首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in the putative selectivity filter region of the voltage-gated Na+ channel, the so-called DEKA-motif, not only affect selectivity but also alter the channel's gating properties, suggesting functional coupling between permeation and gating. We have previously reported that charge-altering mutations at position 1237 in the P-loop of domain III (position K of the DEKA-motif in the adult rat skeletal muscle Na+ channel, rNa(v)1.4) dramatically enhanced entry to an inactivated state from which the channels recovered with a very slow time constant on the order of approximately 100 s (Todt, H., Dudley, S. C. J., Kyle, J. W., French, R. J., and Fozzard, H. A. (1999) Biophys. J. 76, 1335-1345). This state, termed "ultra-slow inactivation", may reflect a complex molecular rearrangement of the channel's pore region that involves both the extracellular and the cytoplasmic pore. Here, we tested whether charged DEKA-motif residues other than K1237 were also important determinants of a channel's gating properties. Therefore, we constructed the charge-neutralizing mutations D400A, E755A, and K1237A and studied the effects of these mutations on I(US). We found that, compared to wild-type rNa(v)1.4 channels, mutant D400A and K1237A but not E755A channels exhibited enhanced entry into ultra-slow inactivation. Selectivity for Na+ over K+, as judged from shifts in reversal potentials, was preserved in D400A, reduced in E755A, and completely lost in K1237A. These data suggest that an electrostatic interaction between the positively charged residue K1237 and the negatively charged residue D400 stabilizes the structure of the pore and thereby prevents I(US). Moreover, the interaction between K1237 and E755 appears to provide the basis for selective permeation of Na+ over K+.  相似文献   

2.
The fast inactivation of sodium currents and the immobolization of sodium gating charge are thought to be closely coupled to each other. This notion was tested in the squid axon in which kinetics and steady-state properties of the gating charge movement were compared before and after removal of the Na inactivation by batrachotoxin (BTX), pronase, or chloramine-T. The immobilization of gating charge was determined by measuring the total charge movement (QON) obtained by integrating the ON gating current (Ig,ON) using a double pulse protocol. After removal of the fast inactivation with pronase or chloramine-T, the gating charge movement was no longer immobilized. In contrast, after BTX modification, the channels still exhibited an immobilization of the gating charge (QON) with an onset time course and voltage dependence similar to that for the activation process. These results show that BTX can uncouple the charge immobilization from the fast Na inactivation mechanism, suggesting that the Na gating charge movement can be immobilized independently of the inactivation of the channel.  相似文献   

3.
Kv4 channels represent the main class of brain A-type K+ channels that operate in the subthreshold range of membrane potentials (Serodio, P., E. Vega-Saenz de Miera, and B. Rudy. 1996. J. Neurophysiol. 75:2174- 2179), and their function depends critically on inactivation gating. A previous study suggested that the cytoplasmic NH2- and COOH-terminal domains of Kv4.1 channels act in concert to determine the fast phase of the complex time course of macroscopic inactivation (Jerng, H.H., and M. Covarrubias. 1997. Biophys. J. 72:163-174). To investigate the structural basis of slow inactivation gating of these channels, we examined internal residues that may affect the mutually exclusive relationship between inactivation and closed-state blockade by 4-aminopyridine (4-AP) (Campbell, D.L., Y. Qu, R.L. Rasmussen, and H.C. Strauss. 1993. J. Gen. Physiol. 101:603-626; Shieh, C.-C., and G.E. Kirsch. 1994. Biophys. J. 67:2316-2325). A double mutation V[404,406]I in the distal section of the S6 region of the protein drastically slowed channel inactivation and deactivation, and significantly reduced the blockade by 4-AP. In addition, recovery from inactivation was slightly faster, but the pore properties were not significantly affected. Consistent with a more stable open state and disrupted closed state inactivation, V[404,406]I also caused hyperpolarizing and depolarizing shifts of the peak conductance-voltage curve ( approximately 5 mV) and the prepulse inactivation curve (>10 mV), respectively. By contrast, the analogous mutations (V[556,558]I) in a K+ channel that undergoes N- and C-type inactivation (Kv1.4) did not affect macroscopic inactivation but dramatically slowed deactivation and recovery from inactivation, and eliminated open-channel blockade by 4-AP. Mutation of a Kv4-specific residue in the S4-S5 loop (C322S) of Kv4.1 also altered gating and 4-AP sensitivity in a manner that closely resembles the effects of V[404, 406]I. However, this mutant did not exhibit disrupted closed state inactivation. A kinetic model that assumes coupling between channel closing and inactivation at depolarized membrane potentials accounts for the results. We propose that components of the pore's internal vestibule control both closing and inactivation in Kv4 K+ channels.  相似文献   

