首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
1H-NMR spectroscopy is employed to study the interaction between rabbit skeletal muscle troponin (C (TnC) and wasp venom tetradecapeptide mastoparan. We monitored the spectral change of the following species of TnC as a function of mastoparan concentration: apoTnC, Ca(2+)-saturated TnC (Ca4TnC) and Ca(2+)-half loaded TnC (Ca2TnC). When apo-TnC is titrated with mastoparan, line-broadening is observed for the ring-current shifted resonance of Phe-23, Ile-34, Val-62 and Phe-72 and the downfield-shifted CH alpha-resonances of Asp-33, Thr-69 and Asp-71; these residues are located in the N-domain. When Ca4TnC is titrated with mastoparan, chemical shift change is observed for the ring-current shifted resonances of Phe-99, Ile-110 and Phe-148 and the downfield-shifted CH alpha-resonances of Asn-105, Ala-106, Ile-110 and Ile-146 and aromatic resonance of Tyr-109 and His-125; these residues are located in the C-domain. The resonance of Phe-23, Asp-33, Asp-71, Phe-72, Phe-99, Tyr-109, Ile-146, His-125 and Phe-148 in both N- and C-domains changes when Ca2TnC is titrated with mastoparan. These results suggest that mastoparan binds to the N-domain of apo-TnC, the C-domain of Ca4TnC and the N- and C-domains of Ca2TnC; the hydrophobic cluster in each domain is involved in binding. As mastoparan binds to TnC, the above resonances shift to their normal chemical shift positions. The stability of the cluster and the beta-sheet is reduced by mastoparan-binding. These results suggest that the conformation of the hydrophobic cluster and the neighboring beta-sheet change to a loose form. The stability of the N-domain of Ca2TnC and Ca4TnC increases when these species bind 1 mol of mastoparan at the C-domain. These results suggest a mastoparan-induced interaction between the N- and C-domains of TnC.  相似文献   

2.
We have determined the solution structure of calmodulin (CaM) from yeast (Saccharomyces cerevisiae) (yCaM) in the apo state by using NMR spectroscopy. yCaM is 60% identical in its amino acid sequence with other CaMs, and exhibits its unique biological features. yCaM consists of two similar globular domains (N- and C-domain) containing three Ca(2+)-binding motifs, EF-hands, in accordance with the observed 3 mol of Ca(2+) binding. In the solution structure of yCaM, the conformation of the N-domain conforms well to the one of the expressed N-terminal half-domains of yCaM [Ishida, H., et al. (2000) Biochemistry 39, 13660-13668]. The conformation of the C-domain basically consists of a pair of helix-loop-helix motifs, though a segment corresponding to the forth Ca(2+)-binding site of CaM deviates in its primary structure from a typical EF-hand motif and loses the ability to bind Ca(2+). Thus, the resulting conformation of each domain is essentially identical to the corresponding domain of CaM in the apo state. A flexible linker connects the two domains as observed for CaM. Any evidence for the previously reported interdomain interaction in yCaM was not observed in the solution structure of the apo state. Hence, the interdomain interaction possibly occurs in the course of Ca(2+) binding and generates a cooperative Ca(2+) binding among all three sites. Preliminary studies on a mutant protein of yCaM, E104Q, revealed that the Ca(2+)-bound N-domain interacts with the apo C-domain and induces a large conformational change in the C-domain.  相似文献   

