首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclin B targets p34cdc2 for tyrosine phosphorylation.   总被引:28,自引:7,他引:21       下载免费PDF全文
L Meijer  L Azzi    J Y Wang 《The EMBO journal》1991,10(6):1545-1554
A universal intracellular factor, the 'M phase-promoting factor' (MPF), triggers the G2/M transition of the cell cycle in all organisms. In late G2, it is present as an inactive complex of tyrosine-phosphorylated p34cdc2 and unphosphorylated cyclin Bcdc13. In M phase, its activation as an active MPF displaying histone H1 kinase (H1K) originates from the concomitant tyrosine dephosphorylation of the p34cdc2 subunit and the phosphorylation of the cylin Bcdc13 subunit. We have investigated the role of cyclin in the formation of this complex and the tyrosine phosphorylation of p34cdc2, using highly synchronous mitotic sea urchin eggs as a model. As cells leave the S phase and enter the G2 phase, a massive tyrosine phosphorylation of p34cdc2 occurs. This large p34cdc2 tyrosine phosphorylation burst does not arise from a massive increase in p34cdc2 concentration. It even appears to affect only a fraction (non-immunoprecipitable by anti-PSTAIR antibodies) of the total p34cdc2 present in the cell. Several observations point to an extremely close association between accumulation of unphosphorylated cyclin and p34cdc2 tyrosine phosphorylation: (i) both events coincide perfectly during the G2 phase; (ii) both tyrosine-phosphorylated p34cdc2 and cyclin are not immunoprecipitated by anti-PSTAIR antibodies; (iii) accumulation of unphosphorylated cyclin by aphidicolin treatment of the cells, triggers a dramatic accumulation of tyrosine-phosphorylated p34cdc2; and (iv) inhibition of cyclin synthesis by emetine inhibits p34cdc2 tyrosine phosphorylation without affecting the p34cdc2 concentration. These results show that, as it is synthesized, cyclin B binds and recruits p34cdc2 for tyrosine phosphorylation; this inactive complex then requires the completion of DNA replication before it can be turned into fully active MPF. These results fully confirm recent data obtained in vitro with exogenous cyclin added to cycloheximide-treated Xenopus egg extracts.  相似文献   

2.
Proliferation of the human monocytic leukemia cell line JOSK-I is inhibited by transforming growth factor-beta (TGF-beta). Growth inhibition by TGF-beta was not due to either a toxic effect or to induction of differentiation. TGF-beta induced a cell cycle arrest at late G1 phase and was not found to be inhibitory to JOSK-I cells in S phase or G2/M. This G1 cell cycle arrest was associated with an accumulation of the unphosphorylated form of the retinoblastoma susceptibility gene product (Rb) in good correlation with inhibition of DNA synthesis. In contrast to the effects of TGF-beta, two other agents which induced a G1 arrest of JOSK-I cells had a different effect on Rb. Aphidicolin blocked cells at G1/S but could not reduce Rb phosphorylation as great as that seen with TGF-beta. 12-O-Tetradecanoylphorbol-13-acetate, an inducer of differentiation, did reduce Rb phosphorylation, but not until 72 h, when differentiation had already occurred. The identities of the Rb kinases are unknown, but recent evidence suggests that the cdc2 gene product could participate in Rb phosphorylation. Although cdc2 mRNA and total protein levels were not affected, TGF-beta inhibited the rate of translation and kinase activity of cdc2 in JOSK-I cells. These results suggest that growth inhibition of hematopoietic cells by TGF-beta is linked to suppression of Rb phosphorylation to retain Rb in an unphosphorylated, growth-inhibitory state. The suppression of Rb phosphorylation is suggested to be mediated through inhibition of cdc2 kinase activity by TGF-beta.  相似文献   