4.
The hERG channel has a relatively slow activation process but an extremely fast and voltage-sensitive inactivation process. Direct measurement of hERG's gating current (Piper, D.R., A. Varghese, M.C. Sanguinetti, and M. Tristani-Firouzi. 2003. PNAS. 100:10534-10539) reveals two kinetic components of gating charge transfer that may originate from two channel domains. This study is designed to address three questions: (1) which of the six positive charges in hERG's major voltage sensor, S4, are responsible for gating charge transfer during activation, (2) whether a negative charge in the cytoplasmic half of S2 (D466) also contributes to gating charge transfer, and (3) whether S4 serves as the sole voltage sensor for hERG inactivation. We individually mutate S4's positive charges and D466 to cysteine, and examine (a) effects of mutations on the number of equivalent gating charges transferred during activation (z(a)) and inactivation (z(i)), and (b) sidedness and state dependence of accessibility of introduced cysteine side chains to a membrane-impermeable thiol-modifying reagent (MTSET). Neutralizing the outer three positive charges in S4 and D466 in S2 reduces z(a), and cysteine side chains introduced into these positions experience state-dependent changes in MTSET accessibility. On the other hand, neutralizing the inner three positive charges in S4 does not affect z(a). None of the charge mutations affect z(i). We propose that the scheme of gating charge transfer during hERG's activation process is similar to that described for the Shaker channel, although hERG has less gating charge in its S4 than in Shaker. Furthermore, channel domain other than S4 contributes to gating charge involved in hERG's inactivation process.  相似文献   

5.
Kinetic effects of osmotic stress on sodium ionic and gating currents have been studied in crayfish giant axons after removal of fast inactivation with chloramine-T. Internal perfusion with media made hyperosmolar by addition of formamide or sucrose, reduces peak sodium current (before and after removal of fast inactivation with chloramine-T), increases the half-time for activation, but has no effect on tail current deactivation rate(s). Kinetics of ON and OFF gating currents are not affected by osmotic stress. These results confirm (and extend to sodium channels) the separation of channel gating mechanisms into voltage-sensitive and solvent-sensitive processes recently proposed by Zimmerberg J., F. Bezanilla, and V. A. Parsegian. (1990. Biophys. J. 57:1049-1064) for potassium delayed rectifier channels. Additionally, the kinetic effects produced by hyperosmolar media seem qualitatively similar to the kinetic effects of heavy water substitution in crayfish axons (Alicata, D. A., M. D. Rayner, and J. G. Starkus. 1990. Biophys. J. 57:745-758). However, our observations are incompatible with models in which voltage-sensitive and solvent-sensitive gating processes are presumed to be either (a) strictly sequential or, (b) parallel and independent. We introduce a variant of the parallel model which includes explicit coupling between voltage-sensitive and solvent-sensitive processes. Simulations of this model, in which the total coupling energy is as small as 1/10th of kT, demonstrate the characteristic kinetic changes noted in our data.  相似文献   