3.
Calmodulin, the Ca(2+)-dependent activator of many cellular processes, contains two well-defined structural domains, each of which binds two Ca(2+) ions. In its Ca(2+)-free (apo) form, it provides an attractive model for studying mechanisms of protein unfolding, exhibiting two separable, reversible processes, indicating two structurally autonomous folding units. (1)H-(15)N HSQC NMR in principle offers a detailed picture of the behavior of individual residues during protein unfolding transitions, but is limited by the lack of dispersion of resonances in the unfolded state. In this work, we have used selective [(15)N]Ile labeling of four distinctive positions in each calmodulin domain to monitor the relative thermal stability of the folding units in wild-type apocalmodulin and in mutants in which either the N- or C-domain is destabilized. These mutations lead to a characteristic perturbation of the stability (T(m)) of the nonmutated domain relative to that of wild-type apocalmodulin. The ability to monitor specific (15)N-labeled residues, well-distributed throughout the domain, provides strong evidence for the autonomy of a given folding unit, as well as providing accurate measurements of the unfolding parameters T(m) and DeltaH(m). The thermodynamic parameters are interpreted in terms of interactions between one folded and one unfolded domain of apocalmodulin, where stabilization on the order of a few kilocalories per mole is sufficient to cause significant changes in the observed unfolding behavior of a given folding unit. The selective (15)N labeling approach is thus a general method that can provide detailed information about structural intermediates populated in complex protein unfolding processes.  相似文献   

4.
Troponin C (TnC) is the Ca(2+)-binding subunit of the troponin complex of vertebrate skeletal muscle. It consists of two structurally homologous domains, N and C, connected by an exposed alpha-helix. The C-domain has two high-affinity sites for Ca(2+) that also bind Mg(2+), whereas the N-domain has two low-affinity sites for Ca(2+). Previous studies using isolated N- and C-domains showed that the C-domain apo form was less stable than the N-domain. Here we analyzed the stability of isolated N-domain (F29W/N-domain) against urea and pressure denaturation in the absence and in the presence of glycerol using fluorescence spectroscopy. Increasing the glycerol concentration promoted an increase in the stability of the protein to urea (0-8 M) in the absence of Ca(2+). Furthermore, the ability to expose hydrophobic surfaces normally promoted by Ca(2+) binding or low temperature under pressure was partially lost in the presence of 20% (v/v) glycerol. Glycerol also led to a decrease in the Ca(2+) affinity of the N-domain in solution. From the ln K(obs) versus ln a(H)2(O), we obtained the number of water molecules (63.5 +/- 8.7) involved in the transition N <=>N:Ca(2) that corresponds to an increase in the exposed surface area of 571.5 +/- 78.3 A(2). In skinned fibers, the affinity for Ca(2+) was also reduced by glycerol, although the effect was much less pronounced than in solution. Our results demonstrate quantitatively that the stability of this protein and its affinity for Ca(2+) are critically dependent on protein hydration.  相似文献   

5.
FTIR spectroscopy has been applied to study the coordination structures of Mg2+ and Ca2+ ions bound in Akazara scallop troponin C (TnC), which contains only a single Ca2+ binding site. The region of the COO- antisymmetric stretch provides information about the coordination modes of COO- groups to the metal ions: bidentate, unidentate, or pseudo-bridging. Two bands were observed at 1584 and 1567 cm-1 in the apo state, whereas additional bands were observed at 1543 and 1601 cm-1 in the Ca2+-bound and Mg2+-bound states, respectively. The intensity of the band at 1567 cm-1 in the Mg2+-bound state was identical to that in the apo state. Therefore, the side-chain COO- group of Glu142 at the 12th position in the Ca2+-binding site coordinates to Ca2+ in the bidentate mode but does not interact with Mg2+ directly. A slight upshift of COO- antisymmetric stretch due to Asp side-chains was also observed upon Mg2+ and Ca2+ binding. This indicates that the COO- groups of Asp131 and Asp133 interact with both Ca2+ and Mg2+ in the pseudo-bridging mode. Therefore, the present study directly demonstrated that the coordination structure of Mg2+ was different from that of Ca2+ in the Ca2+-binding site. In contrast to vertebrate TnC, most of the secondary structures remained unchanged among apo, Mg2+-bound and Ca2+-bound states of Akazara scallop TnC, as spectral changes upon either Ca2+ or Mg2+ binding were very small in the infrared amide-I' region as well as in the CD spectra. Fluorescence spectroscopy indicated that the spectral changes upon Ca2+ binding were larger than that upon Mg2+ binding. Moreover, gel-filtration experiments indicated that the molecular sizes of TnC had the order apo TnC > Mg2+-bound TnC > Ca2+-bound TnC. These results suggest that the tertiary structures are different in the Ca2+- and Mg2+-bound states. The present study may provide direct evidence that the side-chain COO- groups in the Ca2+-binding site are directly involved in the functional on/off mechanism of the activation of Akazara scallop TnC.  相似文献   