3.
The mammalian homologue of the cdc2 gene of the fission yeast Schizosaccharomyces pombe encodes a p34cdc2 cyclin-dependent kinase that regulates the cell cycle of a wide variety of cell types. Resting murine T lymphocytes contained no detectable p34cdc2 protein, histone kinase activity, or specific mRNA for the cdc2 gene. Activation of the T cells by immobilized anti-CD3 resulted in the expression of specific mRNA late in the G1 phase of the cell cycle, and p34cdc2 protein was detectable at or near G1/S. At this point in the cell cycle, the protein was phosphorylated at tyrosine and displayed no H1 histone kinase activity. As the cells progressed through the cycle, the amount of specific mRNA and p34cdc2 increased, and H1 histone kinase activity was detectable when the cells were blocked at G2/M by nocodazole. The activation of T cells by phorbol dibutyrate induced the expression of IL-2R but failed to induce the synthesis of IL-2 or the expression of cdc2-specific mRNA. Under these conditions, the activated cells failed to enter the S phase of the cell cycle. Because the presence of IL-2 added exogenously during activation by phorbol dibutyrate resulted in the expression of cdc2-specific mRNA and progression through the cell cycle, either IL-2 or the interaction with IL-2R may be involved in the expression of cdc2 and regulation of the G1/S transition.  相似文献   

4.
The retinoblastoma susceptibility gene product, Rb, is suspected to suppress cell growth. Rb is a 110-114 kd nuclear phosphoprotein. We have previously demonstrated that SV40 T antigen binds only to unphosphorylated Rb, and not pp112-114Rb, the family of phosphorylated Rb. Here we demonstrate the cell cycle-dependent phosphorylation of Rb. In G0/G1 cells, virtually all the Rb is unphosphorylated. In contrast, during S and G2, it is largely, if not exclusively, phosphorylated. Rb phosphorylation occurs at the G1/S boundary in several cell types tested. A 14 residue peptide, corresponding to the SV40 T domain required for transformation, is able to compete effectively with SV40 T for binding to p110Rb. We propose a model to explain how Rb may suppress cell growth by acting as a cell cycle regulatory element.  相似文献   

5.
J Hayles  P Nurse 《The EMBO journal》1995,14(12):2760-2771
We have monitored the tyrosine (Y15) phosphorylated and dephosphorylated forms of p34cdc2 from Schizosaccharomyces pombe as cells proceed through the cell cycle. Y15 is dephosphorylated in G1 before start and becomes phosphorylated only after cells pass start and enter late G1. This transition is associated with a switch from one checkpoint which restrains mitosis in pre-start G1, by a mechanism independent from Y15 phosphorylation, to a second checkpoint acting post-start during late G1 and S phase operating through Y15 phosphorylation. The pre-start checkpoint may act by preventing formation of the p34cdc2/p56cdc13 complex. The complex between Y15-phosphorylated p34cdc2 and p56cdc13 accumulates during S phase and G2, but the level generated is not solely dependent on the amount of p34cdc2 and p56cdc13 present in the cell. The extent of p56cdc13 breakdown at the end of mitosis may be determined by the amount complexed with p34cdc2. We have also shown that an insoluble form of p34cdc2 is associated with the progression of the cell through late G1 into S phase.  相似文献   

6.
C Smythe  J W Newport 《Cell》1992,68(4):787-797
In cell-free extracts derived from Xenopus eggs which oscillate between S phase and mitosis, incompletely replicated DNA blocks the activation of p34cdc2-cyclin by maintaining p34cdc2 in a tyrosine-phosphorylated form. We used a recombinant cyclin fusion protein to generate a substrate to measure the ability of the tyrosine kinase(s) to phosphorylate and inactivate p34cdc2 in the absence of tyrosine phosphatase activity. p34cdc2 tyrosine phosphorylation is highly regulated during the cell cycle, being elevated in S phase and attenuated in mitosis. The elevation in p34cdc2 tyrosine phosphorylation rate occurs in response to the presence of incompletely replicated DNA. Moreover, okadaic acid and caffeine, which uncouple the dependence of mitosis on the completion of S phase, increase unphosphorylated p34cdc2 by attenuating tyrosine kinase function. These data indicate that the control system, which monitors the state of DNA replication, modulates the function of the tyrosine kinase by a phosphorylation/dephosphorylation mechanism, ensuring that mitosis occurs only when S phase is complete.  相似文献   