6.
We investigated the contribution of the putative inactivation lid in voltage-gated sodium channels to gating charge immobilization (i.e., the slow return of gating charge during repolarization) by studying a lid-modified mutant of the human heart sodium channel (hH1a) that had the phenylalanine at position 1485 in the isoleucine, phenylalanine, and methionine (IFM) region of the domain III-IV linker mutated to a cysteine (ICM-hH1a). Residual fast inactivation of ICM-hH1a in fused tsA201 cells was abolished by intracellular perfusion with 2.5 mM 2-(trimethylammonium)ethyl methanethiosulfonate (MTSET). The time constants of gating current relaxations in response to step depolarizations and gating charge-voltage relationships were not different between wild-type hH1a and ICM-hH1a(MTSET). The time constant of the development of charge immobilization assayed at -180 mV after depolarization to 0 mV was similar to the time constant of inactivation of I(Na) at 0 mV for hH1a. By 44 ms, 53% of the gating charge during repolarization returned slowly; i.e., became immobilized. In ICM-hH1a(MTSET), immobilization occurred with a similar time course, although only 31% of gating charge upon repolarization (OFF charge) immobilized. After modification of hH1a and ICM-hH1a(MTSET) with Anthopleurin-A toxin, a site-3 peptide toxin that inhibits movement of the domain IV-S4, charge immobilization did not occur for conditioning durations up to 44 ms. OFF charge for both hH1a and ICM-hH1a(MTSET) modified with Anthopleurin-A toxin were similar in time course and in magnitude to the fast component of OFF charge in ICM-hH1a(MTSET) in control. We conclude that movement of domain IV-S4 is the rate-limiting step during repolarization, and it contributes to charge immobilization regardless of whether the inactivation lid is bound. Taken together with previous reports, these data also suggest that S4 in domain III contributes to charge immobilization only after binding of the inactivation lid.  相似文献   

7.
Continuous intracellular pH (pHi) measurements were performed in SIRC rabbit corneal epithelial cells using the pH-sensitive absorbance of intracellularly trapped 5(and 6)-carboxy-4',5'-dimethylfluorescein. Steady-state pHi in nominally bicarbonate free Ringer's solution averaged 6.87 +/- 0.02 (mean +/- S.E., n = 53). After intracellular acidification induced by the NH4Cl-prepulse technique, there was a sodium-dependent pHi recovery towards the normal steady-state pHi. The initial pHi recovery rate was a saturable function of extracellular sodium concentration with an apparent Km for external sodium of about 25 mM and a Vmax of about 0.28 pH units/min. Virtually no pHi recovery was observed in the absence of extracellular sodium. Sodium removal during steady state acidified the cells by 0.36 +/- 0.05 pH units (mean +/- S.E., n = 13) within 5 min. There was a dose-dependent inhibition of pHi recovery after NH4Cl prepulse by amiloride with an IC50 of about 15 microM. Amiloride in a concentration of 1 mM almost completely abolished pHi recovery. Amiloride (1 mM) applied during steady state induced an intracellular acidification of 0.2 +/- 0.03 pH units (mean +/- S.E., n = 7) within 5 min. These findings suggest that a Na+/H+ exchange is present in SIRC rabbit corneal epithelial cells. Na+/H+ exchange seems to be the major process involved in pHi recovery in SIRC cells after an intracellular acid load. Na+/H+ exchange also plays a role in the maintenance of steady-state pHi.  相似文献   