6.
The C-domain of troponin C, the Ca(2+)-binding subunit of the troponin complex, has two high-affinity sites for Ca(2+) that also bind Mg(2+) (Ca(2+)/Mg(2+) sites), whereas the N-domain has two low-affinity sites for Ca(2+). Two more sites that bind Mg(2+) with very low affinity (K(a)<10(3)M(-1)) have been detected by several laboratories but have not been localized or studied in any detail. Here we investigated the effects of Ca(2+) and Mg(2+) binding to isolated C-domain, focusing primarily on low-affinity sites. Since TnC has no Trp residues, we utilized a mutant with Phe 154 replaced by Trp (F154W/C-domain). As expected from previous reports, the changes in Trp fluorescence revealed different conformations induced by the addition of Ca(2+) or Mg(2+) (Ca(2+)/Mg(2+) sites). Exposure of hydrophobic surfaces of F154W/C-domain was monitored using the fluorescence intensity of bis-anilino naphthalene sulfonic acid. Unlike the changes reported by Trp, the increments in bis-ANS fluorescence were much greater (4.2-fold) when Ca(2+)+Mg(2+) were both present or when Ca(2+) was present at high concentration. Bis-ANS fluorescence increased as a function of [Ca(2+)] in two well-defined steps: one at low [Ca(2+)], consistent with the Ca(2+)/Mg(2+) sites (K(a) approximately 1.5 x 10(6)M(-1)), and one of much lower affinity (K(a) approximately 52.3M(-1)). Controls were performed to rule out artifacts due to aggregation, high ionic strength and formation of the bis-ANS-TnC complex itself. With a low concentration of Ca(2+) (0.6mM) to occupy the Ca(2+)/Mg(2+) sites, a large increase in bis-ANS binding also occurred as Mg(2+) occupied a class of low-affinity sites (K(a) approximately 59 M(-1)). In skinned fibers, a high concentration of Mg(2+) (10-44 mM) caused TnC to dissociate from the thin filament. These data provide new evidence for a class of weak binding sites for divalent cations. They are located in the C-domain, lead to exposure of a large hydrophobic surface, and destabilize the binding of TnC to the regulatory complex even when sites III and IV are occupied.  相似文献   

7.
Troponin is the singular Ca2+-sensitive protein in the contraction of vertebrate striated muscles. Troponin C (TnC), the Ca2+-binding subunit of the troponin complex, has two distinct domains, C and N, which have different properties despite their extensive structural homology. In this work, we analyzed the thermodynamic stability of the isolated N-domain of TnC using a fluorescent mutant with Phe 29 replaced by Trp (F29W/N-domain, residues 1-90). The complete unfolding of the N-domain of TnC in the absence or presence of Ca2+ was achieved by combining high hydrostatic pressure and urea, a maneuver that allowed us to calculate the thermodynamic parameters (ΔV and ΔGatm). In this study, we propose that part of the affinity for Ca2+ is contributed by the free-energy change of folding of the N- and C-domains that takes place when Ca2+ binds. The importance of the free-energy change for the structural and regulatory functions of the TnC isolated domains was evaluated. Our results shed light on how the coupling between folding and ion binding contributes to the fine adjustment of the affinity for Ca2+ in EF-hand proteins, which is crucial to function.  相似文献   

