sulfoxide and ethyl phenyl sulfone may be produced selectively. The UV–Vis and electron paramagnetic resonance (EPR) studies on catalyst solution indicate that metal centre of the complex is transformed from Mn(II) to Mn(IV) after the addition of H2O2. At 25 °C, rate constant for ethyl phenyl sulfide oxidation is 4.38 × 10−3 min−1.  相似文献   

5.
The toxicity of H2O2 in Escherichia coli wild type and superoxide dismutase mutants was investigated under different experimental conditions. Cells were either grown aerobically, and then treated in M9 salts or K medium, or grown anoxically, and then treated in K medium. Results have demonstrated that the wild type and superoxide dismutase mutants display a markedly different sensitivity to both modes of lethality produced by H2O2 (i.e. mode one killing, which is produced by concentrations of H2O2 lower than 5 mM, and mode two killing which results from the insult generated by concentrations of H2O2 higher than 10 mM). Although the data obtained do not clarify the molecular basis of H2O2 toxicity and/or do not explain the specific function of superoxide ions in H2O2-induced bacterial inactivation, they certainly demonstrate that the latter species plays a key role in both modes of H2O2 lethality. A mechanism of H2O2 toxicity in E. coli is proposed, involving the action of a hypothetical enzyme which should work as an O2-• generating system. This enzyme should be active at low concentrations of H2O2 (<5 mM) and high concentrations of the oxidant (>5 mM) should inactivate the same enzyme. Superoxide ions would then be produced and result in mode one lethality. The resistance at intermediate H2O2 concentrations may be dependent on the inactivation of such enzyme with no superoxide ions being produced at levels of H2O2 in the range 5–10 mM. Mode two killing could be produced by the hydroxyl radical in concert with superoxide ions, chemically produced via the reaction of high concentrations of H2O2 (>10 mM) with hydroxyl radicals. The rate of hydroxyl radical production may be increased by the higher availability of Fe2+ since superoxide ions may also reduce trivalent iron to the divalent form.  相似文献   

6.
The effect of H2O2 on the primary structure of OxyHb was studied. Upon treatment of Oxy Hb with H2O2 ([Heme]/[H2O2] =I), tryptophan and methionine residues of the /-chain were modified. Treatment of ApoHb with H2O2 resulted in the modification of histidine and methionine residues in both globin chains. Tryptophan residues were unaffected. Modification of methionine residues in both the β-chain of OxyHb and ApoHb probably results from the direct oxidation of mcthionine by H2O2. The modification of histidine residues in ApoHb may be mediated by a metal-catalyzed oxidation system comprised of H2O2 and histidine-bound iron. The H2O2-mediated modification of tryptophan in the OxyHb β-chain. however, requires the heme moiety.  相似文献   

7.
Reactive oxygen species released during the respiratory burst are known to participate in cell signaling. Here we demonstrate that hydrogen peroxide produced by the respiratory burst activates AP-1 binding. Stimulation of the macrophage cell line NR8383 with respiratory burst agonists ADP and C5a increased AP-1 binding activity. Importantly, this increase in binding was blocked by catalase, confirming mediation by endogenous H2O2. Moreover, exogenously added H2O2 mimicked the agonists, and also activated AP-1. Antibodies revealed that the activated AP-1 complex is composed predominantly of c-Fos/c-Jun heterodimers. Treatment of the cells with ADP, C5a and H2O2 (100 μM) all increased the phosphorylation of c-Jun. c-Fos protein was increased in cells treated with C5a or high dose (200 μM) H2O2, but not in cells treated with ADP. The MEK inhibitor, PD98059, partially blocked the C5a-mediated increase in AP-1 binding. A novel membrane-permeable peptide inhibitor of JNK, JNKi, also inhibited AP-1 activation. Together these data suggest that C5a-mediated AP-1 activation requires both the activation of the ERK and JNK pathways, whereas activation of the JNK pathway is sufficient to increase AP-1 binding with ADP. Thus, AP-1 activation joins the list of pathways for which the respiratory burst signals downstream events in the macrophage.  相似文献   