8.
We previously reported that, in a HCO3(-)-free medium, cytoplasmic pH (pHi) of hamster fibroblasts (CCL39) is primarily regulated by an amiloride-sensitive Na+/H+ antiport (L'Allemain, G., Paris, S., and Pouysségur, J. (1984) J. Biol. Chem. 259, 5809-5815). Here we demonstrate the existence of an additional pHi-regulating mechanism in CCL39 cells, namely a Na+-dependent HCO3-/Cl- exchange. Evidence for this system is based on 36Cl- influx studies and on pHi measurements in PS120, a CCL39-derived mutant lacking the Na+/H+ antiport activity. 36Cl- influx rate is a saturable function of external [Cl-] (apparent Km approximately equal to 7 mM), is competitively inhibited by external HCO3- (KI approximately equal to 3 mM), and by stilbene derivatives (KI approximately equal to 20 microM for 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid). Measurements of pHi recovery after an acute acid load indicate that PS120 cells possess an acid-extruding mechanism dependent on external HCO3-, which is inhibited by stilbene derivatives and requires external Na+. Since 22Na+ influx is stimulated upon addition of HCO3- to acid-loaded cells and this effect is completely abolished by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, we conclude that Na+ is co-transported with HCO3-, in exchange for intracellular Cl-. In a HCO3(-)-containing medium, this pHi-regulating mechanism appears to have two essential physiological functions for the Na+/H+ antiport-deficient mutant: protection of the cells against excessive cytoplasmic acidification and establishment of a steady-state pHi permissive for growth, at neutral or slightly acidic pHo values (6.6-7.2).  相似文献   

9.
The effect of low pH on the kinetics of Na channel ionic and gating currents was studied in frog skeletal muscle fibers. Lowering external pH from 7.4 to 5.0 slows the time course of Na current consistent with about a +25-mV shift in the voltage dependence of activation and inactivation time constants. Similar shifts in voltage dependence adequately describe the effects of low pH on the tail current time constant (+23.3 mV) and the gating charge vs. voltage relationship (+22.1 mV). A significantly smaller shift of +13.3 mV described the effect of pH 5.0 solution on the voltage dependence of steady state inactivation. Changes in the time course of gating current at low pH were complex and could not be described as a shift in voltage dependence. tau g, the time constant that describes the time course of the major component of gating charge movement, was slowed in pH 5.0 solution by a factor of approximately 3.5 for potentials from -60 to +45 mV. We conclude that the effects of low pH on Na channel gating cannot be attributed simply to a change in surface potential. Therefore, although it may be appropriate to describe the effect of low pH on some Na channel kinetic properties as a "shift" in voltage dependence, it is not appropriate to interpret such shifts as a measure of changes in surface potential. The maximum gating charge elicited from a holding potential of -150 mV was little affected by low pH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Na+ and gating currents were measured in myelinated frog nerve fibres without and in the presence of 7 microM Anemonia toxin II in the extracellular solution. From the experiments, kinetic parameters of Na+ currents and of gating charge displacements during ('on' response) and after ('off' response) depolarizations were determined. The following parallel modifications of Na+ currents and charge displacements by Anemonia toxin II were observed: the toxin reduces the maximum Na+ permeability and the 'on' charge displacement; Na+ activation and 'on' charge displacement become faster; Na+ inactivation and the decline of the 'off' charge displacement with increasing pulse duration (charge immobilization) are prolonged; slow components of 'on' charge displacements are diminished. The observations support the notion that the fast 'on' charge displacement is connected with the process of Na+ activation, while Na+ inactivation is linked to charge immobilization. Our experiments suggest that slow 'on' charge displacements during longer depolarizations are correlated with the process of Na+ inactivation.  相似文献   

11.
We investigated effects of paramyotonia congenita mutations F1473S and F1705I on gating of skeletal muscle Na+ channels. We used on-cell recordings from Xenopus oocytes to compare fast inactivation and deactivation in wild type and mutant channels. Then, we used gating current recordings to determine how these actions of PC mutants might be reflected in their effects on charge movement and its immobilization. F1473S, but not F1705I, accelerated deactivation from the inactivated state and enhanced the remobilization of gating charge. F1473S and F1705I decreased the completion of closed-state fast inactivation, and each mutant decreased charge movement over the voltage range at which channels did not activate. An unexpected result was that F1705I increased the extent of charge immobilization in response to strong depolarization. Our results suggest that the DIV S4-S5 linker mutation F1473S promotes the hyperpolarized position of DIVS4 to accelerate recovery. Inhibition of charge movement by F1473S and F1705I in the absence of channel opening is discussed with respect to their effects on closed-state fast inactivation.  相似文献   