8.
The backbone resonance assignments have been completed for the apo (1H and 15N) and calcium-loaded (1H, 15N, and 13C) regulatory N-domain of chicken skeletal troponin-C (1-90), using multidimensional homonuclear and heteronuclear NMR spectroscopy. The chemical-shift information, along with detailed NOE analysis and 3JHNH alpha coupling constants, permitted the determination and quantification of the Ca(2+)-induced secondary structural change in the N-domain of TnC. For both structures, 5 helices and 2 short beta-strands were found, as was observed in the apo N-domain of the crystal structure of whole TnC (Herzberg O, James MNG, 1988, J Mol Biol 203:761-779). The NMR solution structure of the apo form is indistinguishable from the crystal structure, whereas some structural differences are evident when comparing the 2Ca2+ state solution structure with the apo one. The major conformational change observed is the straightening of helix-B upon Ca2+ binding. The possible importance and role of this conformational change is explored. Previous CD studies on the regulatory domain of TnC showed a significant Ca(2+)-induced increase in negative ellipticity, suggesting a significant increase in helical content upon Ca2+ binding. The present study shows that there is virtually no change in alpha-helical content associated with the transition from apo to the 2Ca2+ state of the N-domain of TnC. Therefore, the Ca(2+)-induced increase in ellipticity observed by CD does not relate to a change in helical content, but more likely to changes in spatial orientation of helices.  相似文献   

9.
CaBP1 (calcium-binding protein 1) is a 19.4-kDa protein of the EF-hand superfamily that modulates the activity of Ca(2+) channels in the brain and retina. Here we present data from NMR, microcalorimetry, and other biophysical studies that characterize Ca(2+) binding, Mg(2+) binding, and structural properties of recombinant CaBP1 purified from Escherichia coli. Mg(2+) binds constitutively to CaBP1 at EF-1 with an apparent dissociation constant (K(d)) of 300 microm. Mg(2+) binding to CaBP1 is enthalpic (DeltaH = -3.725 kcal/mol) and promotes NMR spectral changes, indicative of a concerted Mg(2+)-induced conformational change. Ca(2+) binding to CaBP1 induces NMR spectral changes assigned to residues in EF-3 and EF-4, indicating localized Ca(2+)-induced conformational changes at these sites. Ca(2+) binds cooperatively to CaBP1 at EF-3 and EF-4 with an apparent K(d) of 2.5 microM and a Hill coefficient of 1.3. Ca(2+) binds to EF-1 with low affinity (K(d) >100 microM), and no Ca(2+) binding was detected at EF-2. In the absence of Mg(2+) and Ca(2+), CaBP1 forms a flexible molten globule-like structure. Mg(2+) and Ca(2+) induce distinct conformational changes resulting in protein dimerization and markedly increased folding stability. The unfolding temperatures are 53, 74, and 76 degrees C for apo-, Mg(2+)-bound, and Ca(2+)-bound CaBP1, respectively. Together, our results suggest that CaBP1 switches between structurally distinct Mg(2+)-bound and Ca(2+)-bound states in response to Ca(2+) signaling. Both conformational states may serve to modulate the activity of Ca(2+) channel targets.  相似文献   