8.
The production of singlet oxygen by H2O2 disproportionation and via the oxidation of H2O2 by NaOCl in a neutral medium was monitored by spin trapping with 2,2,6,6 tetramethyl-4-piperidone (TMPone). The singlet oxygen formed in both reactions oxidized 2,2,6,6 tetramethyl-4-piperidone to give nitroxide radicals. However the production of nitroxide radicals was relatively small considering the concentrations of H2O2 and NaOCl used in the reaction systems. Addition of electron donating agents: ascorbate, Fe2+ and desferrioxamine leads to an increase in the production of nitroxide radicals. We assumed that a very slow step of the reaction sequence, the homolytic breaking of the O-O bond of N-hydroperoxide (formed as an intermediate product during the reaction of 1O2 with TMPone) could be responsible for the relatively small production of nitroxide radicals. Electron donating agents added to the reaction system probably raise the rate of the hydroperoxide decomposition by allowing a more rapid heterolytic cleavage of the O-O bond leading to a greater production of nitroxide radicals. The largest effect was observed in the presence of desferrioxamine. Its participation in this process is proved by the concomitant appearance of desferrioxamine nitroxide radicals. The results obtained demonstrate that the method proposed by several authors and tested in this study to detect singlet oxygen is not convenient for precise quantitative studies. The reactivity of TMPone towards O2-7HO2' and 'OH has been also investigated. It has been found that both O2-7HO2' and 'OH radicals formed in a phosphate buffer solution (pH 7.4, 37°C), respectively by a xanthine-oxidase/hypoxanthine system and via H2O2 UV irradiation, do not oxidize 2,2,6,6 tetramethyl-4-piperidone to nitroxide radicals.  相似文献   

9.
Hydrogen peroxide (H2O2) can diffuse far from the site of production to intracellular locations where biological effects may be greater. The diffusion range is extended by H2O2 carriers formed spontaneously by hydrogen bonding with monomeric and polymeric compounds, including amino and dicarboxylic acids, peptides, proteins, nucleic acid bases, and nucleosides. Hydrogen peroxide adducts (HPAs) are readily synthesized, e.g., crystalline histidine (His)-H2O2 adducts. An equilibrium exists between an adduct-forming compound and H2O2. The detection and relative stabilities of HPAs are measured by the degree of decomposition of H2O2 as influenced by test compounds in buffered solution competing with glucose or fructose for H2O2. The HPAs delay decomposition of H2O2 up to several hundredfold. The overall charge on an HPA, i.e., its ability to penetrate cell membranes, influences the cytotoxic and clastogenic effects of H2O2. Growth inhibition of Salmonella typhimurium LT2 by H2O2 is enhanced by neutral HPAs but decreased by anionic HPAs. Addition of catalase 1, 10, or 30 min after inoculation of S. typhimurium LT2 reduces or nearly eliminates partial growth inhibition by H2O2, but a neutral HPA, expecially his-H2O2, transported H2O2 into the cells within 1 min, and in about 10 min completely inhibited growth. The stability of HPAs decreases with increasing pH or increasing temperature, while added Fe(II) in the presence and absence of EDTA accelerates H2O2 and HPA decomposition. Calculations indicate H2O2 hydrogen bonds with nucleic acid-base pairs with no apparent bond strain and energy stabilization comparable to normal hydrogen bonding.  相似文献   

10.
A solid tumour undergoes ischemia/reperfusion due to deficient vascularization and subsequent formation of new blood vessels. This study investigated the effect of transient oxygen and glucose deprivation (OGD) on proliferation of C6 glioma cells. The cells were subjected to 18 h of OGD followed by reoxygenation in the presence of glucose and different extra-cellular H2O2 concentrations since H2O2 affects cell proliferation. After reoxygenation, the cellular H2O2 concentration was increased returning to control levels within 24 h. Within this period, increase in cell number and MTT-reduction were impaired. Regeneration was completed on the third day of reoxygenation. MTT-reduction increased faster than cell number, indicating an OGD-dependent up-regulation of protein expression. It is concluded that ischemia/reperfusion stress promotes proliferation of tumour cells. An essential factor is a distinct H2O2 concentration. Massive elevation as well as significant reduction of H2O2 concentration impairs the proliferation process.  相似文献   