12.
Dipeptidyl aminopeptidase-like proteins (DPLPs) interact with Kv4 channels and thereby induce a profound remodeling of activation and inactivation gating. DPLPs are constitutive components of the neuronal Kv4 channel complex, and recent observations have suggested the critical functional role of the single transmembrane segment of these proteins (Zagha, E., A. Ozaita, S.Y. Chang, M.S. Nadal, U. Lin, M.J. Saganich, T. McCormack, K.O. Akinsanya, S.Y. Qi, and B. Rudy. 2005. J. Biol. Chem. 280:18853-18861). However, the underlying mechanism of action is unknown. We hypothesized that a unique interaction between the Kv4.2 channel and a DPLP found in brain (DPPX-S) may remodel the channel's voltage-sensing domain. To test this hypothesis, we implemented a robust experimental system to measure Kv4.2 gating currents and study gating charge dynamics in the absence and presence of DPPX-S. The results demonstrated that coexpression of Kv4.2 and DPPX-S causes a -26 mV parallel shift in the gating charge-voltage (Q-V) relationship. This shift is associated with faster outward movements of the gating charge over a broad range of relevant membrane potentials and accelerated gating charge return upon repolarization. In sharp contrast, DPPX-S had no effect on gating charge movements of the Shaker B Kv channel. We propose that DPPX-S destabilizes resting and intermediate states in the voltage-dependent activation pathway, which promotes the outward gating charge movement. The remodeling of gating charge dynamics may involve specific protein-protein interactions of the DPPX-S's transmembrane segment with the voltage-sensing and pore domains of the Kv4.2 channel. This mechanism may determine the characteristic fast operation of neuronal Kv4 channels in the subthreshold range of membrane potentials.  相似文献   

13.
The nonexponential closed-time distributions observed for ionic channels have been explained recently by quasi-one-dimensional models of structural diffusion (Millhauser, G. L., E. E. Salpeter, and R. E. Oswald. 1988. Proc. Natl. Acad. Sci. USA. 85: 1503-1507; Condat, C. A., and J. J?ckle. 1989. Biophys. J. 55: 915-925; Levitt, D. G. 1989. Biophys. J. 55: 489-498). We generalize this treatment by allowing for more complex trajectories using percolation theory. We assume that the gating transition depends on marginally connected conformational states leading to the observed spread in time scales.  相似文献   

14.
Intramembrane charge movement was recorded in rat and rabbit ventricular cells using the whole-cell voltage clamp technique. Na and K currents were eliminated by using tetraethylammonium as the main cation internally and externally, and Ca channel current was blocked by Cd and La. With steps in the range of -110 to -150 used to define linear capacitance, extra charge moves during steps positive to approximately -70 mV. With holding potentials near -100 mV, the extra charge moving outward on depolarization (ON charge) is roughly equal to the extra charge moving inward on repolarization (OFF charge) after 50-100 ms. Both ON and OFF charge saturate above approximately +20 mV; saturating charge movement is approximately 1,100 fC (approximately 11 nC/muF of linear capacitance). When the holding potential is depolarized to -50 mV, ON charge is reduced by approximately 40%, with little change in OFF charge. The reduction of ON charge by holding potential in this range matches inactivation of Na current measured in the same cells, suggesting that this component might arise from Na channel gating. The ON charge remaining at a holding potential of -50 mV has properties expected of Ca channel gating current: it is greatly reduced by application of 10 muM D600 when accompanied by long depolarizations and it is reduced at more positive holding potentials with a voltage dependence similar to that of Ca channel inactivation. However, the D600-sensitive charge movement is much larger than the Ca channel gating current that would be expected if the movement of channel gating charge were always accompanied by complete opening of the channel.  相似文献   