10.
The Ca(2+) titration of the (15)N-labeled mutant V136G calmodulin has been monitored using (1)H-(15)N HSQC NMR spectra. Up to a [Ca(2+)]/[CaM] ratio of 2, the Ca(2+) ions bind predominantly to sites I and II on the N-domain in contrast with the behavior of the wild-type calmodulin where the C-terminal domain has the higher affinity for Ca(2+). Surprisingly, the Ca(2+)-binding affinity for the N-domain in the mutant calmodulin is greater than that for the N-domain in the wild-type protein. The mutated C-domain is observed as a mixture of unfolded, partially folded (site III occupied), and native-like folded (sites III and IV occupied) conformations, with relative populations dependent on the [Ca(2+)]/[CaM] ratio. The occupancy of site III independently of site IV in this mutant shows that the cooperativity of Ca(2+) binding in the C-domain is mediated by the integrity of the domain structure. Several NH signals from residues in the Ca(2+)-bound N-domain appear as two signals during the Ca(2+) titration indicating separate species in slow exchange, and it can be deduced that these result from the presence and absence of interdomain interactions in the mutant. It is proposed that an unfolded part of the mutated C-domain interacts with sites on the N-domain that normally bind to target proteins. This would also account for the increase in the Ca(2+) affinity for the N-domain in the mutant compared with the wild-type calmodulin. The results therefore show the wide-ranging effects of a point mutation in a single Ca(2+)-binding site, providing details of the involvement of individual residues in the calcium-induced folding reactions.  相似文献   

11.
Tikunova SB  Rall JA  Davis JP 《Biochemistry》2002,41(21):6697-6705
Troponin C (TnC) is an EF-hand Ca(2+) binding protein that regulates skeletal muscle contraction. The mechanisms that control the Ca(2+) binding properties of TnC and other EF-hand proteins are not completely understood. We individually substituted 27 Phe, Ile, Leu, Val, and Met residues with polar Gln to examine the role of hydrophobic residues in Ca(2+) binding and exchange with the N-domain of a fluorescent TnC(F29W). The global N-terminal Ca(2+) affinities of the TnC(F29W) mutants varied approximately 2340-fold, while Ca(2+) association and dissociation rates varied less than 70-fold and more than 45-fold, respectively. Greater than 2-fold increases in Ca(2+) affinities were obtained primarily by slowing of Ca(2+) dissociation rates, while greater than 2-fold decreases in Ca(2+) affinities were obtained by slowing of Ca(2+) association rates and speeding of Ca(2+) dissociation rates. No correlation was found between the Ca(2+) binding properties of the TnC(F29W) mutants and the solvent accessibility of the hydrophobic amino acids in the apo state, Ca(2+) bound state, or the difference between the two states. However, the effects of these hydrophobic mutations on Ca(2+) binding were contextual possibly because of side chain interactions within the apo and Ca(2+) bound states of the N-domain. These results demonstrate that a single hydrophobic residue, which does not directly ligate Ca(2+), can play a crucial role in controlling Ca(2+) binding and exchange within a coupled and functional EF-hand system.  相似文献   

12.
Troponin I (TnI) peptides (TnI inhibitory peptide residues 104-115, Ip; TnI regulatory peptide resides 1-30, TnI1-30), recombinant Troponin C (TnC) and Troponin I mutants were used to study the structural and functional relationship between TnI and TnC. Our results reveal that an intact central D/E helix in TnC is required to maintain the ability of TnC to release the TnI inhibition of the acto-S1-TM ATPase activity. Ca(2+)-titration of the TnC-TnI1-30 complex was monitored by circular dichroism. The results show that binding of TnI1-30 to TnC caused a three-folded increase in Ca(2+) affinity in the high affinity sites (III and IV) of TnC. Gel electrophoresis and high performance liquid chromatography (HPLC) studies demonstrate that the sequences of the N- and C-terminal regions of TnI interact in an anti-parallel fashion with the corresponding N- and C-domain of TnC. Our results also indicate that the N- and C-terminal domains of TnI which flank the TnI inhibitory region (residues 104 to 115) play a vital role in modulating the Ca(2+)- sensitive release of the TnI inhibitory region by TnC within the muscle filament. A modified schematic diagram of the TnC/TnI interaction is proposed.  相似文献   