7.
Hexamethylene bisacetamide (HMBA)-induced murine erythroleukemia (MELC) differentiation is characterized by a prolongation of the initial G1 which follows passage through S phase in the presence of inducer. Commitment to terminal cell division is first detected in a portion of the cell population during this prolonged G1. HMBA-induced commitment is stochastic. This study has examined changes in two known cell cycle regulators, p34cdc2 and cyclin A, in cycle-synchronized MELC in the absence and presence of HMBA. Histone H1 kinase activity of p34cdc2, and the levels of CDC2Mm mRNA, 1.8-kilobase mRNA of cyclin A, and cyclin A protein changed during cell cycle progression in MELC, and all of them were suppressed during G1. The suppression of the H1 kinase activity and cyclin A expression continued through the prolonged G1 in MELC cultured with HMBA, whereas p34cdc2 protein level did not vary through the cell cycle in MELC cultured without or with inducer. Phosphorylation of p34cdc2 in uninduced MELC gradually increased as cells progressed from G1 to S. In induced MELC, an increase in phosphorylation of p34cdc2 occurred during the prolonged G1, and prior to the exit of the bulk of the cells from G1 to S. These results suggest that in HMBA-induced MELC, p34cdc2 phosphorylation per se is not a limiting factor in determining G1 to S progression. The persistent suppression of cyclin A expression and histone H1 kinase activity may play a role in HMBA-induced commitment to terminal differentiation.  相似文献   

8.
Temperature-sensitive pat1 mutants of the fission yeast Schizosaccharomyces pombe can be induced to undergo meiosis at the restrictive temperature, irrespective of the mat1 configuration and the nutritional conditions. Using a combination of exit from stationary phase and thermal inactivation of the 52-kilodalton protein kinase that is encoded by the pat1 (also called ran1) gene, highly synchronous meiotic cultures were obtained. Synthesis and tyrosyl phosphorylation of p34cdc2 was evident during meiotic G1 and S phases. During this period there was increased expression of p105wee1, a protein kinase implicated in the tyrosyl phosphorylation of p34cdc2. Following a relatively brief G2 period, during which a reduction in the steady-state level of p105wee1 occurred, there was an approximately 19-fold increase in the histone H1 phosphotransferase activity of p34cdc2. Only a single peak of histone H1 kinase activation was observed, which implies that unlike meiosis in amphibians and echinoderms, p34cdc2 is functional only during one of the meiotic divisions in S. pombe, presumably meiosis II. Stimulation of the kinase activity of p34cdc2 was associated with its tyrosyl dephosphorylation. This is analogous to mitotic M phase and suggests parallels in the mechanism of activation of p34cdc2 during mitosis and one of the meiotic divisions in S. pombe.  相似文献   

9.
W Krek  E A Nigg 《The EMBO journal》1991,10(2):305-316
The cdc2 kinase is a key regulator of the eukaryotic cell cycle. The activity of its catalytic subunit, p34cdc2, is controlled by cell cycle dependent interactions with other proteins as well as by phosphorylation--dephosphorylation reactions. In this paper, we examine the phosphorylation state of chicken p34cdc2 at various stages of the cell cycle. By peptide mapping, we detect four major phosphopeptides in chicken p34cdc2; three phosphorylation sites are identified as threonine (Thr) 14, tyrosine (Tyr) 15 and serine (Ser) 277. Analysis of synchronized cells demonstrates that phosphorylation of all four sites is cell cycle regulated. Thr 14 and Tyr 15 are phosphorylated maximally during G2 phase but dephosphorylated abruptly at the G2/M transition, concomitant with activation of p34cdc2 kinase. This result suggests that phosphorylation of Thr 14 and/or Tyr 15 inhibits p34cdc2 kinase activity, in line with the location of these residues within the putative ATP binding site of the kinase. During M phase, p34cdc2 is also phosphorylated, but phosphorylation occurs on a threonine residue distinct from Thr 14. Finally, phosphorylation of Ser 277 peaks during G1 phase and drops markedly as cells progress through S phase, raising the possibility that this modification may contribute to control the proposed G1/S function of the vertebrate p34cdc2 kinase.  相似文献   

10.
Transforming growth factor beta 1 (TGF beta 1) is a potent inhibitor of epithelial cell proliferation. We present data which indicate that epithelial cell proliferation is inhibited when TGF beta 1 is added throughout the prereplicative G1 phase. Cultures become reversibly blocked in late G1 at the G1/S-phase boundary. The inhibitory effects of TGF beta 1 on cell growth occur in the presence of the RNA synthesis inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole. Associated with this inhibitory effect is a decrease in the phosphorylation and histone H1 kinase activity of the p34cdc2 protein kinase. These data suggest that TGF beta 1 growth inhibition in epithelial cells involves the regulation of p34cdc2 activity at the G1/S transition.  相似文献   