15.
The PS120 variant of Chinese hamster lung fibroblasts which lacks Na+/H+ exchange activity was used to investigate bicarbonate transport systems and their role in intracellular pH (pHi) regulation. When pHi was decreased by acid load, bicarbonate caused pHi increase and stimulated 36Cl- efflux from the cells, both in a Na+-dependent manner. These results together with previous findings that bicarbonate stimulates 22Na+ uptake in PS120 cells (L'Allemain, G., Paris, S., and Pouyssegur, J. (1985) J. Biol. Chem. 260, 4877-4883) demonstrate the presence of a Na+-linked Cl-/HCO3- exchange system. In cells with normal initial pHi, bicarbonate caused Na+-independent pHi increase in Cl(-)-free solutions and stimulated Na+-independent 36Cl- efflux, indicating that a Na+-independent Cl-/HCO3- exchanger is also present in the cell. Na+-linked and Na+-independent Cl-/HCO3- exchange is apparently mediated by two distinct systems, since a [(tetrahydrofluorene-7-yl)oxy]acetic acid derivative selectively inhibits the Na+-independent exchanger. An additional distinctive feature is a 10-fold lower affinity for chloride of the Na+-linked exchanger. The Na+-linked and Na+-independent Cl-/HCO3- exchange systems are likely to protect the cell from acid and alkaline load, respectively.  相似文献   

16.
The role of the voltage sensor positive charges in the activation and deactivation gating of the rat brain IIA sodium channel was investigated by mutating the second and fourth conserved positive charges in the S4 segments of all four homologous domains. Both charge-neutralizing (by glutamine substitution) and -conserving mutations were constructed in a cDNA encoding the sodium channel α subunit that had fast inactivation removed by the incorporation of the IFMQ3 mutation in the III–IV linker (West, J.W., D.E. Patton, T. Scheuer, Y. Wang, A.L. Goldin, and W.A. Catterall. 1992. Proc. Natl. Acad. Sci. USA. 89:10910–10914.). A total of 16 single and 2 double mutants were constructed and analyzed with respect to voltage dependence and kinetics of activation and deactivation. The most significant effects were observed with substitutions of the fourth positive charge in each domain. Neutralization of the fourth positive charge in domain I or II produced the largest shifts in the voltage dependence of activation, both in the positive direction. This change was accompanied by positive shifts in the voltage dependence of activation and deactivation kinetics. Combining the two mutations resulted in an even larger positive shift in half-maximal activation and a significantly reduced gating valence, together with larger positive shifts in the voltage dependence of activation and deactivation kinetics. In contrast, neutralization of the fourth positive charge in domain III caused a negative shift in the voltage of half-maximal activation, while the charge-conserving mutation resulted in a positive shift. Neutralization of the fourth charge in domain IV did not shift the half-maximal voltage of activation, but the conservative substitution produced a positive shift. These data support the idea that both charge and structure are determinants of function in S4 voltage sensors. Overall, the data supports a working model in which all four S4 segments contribute to voltage-dependent activation of the sodium channel.  相似文献   

17.
Glasses used to fabricate patch pipettes may release components which affect ion channels (Cota, G., and C.M. Armstrong. 1988. Biophys. J. 53:107-109; Furman, R.E., and J.C. Tanaka. 1988. Biophys. J. 53:287-292; Rojas, L., and C. Zuazaga. 1988. Neurosci. Lett. 88:39-44). The gating properties of maxi K+ channels from Necturus gallbladder epithelium depend on whether borosilicate glass (BG) or blue tip hematocrit glass (SG) is used to construct the patch pipettes. The data are consistent with solubilization from SG of a component which exerts voltage-dependent, cytosolic-side specific block, closely resembling "slow block" by Ba2+ ions. Ringer's solution preincubated with SG, but not with BG, blocked inside-out maxi K+ channels when used as bathing solution. Mass spectrometry revealed that Ba2+ is released by the glass from fast and slow-release compartments (SG contains 3% wt/wt BaO), and is the only ion found in the solution at concentrations consistent with the observed channel block. Additionally, SG released O2-, Na+, Ca2+, and Mg2+, all to micromolar concentrations. These elements do not interfere with maxi K+ channels but they could in principle alter the properties of other ion channels. Thus, screening for channel-modifying substances released by the glass may be necessary for the adequate interpretation of patch-clamp results.  相似文献   