13.
The Ca(2+)/Mg(2+)-dependent interactions between TnC and TnI play a critical role in regulating the 'on' and 'off' states of muscle contraction as well as maintaining the structural integrity of the troponin complex in the off state. In the present study, we have investigated the binding interactions between the N-terminus of TnI (residues 1-40 of skeletal TnI) and skeletal TnC in the presence of Ca(2+) ions, Mg(2+) ions and in the presence of the C-terminal regulatory region peptides: TnI(96-115), TnI(96-131) and TnI(96-139). Our results show the N-terminus of TnI can bind to TnC with high affinity in the presence of Ca(2+) or Mg(2+) ions with apparent equilibrium dissociation constants of K(d(Ca(2+) ) ) = 48 nM and K(d(Mg(2+) ) ) = 29 nM. The apparent association and dissociation rate constants for the interactions were, k(on) = 4.8 x 10(5) M (-1) s(-1), 3.4 x 10(5) M (-1) s(-1) and k(off) = 2.3 x 10(-2) s(-1), 1.0 x 10(-2) s(-1) for TnC(Ca(2+)) and TnC(Mg(2+)) states, respectively. Competition studies between each of the TnI regions and TnC showed that both TnI regions can bind simultaneously to TnC while native gel electrophoresis and SEC confirmed the formation of stable ternary complexes between TnI(96-139) (or TnI(96-131)) and TnC-TnI(1-40). Further analysis of the binding interactions in the ternary complex showed the binding of the TnI regulatory region to TnC was critically dependent upon the presence of both TnC binding sites (i.e. TnI(96-115) and TnI(116-131)) and the presence of Ca(2+). Furthermore, the presence of TnI(1-40) slightly weakened the affinity of the regulatory peptides for TnC. Taken together, these results support the model for TnI-TnC interaction where the N-terminus of TnI remains bound to the C-domain of TnC in the presence of high and low Ca(2+) levels while the TnI regulatory region (residues 96-139) switches in its binding interactions between the actin-tropomyosin thin filament and its own sites on the N- and C-domain of TnC at high Ca(2+) levels, thus regulating muscle contraction.  相似文献   

14.
Mukherjee S  Kuchroo K  Chary KV 《Biochemistry》2005,44(34):11636-11645
One of the calcium binding proteins from Entamoeba histolytica (EhCaBP) is a 134 amino acid residue long (M(r) approximately 14.9 kDa) double domain EF-hand protein containing four Ca(2+) binding sites. CD and NMR studies reveal that the Ca(2+)-free form (apo-EhCaBP) exists in a partially collapsed form compared to the Ca(2+)-bound (holo) form, which has an ordered structure (PDB ID ). Deuterium exchange studies on the partially structured apo-EhCaBP reveal that the C-terminal domain is better structured than the N-terminal domain. The protein can be reversibly folded and unfolded upon addition of Ca(2+) and EGTA, respectively. Titration shows a slow initial folding of the apo form with increasing Ca(2+) concentration, followed by a highly cooperative folding to its final state at a certain threshold of Ca(2+). Ca(2+) and the EGTA titration taken together show that site II in the N-terminal domain has the highest affinity for Ca(2+) contrary to earlier studies. Further, this study has thrown light on the relative Ca(2+) binding affinity and specificity of each site in the intact protein. A structural model for the partially collapsed form of apo-EhCaBP and its equilibrium folding to its completely folded holo state has been suggested. Large conformational changes seen in transforming from the apo to holo form of EhCaBP suggest that this protein should be functioning as a sensor protein and might have a significant role in host-parasite recognition.  相似文献   

15.
Ogura K  Okamura H  Katahira M  Katoh E  Inagaki F 《FEBS letters》2012,586(16):2548-2554
Most calmodulin (CaM) in apo and Ca(2+)-bound states show a dumb-bell-like structure, involving the N- and C-terminal domains, connected with a flexible linker. However, Ca(2+)-bound yeast calmodulin (yCaM) takes on a unique globular structure; the target-binding site of this protein is autoinhibited. We applied NMR relaxation dispersion experiments to yCaM in the Ca(2+)-bound state. The amide (15)N and (1)H(N) relaxation dispersion profiles indicated the presence of conformational dynamics for specific residues at the interface between the N- and C-terminal domains. We conclude that these conformational dynamics were derived from the mobility of the C-terminal domain.  相似文献   