11.
The fluorogenic probe 2',7'-dichlorodihydrofluorescein diacetate (H2DCF-DA) is widely used for the estimation of oxidative stress in cells. It is known that 2',7'-dichlorodihydrofluorescein (H2DCF), product of intracellular hydrolysis of H2DCF-DA, is oxidized to the fluorescent compound, DCF, mainly by hydrogen peroxide (H2O2) in the presence of catalysts. The present study was aimed at answering the question whether the labile iron pool (LIP) may contribute to the oxidation of H2DCF in cellular systems. The membrane-permeable lipophilic iron chelator salicylaldehyde isonicotinoyl hydrazone (SIH) was found to inhibit oxidation of the probe by H2O2 dependent on ferrous ions but not by peroxidase or superoxide dismutase in defined in vitro systems. When applied to cells, the probe inhibited considerably oxidation of H2DCF in V79 Chinese hamster fibroblasts and two murine lymphoma L5178Y(LY) sublines (LY-R, LY-S) differing in LIP level, the extent of inhibition being greater in the LY-R line of higher LIP level. These results demonstrate that LIP is a significant factor determining the rate of intracellular H2DCF oxidation.  相似文献   

12.
Sodium azide (NaN3) is known as an inhibitor of catalase, and a nitric oxide (NO) donor in the presence of catalase and H2O2. We showed here that catalase-catalyzed oxidation of NaN3 can generate reactive nitrogen species which contribute to tyrosine nitration in the presence of H2O2. The formation of free-tyrosine nitration and protein-bound tyrosine nitration by the NaN3/catalase/H2O2 system showed a maximum level at pH 6.0. Free-tyrosine nitration induced by peroxynitrite was inhibited by ethanol and dimethyl-sulfoxide (DMSO), and augmented by superoxide dismutase (SOD). However, free-tyrosine nitration induced by the NaN3/catalase/H2O2 system was not affected by ethanol, DMSO and SOD. NO-2 and NO donating agents did not affect free-tyrosine nitration by the NaN3/catalase/H2O2 system. The reaction of NaN3 with hydroxyl radical generating system showed free-tyrosine nitration, but no formation of nitrite and nitrate. The generation of nitrite (NO-2) and nitrate (NO-3) by the NaN3/catalase/H2O2 system was maximal at pH 5.0. These results suggested that the oxidation of NaN3 by the catalase/H2O2 system generates unknown peroxynitrite-like reactive nitrogen intermediates, which contribute to tyrosine nitration.  相似文献   

13.
Hydrogen peroxide (H2O2) is known to both induce and inhibit apoptosis, however the mechanisms are unclear. We found that H2O2 inhibited the activity of recombinant caspase-3 and caspase-8, half-inhibition occurring at about 17 μM H2O2. This inhibition was both prevented and reversed by dithiothreitol while glutathione had little protective effect. 100–200 μM H2O2 added to macrophages after induction of caspase activation by nitric oxide or serum withdrawal substantially inhibited caspase activity. Activation of H2O2-producing NADPH oxidase in macrophages also caused catalase-sensitive inactivation of cellular caspases. The data suggest that the activity of caspases in cells can be directly but reversibly inhibited by H2O2.  相似文献   

14.
The role of histidine on DNA breakage induced by hydrogen peroxide (H2O2) and ferric ions or by H2O2 and cupric ions was studied on purified DNA. L-histidine slightly reduced DNA breakage by H2O2 and Fe3+ but greatly inhibited DNA breakage by H2O2 and Cu2+. However, only when histidine was present, the addition of EDTA to H2O2 and Fe3+ exhibited a bimodal dose response curve depending on the chelator metal ratio. The enhancing effect of histidine on the rate of DNA degradation by H2O2 was maximal at a chelator metal ratio between 0.2 and 0.5, and was specific for iron. When D-histidine replaced L-histidine, the same pattern of EDTA dose response curve was observed. Superoxide dismutase greatly inhibited the rate of DNA degradation induced by H2O2, Fe3+, EDTA and L-histidine involving the superoxide radical.