18.
To study the role of intracellular pH (pHi) in catecholamine secretion and the regulation of pHi in bovine chromaffin cells, the pH-sensitive fluorescent indicator [2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein] was used to monitor the on-line changes in pHi. The pHi of chromaffin cells at resting state is approximately 7.2. The pHi was manipulated first by incubation of the cells with NH4+, and then the solution was replaced with a NH4(+)-free solution to induce acidification of the cytoplasm. The pHi returned toward the basal pH value after acidification within 5-10 min in the presence of Na+ or Li+, but the pHi stayed acidic when Na(+)-free buffers were used or in the presence of amiloride and its analogues. These results suggest that the pH recovery process after an acid load is due to the Na+/H+ exchange activity in the plasma membrane of the chromaffin cells. The catecholamine secretion evoked by carbachol and Na+ removal was enhanced after the cytoplasm had been made more acidic. It appears that acidic pH favors the occurrence of exocytosis.  相似文献   

19.
Previous studies using combined techniques of site-directed mutagenesis and electrophysiology of voltage-gated Na(+) channels have demonstrated that there are significant overlaps in the regions that are important for the two fundamental properties of the channels, namely gating and permeation. We have previously shown that a pore-lining residue, W402 in S5-S6 region (P loop) in domain I of the micro1 skeletal muscle Na(+) channel, was important in the gating of the channel. Here, we determined the role of an adjacent pore-lining negatively charged residue (E403) in channel gating. Charge neutralization or substitution with positively charged side chain at this position resulted in a marked delay in the rate of recovery from slow inactivation. Indeed, the fast inactivation process appeared intact. Restoration of the negatively charged side chain with a sulfhydryl modifier, MTS-ethylsulfonate, resulted in a reactivation profile from a slow-inactivated state, which was indistinguishable from that of the wild-type channels. We propose an additional functional role for the negatively charged residue. Assuming no major changes in the pore structure induced by the mutations, the negatively charged residue E403 may work in concert with other pore regions during recovery from slow inactivation of the channel. Our data represent the first report indicating the role of negative charge in the slow inactivation of the voltage-gated Na(+) channel.  相似文献   

20.
We investigated structural determinants of fast inactivation and deactivation in sodium channels by comparing ionic flux and charge movement in skeletal muscle channels, using mutations of DIII-DIV linker charges. Charge altering and substituting mutations at K-1317, K-1318 depolarized the g(V) curve but hyperpolarized the h(infinity) curve. Charge reversal and substitution at this locus reduced the apparent voltage sensitivity of open- and closed-state fast inactivation. These effects were not observed with charge reversal at E-1314, E-1315. Mutations swapping or neutralizing the negative cluster at 1314, 1315 and the positive cluster at 1317, 1318 indicated that local interactions dictate the coupling of activation to fast inactivation. Gating charge was immobilized before channel entry into fast inactivation in hNa(V)1.4 but to a lesser extent in mutations at K-1317, K-1318. These results suggest that charge is preferentially immobilized in channels inactivating from the open state. Recovery of gating charge proceeded with a single, fast phase in the double mutation K-1317R, K-1318R. This mutation also partially uncoupled recovery from deactivation. Our findings indicate that charged residues near the fast inactivation "particle" allosterically interact with voltage sensors to control aspects of gating in sodium channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号