16.
Spectroscopic methods such as circular dichroism and F?rster resonance energy transfer are current approaches for monitoring protein conformational changes. Those analyses require special equipment and expertise. The need for fluorescence labeling of the protein may interfere with the native structure. We have developed a microtiter plate-based monoclonal antibody (mAb) epitope analysis to detect protein conformational changes in a high throughput manner. This method is based on the concept that the affinity of the antigen-binding site of an antibody for the specific antigenic epitope will change when the 3-D structure of the epitope changes. The effectiveness of this approach was demonstrated in the present study on troponin C (TnC), an allosteric protein in the Ca(2+) regulatory system of striated muscle. Using TnC purified by a highly effective rapid procedure and mAbs developed against epitopes in the N- and C-domains of TnC enzyme-linked immunosorbant assay (ELISA) clearly detected Ca(2+)-induced conformational changes in both the N-terminal regulatory domain and the C-terminal structural domain of TnC. On the other hand, Mg(2+)-binding to the C-domain of TnC resulted in a long-range effect on the N-domain conformation, indicating a functional significance of Ca(2+)-Mg(2+) exchange at the C-domain metal ion-binding sites. In addition to further understanding of the structure-function relationship of TnC, the data demonstrate that the mAb epitope analysis provides a simple high throughput method for monitoring 3-D structural changes in native proteins under physiological condition and has broad applications in protein structure-function relationship studies.  相似文献   

17.
Wang X  Kleerekoper QK  Xiong LW  Putkey JA 《Biochemistry》2010,49(48):10287-10297
PEP-19 (Purkinje cell protein 4) is an intrinsically disordered protein with an IQ calmodulin (CaM) binding motif. Expression of PEP-19 was recently shown to protect cells from apoptosis and cell death due to Ca(2+) overload. Our initial studies showed that PEP-19 causes novel and dramatic increases in the rates of association of Ca(2+) with and dissociation of Ca(2+) from the C-domain of CaM. The goal of this work was to study interactions between the C-domain of CaM (C-CaM) and PEP-19 by solution nuclear magnetic resonance (NMR) to identify mechanisms by which PEP-19 regulates binding of Ca(2+) to CaM. Our results show that PEP-19 causes a greater structural change in apo C-CaM than in Ca(2+)-C-CaM, and that the first Ca(2+) binds preferentially to site IV in the presence of PEP-19 with exchange characteristics that are consistent with a decrease in Ca(2+) binding cooperativity. Relatively weak binding of PEP-19 has distinct effects on chemical and conformational exchange on the microsecond to millisecond time scale. In apo C-CaM, PEP-19 binding causes a redistribution of residues that experience conformational exchange, leading to an increase in the number of residues around Ca(2+) binding site IV that undergo conformational exchange on the microsecond to millisecond time scale. This appears to be caused by an allosteric effect because these residues are not localized to the PEP-19 binding site. In contrast, PEP-19 increases the number of residues that exhibit conformational exchange in Ca(2+)-C-CaM. These residues are primarily localized to the PEP-19 binding site but also include Asp93 in site III. These results provide working models for the role of protein dynamics in the regulation of binding of Ca(2+) to CaM by PEP-19.  相似文献   