These studies suggest that the enhancing effect of histidine on the rate of DNA degradation by H2O2 and Fe3+ is mediated by an oxidant which could be a ferrous-dioxygen-ferric chelate complex or a chelate-ferryl ion.  相似文献   

15.
The deleterious effects of H2O2 on the electron transport chain of yeast mitochondria and on mitochondrial lipid peroxidation were evaluated. Exposure to H2O2 resulted in inhibition of the oxygen consumption in the uncoupled and phosphorylating states to 69% and 65%, respectively. The effect of H2O2 on the respiratory rate was associated with an inhibition of succinate-ubiquinone and succinate-DCIP oxidoreductase activities. Inhibitory effect of H2O2 on respiratory complexes was almost completely recovered by β-mercaptoethanol treatment. H2O2 treatment resulted in full resistance to QO site inhibitor myxothiazol and thus it is suggested that the quinol oxidase site (QO) of complex III is the target for H2O2. H2O2 did not modify basal levels of lipid peroxidation in yeast mitochondria. However, H2O2 addition to rat brain and liver mitochondria induced an increase in lipid peroxidation. These results are discussed in terms of the known physiological differences between mammalian and yeast mitochondria.  相似文献   

16.
Toxic effects of superoxide dismutase (SOD) overexpression are commonly attributed to increased hydrogen peroxide (H2O2) production. Still, published experiments yield contradictory evidence on whether SOD overexpression increases or decreases H2O2 production. We analyzed this issue using a minimal mathematical model. The most relevant mechanisms of superoxide consumption are treated as pseudo first-order processes, and both superoxide production and the activity of enzymes other than SOD were considered constant. Even within this simple framework, SOD overexpression may increase, hold constant, or decrease H2O2 production. At normal SOD levels, the outcome depends on the ratio between the rate of processes that consume superoxide without forming H2O2 and the rate of processes that consume superoxide with high (≥ 1) H2O2 yield. In cells or cellular compartments where this ratio is exceptionally low (< 1), a modest decrease in H2O2 production upon SOD overexpression is expected. Where the ratio is higher than unity, H2O2 production should increase, but at most linearly, with SOD activity. The results are consistent with the available experimental observations. According to the minimal model, only where most superoxide is eliminated through H2O2-free processes does SOD activity have the moderately large influence on H2O2 production observed in some experiments.  相似文献   

17.
Oxygen radical generating systems, namely, Cu(II)/ H2O2, Cu(II)/ascorbate, Cu(II)/NAD(P)H, Cu(II)/ H2O2/catecholamine and Cu(II)/H2O2/SH-compounds irreversibly inhibited yeast glutathione reductase (GR) but Cu(II)/H2O2 enhanced the enzyme diaphorase activity. The time course of GR inactivation by Cu(II)/H2O2 depended on Cu(II) and H2O2 concentrations and was relatively slow, as compared with the effect of Cu(II)/ascorbate. The fluorescence of the enzyme Tyr and Trp residues was modified as a result of oxidative damage. Copper chelators, catalase, bovine serum albumin and HO˙ scavengers prevented GR inactivation by Cu(II)/H2O2 and related systems. Cysteine, N-acetylcysteine, N-(2-dimercaptopropi-onylglycine and penicillamine enhanced the effect of Cu(II)/H2O2 in a concentration- and time-dependent manner. GSH, Captopril, dihydrolipoic acid and dithiotreitol also enhanced the Cu(II)/H2O2 effect, their actions involving the simultaneous operation of pro-oxidant and antioxidant reactions. GSSG and try-panothione disulfide effectively protected GR against Cu(II)/H2O2 inactivation. Thiol compounds prevented GR inactivation by the radical cation ABTS*+. GR inactivation by the systems assayed correlated with their capability for HO* radical generation. The role of amino acid residues at GR active site as targets for oxygen radicals is discussed.  相似文献   