11.
Serotype 3 reoviruses inhibit cellular proliferation by inducing a G(2)/M phase cell cycle arrest. Reovirus-induced G(2)/M phase arrest requires the viral S1 gene-encoded sigma1s nonstructural protein. The G(2)-to-M transition represents a cell cycle checkpoint that is regulated by the kinase p34(cdc2). We now report that infection with serotype 3 reovirus strain Abney, but not serotype 1 reovirus strain Lang, is associated with inhibition and hyperphosphorylation of p34(cdc2). The sigma1s protein is necessary and sufficient for inhibitory phosphorylation of p34(cdc2), since a viral mutant lacking sigma1s fails to hyperphosphorylate p34(cdc2) and inducible expression of sigma1s is sufficient for p34(cdc2) hyperphosphorylation. These studies establish a mechanism by which reovirus can perturb cell cycle regulation.  相似文献   

12.
13.
An affinity-purified antibody (anti-Cdc2C) raised against the carboxy terminal sequence LDNQIKKM of p34cdc2 uncovered in NIH 3T3 cells a protein subpopulation, the location and the level of accumulation of which evolve during progression through the cell cycle: it first emerges inside the nucleus in late G1/early S phase and continues to build up principally in this location throughout S phase; a cytoplasmic expression then becomes apparent near the end of S phase, develops during G2 and sometimes prevails over the nuclear expression; it finally relocates to the nucleus in early prophase. We propose that a major part of this subpopulation would represent p34cdc2 molecules existing inside a complex with cyclin B1. NIH 3T3 cells arrested in early S phase with aphidicolin do not commit prematurely to mitosis which indicates that the regulatory pathway involved in preserving the temporal order of S and M phases is functioning in these conditions. Conjugated Western blot analysis and immunofluorescence microscopy showed that cyclin A, cyclin B1 and tyrosine-phosphorylated p34cdc2 continue to build up predominantly in the nucleus of the arrested cells. After release from the block, the cells rapidly reenter S and G2 phases and, concomitantly, cyclin B1 and tyrosine-phosphorylated p34cdc2 relocate to the cytoplasm before redistributing again in the nucleus in early prophase. These data would suggest that delaying the onset of M phase in NIH 3T3 cells in which the rate of DNA replication is reduced, is first ensured by a mechanism that prevents the cytoplasmic relocation of inactive p34cdc2/cyclin B1 complexes continually forming in the nucleus once the G1 period of mitotic cyclin instability is over.  相似文献   

14.
G Draetta  D Beach 《Cell》1988,54(1):17-26
HeLa cell p34, homolog of the yeast cdc2+/CDC28 protein kinase, has been investigated. p34 was phosphorylated at two or more sites and existed in a complex with p13, the previously identified homolog of the suc1+ gene product of S. pombe. A fraction of the most highly phosphorylated form of p34 was also associated with p62, a newly identified protein that became phosphorylated in vitro. The phosphorylation state of p34, its association with p62, and the protein kinase activity of the complex were each subject to cell cycle regulation. In newly born cells early in G1, p34 was unphosphorylated, not associated with p62, and inactive as a protein kinase. Each of these conditions was reversed in G2 and the p34/p62 complex was maximally active as a protein kinase, with respect to both endogenous and exogenous substrates, during mitotic metaphase. p34 may act to regulate the G2/M transition in HeLa cells.  相似文献   