18.
With the recent advances in structure determination of the troponin complex, it becomes even more important to understand the dynamics of its components and how they are affected by the presence or absence of Ca(2+). We used NMR techniques to study the backbone dynamics of skeletal troponin C (TnC) in the complex. Transverse relaxation-optimized spectroscopy pulse sequences and deuteration of TnC were essential to assign most of the TnC residues in the complex. Backbone amide (15)N relaxation times were measured in the presence of Ca(2+) or EGTA/Mg(2+). T(1) relaxation times could not be interpreted precisely, because for a molecule of this size, the longitudinal backbone amide (15)N relaxation rate due to chemical shift anisotropy and dipole-dipole interactions becomes too small, and other relaxation mechanisms become relevant. T(2) relaxation times were of the expected magnitude for a complex of this size, and most of the variation of T(2) times in the presence of Ca(2+) could be explained by the anisotropy of the complex, suggesting a relatively rigid molecule. The only exception was EF-hand site III and helix F immediately after, which are more flexible than the rest of the molecule. In the presence of EGTA/Mg(2+), relaxation times for residues in the C-domain of TnC are very similar to values in the presence of Ca(2+), whereas the N-domain becomes more flexible. Taken together with the high flexibility of the linker between the two domains, we concluded that in the absence of Ca(2+), the N-domain of TnC moves independently from the rest of the complex.  相似文献   

19.
Calmodulin (CaM) is a Ca(2+)-binding protein that functions as a ubiquitous Ca(2+)-signaling molecule, through conformational changes from the "closed" apo conformation to the "open" Ca(2+)-bound conformation. Mg(2+) also binds to CaM and stabilizes its folded structure, but the NMR signals are broadened by slow conformational fluctuations. Using the E104D/E140D mutant, designed to decrease the signal broadening in the presence of Mg(2+) with minimal perturbations of the overall structure, the solution structure of the Mg(2+)-bound form of the CaM C-terminal domain was determined by multidimensional NMR spectroscopy. The Mg(2+)-induced conformational change mainly occurred in EF hand IV, while EF-hand III retained the apo structure. The helix G and helix H sides of the binding sequence undergo conformational changes needed for the Mg(2+) coordination, and thus the helices tilt slightly. The aromatic rings on helix H move to form a new cluster of aromatic rings in the hydrophobic core. Although helix G tilts slightly to the open orientation, the closed conformation is maintained. The fact that the Mg(2+)-induced conformational changes in EF-hand IV and the hydrophobic core are also seen upon Ca(2+) binding suggests that the Ca(2+)-induced conformational changes can be divided into two categories, those specific to Ca(2+) and those common to Ca(2+) and Mg(2+).  相似文献   

20.
The N-terminal extension of cardiac troponin I (TnI) is bisphosphorylated by protein kinase A in response to beta-adrenergic stimulation. How this signal is transmitted between TnI and troponin C (TnC), resulting in accelerated Ca(2+) release, remains unclear. We recently proposed that the unphosphorylated extension interacts with the N-terminal domain of TnC stabilizing Ca(2+) binding and that phosphorylation prevents this interaction. We now use (1)H NMR to study the interactions between several N-terminal fragments of TnI, residues 1-18 (I1-18), residues 1-29 (I1-29), and residues 1-64 (I1-64), and TnC. The shorter fragments provide unambiguous information on the N-terminal regions of TnI that interact with TnC: I1-18 does not bind to TnC whereas the C-terminal region of unphosphorylated I1-29 does bind. Bisphosphorylation greatly weakens this interaction. I1-64 contains the phosphorylatable N-terminal extension and a region that anchors I1-64 to the C-terminal domain of TnC. I1-64 binding to TnC influences NMR signals arising from both domains of TnC, providing evidence that the N-terminal extension of TnI interacts with the N-terminal domain of TnC. TnC binding to I1-64 broadens NMR signals from the side chains of residues immediately C-terminal to the phosphorylation sites. Binding of TnC to bisphosphorylated I1-64 does not broaden these NMR signals to the same extent. Circular dichroism spectra of I1-64 indicate that bisphosphorylation does not produce major secondary structure changes in I1-64. We conclude that bisphosphorylation of cardiac TnI elicits its effects by weakening the interaction between the region of TnI immediately C-terminal to the phosphorylation sites and TnC either directly, due to electrostatic repulsion, or via localized conformational changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号