18.
为探明信号分子过氧化氢(H2O2)提高裸燕麦幼苗耐冷性的作用,以‘定莜6号’沙培幼苗为材料,在3叶期喷施10 μmol·L-1 H2O2 12 h后于8℃/5℃(昼/夜)条件下低温胁迫,以喷蒸馏水(H2O)为对照,分别在低温处理的0、1、2、3、4、5 d取幼苗叶片测定超氧阴离子(O2)、H2O2、丙二醛(MDA)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)、抗坏血酸过氧化物酶(APX)、抗坏血酸(AsA)、谷胱甘肽(GSH)、可溶性糖(SS)、脯氨酸(Pro)、可溶性蛋白质(SP)和热稳定性蛋白质(HSP)13项与耐冷性有关的生理指标及低温处理5 d后植株株高和生物量增量,采用主成分和隶属函数分析综合评价H2O2对裸燕麦幼苗耐冷性的影响。结果表明,与对照相比,喷施H2O2显著提高了低温胁迫下裸燕麦幼苗株高和生物量增量,降低了裸燕麦幼苗叶片O2和MDA及低温胁迫2~5 d的H2O2含量,促进低温胁迫期间裸燕麦幼苗叶片SOD、CAT、POD和APX活性提高及AsA、GSH、SS、Pro、SP和HSP积累。主成分分析13项生理指标离差标准化数据,提取的前4个主成分累积方差贡献率达85.6%;隶属函数综合评价4个主成分得分值显示,喷施H2O2显著提高了低温胁迫0~5 d的综合评价值。表明喷施H2O2能够通过调控生理生化代谢提高裸燕麦幼苗的耐冷性。  相似文献   

19.
以烟草悬浮细胞BY-2(Nicotiana tabacum L.cv.Bright Yellow-2)为材料,探讨了在铜离子胁迫下植物细胞死亡发生过程中胞外H2O2及NADPH氧化酶所扮演的角色。实验结果表明,随着外源CuCl2浓度的上升(从0~700 μmol·L-1),细胞死亡水平不断上升,且胞外H2O2的水平也不断增加。在300 μmol·L-1的CuCl2诱导细胞死亡的过程中,加入H2O2清除剂N-N-二甲基硫脲(DMTU)降低了胞外CuCl2胁迫下H2O2含量增加的同时也降低了细胞死亡水平的上升,这一观察表明了铜离子胁迫所导致的细胞死亡的发生和胞外H2O2的增加有关。进一步的研究表明,300 μmol·L-1 CuCl2的胁迫导致了NADPH氧化酶活性的显著性上升,而加入NADPH氧化酶的抑制剂(二亚苯基碘,DPI,)则降低了CuCl2胁迫所导致的细胞死亡和胞外H2O2含量的上升。上述结果表明,胞外H2O2和NADPH氧化酶参与了CuCl2对植物细胞死亡的诱导作用。  相似文献   

20.
Hydrogen peroxide, produced by inflammatory and vascular cells, induces oxidative stress that may contribute to endothelial dysfunction. In smooth muscle cells, H2O2 induces production of O2 by activating NADPH oxidase. However, the mechanisms whereby H2O2 induces oxidative stress in endothelial cells are poorly understood. We examined the effects of H2O2 on O2 levels on porcine aortic endothelial cells (PAEC). Treatment with 60 μmol/L H2O2 markedly increased intracellular O2 levels (determined by conversion of dihydroethidium to hydroxyethidium) and produced cytotoxicity (determined by propidium iodide staining) in PAEC. Overexpression of human manganese superoxide dismutase in PAEC reduced O2 levels and attenuated cytotoxicity resulting from treatment with H2O2. L-NAME, an inhibitor of nitric oxide synthase (NOS), and apocynin, an inhibitor of NADPH oxidase, reduced O2 levels in PAEC treated with H2O2, suggesting that both NOS and NADPH oxidase contribute to H2O2-induced O2 in PAEC. Inhibition of NADPH oxidase using apocynin and NOS rescue with L-sepiapterin together reduced O2 levels in PAEC treated with H2O2 to control levels. This suggests interaction-distinct NOS and NADPH oxidase pathways to superoxide. We conclude that H2O2 produces oxidative stress in endothelial cells by increasing intracellular O2 levels through NOS and NADPH oxidase. These findings suggest a complex interaction between H2O2 and oxidant-generating enzymes that may contribute to endothelial dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号