15.
The biological activity of retinoic acid (RA) was examined in human hepatoma Hep3B cells. Under serum-deprived conditions, RA induced S/M-phase elevation and mitotic index increase within 24 h, followed by apoptosis. This RA-induced apoptosis was accompanied by p53-independent up-regulation of endogenous p21(CIPI/Waf1) and Bax proteins, as well as activation of p34(cdc2) kinase, and increase of Rb2 protein level and phosphorylation pattern. In addition, RA had no effect on the levels of Bcl-XL; Bcl-XS; cyclins A, B, D1, D3, or E; or Rb1 expression but markedly down-modulated Cdk2 kinase activity and reduced Cdk4 expression. RA also slightly delayed p27(Kip1) expression. Olomoucine, a potent p34(cdc2) and Cdk2 inhibitor, effectively blocked RA-mediated p34(cdc2) kinase activation and prevented RA-induced apoptosis. Furthermore, antisense oligonucleotide complementary to p21(CIP2/Waf1) and p34(cdc2) mRNA significantly rescued RA-induced apoptosis. Our data indicate that p21(CIP2/Waf1) overexpression may not be the only regulatory factor necessary for RA-induced apoptosis in human hepatoma Hep3B cells. RA treatment leads to Rb2 hyperphosphorylation, and p34(cdc2) kinase activation is coincident with an aberrant mitotic progression, followed by appearance of abnormal nucleus. This aberrant cell cycle progression appeared requisite for RA-induced cell death. These findings suggest that inappropriate regulation of the cell cycle regulators p21(CIP2/Waf1) and p34(cdc2) is coupled with induction of Bax and involved in cell death with apoptosis when Hep3B cells are exposed to RA.  相似文献   

16.
The effects of rapamycin (RAP) on cell cycle progression of human T cells stimulated with PHA were examined. Cell cycle analysis showed that the RNA content of cells stimulated with PHA in the presence of RAP was similar to that of control T cells stimulated with PHA for 12–24 hr in the absence of the drug. This level was substantially higher than that seen in cells stimulated in the presence of cyclosporin A (CsA), an immunosuppressant known to block cell cycle progression at an early point in the cycle. However, the point in the cell cycle at which RAP acted appeared to be well before the G1/S transition, which occurs about 30–36 hr after stimulation with PHA. In an attempt to further localize the point in the cell cycle where arrest occurred, a set of key regulatory events leading to the G1/S boundary were examined, including p110Rb phosphorylation, which occurred at least 6 hr prior to DNA synthesis, p34cdc2 synthesis, and cyclin A synthesis. In control cultures, p110Rb phosphorylation was detected within 24 hr of PHA stimulation; p34cdc2 and cyclin A synthesis were detected within 30 hr. Addition of RAP to the cultures inhibited each of these events. In contrast, early events, including c-fos, IL-2, and IL-4 mRNAs expression, and IL-2 receptor (p55) expression, were only marginally affected, if at all, in PHA-stimulated T cells. Furthermore, the inhibition of cell proliferation by RAP could not be overcome by addition of exogenous IL-2. These results indicate that RAP blocks cell cycle progression of activated T cells after IL-2/IL-2 receptor interaction but prior to p110Rb phosphorylation and other key regulatory events signaling G1/S transition. © 1993 Wiley-Liss, Inc.  相似文献   

17.
Replication protein A (RPA), the trimeric single-stranded DNA-binding protein complex of eukaryotic cells, is important to DNA replication and repair. Phosphorylation of the p34 subunit of RPA is modulated by the cell cycle, occurring during S and G2 but not during G1. The function of phosphorylated p34 remains unknown. We show that RPA p34 phosphorylation is significantly induced by ionizing radiation. The phosphorylated form, p36, is similar if not identical to the phosphorylated S/G2 form. gamma-Irradiation-induced phosphorylation occurs without new protein synthesis and in cells in G1. Mutation of cdc2-type protein kinase phosphorylation sites in p34 eliminates the ionizing radiation response. The gamma-irradiation-induced phosphorylation of RPA p34 is delayed in cells from ataxia telangiectasia, a human inherited disease conferring DNA repair defects and early-onset tumorigenesis. UV-induced phosphorylation of RPA p34 occurs less rapidly than gamma-irradiation-induced phosphorylation but is kinetically similar between ataxia telangiectasia and normal cells. This is the first time that modification of a repair protein, RPA, has been linked with a DNA damage response and suggests that phosphorylation may play a role in regulating DNA repair pathways.  相似文献   

18.
The activity of p34cdc2 kinase is regulated in the phases of vertebrate cell cycle by mechanisms of phosphorylation and dephosphorylation. In this paper, we demonstrate that casein kinase II (CKII) phosphorylates p34cdc2 in vivo and in vitro at Ser39 during the G1 phase of HeLa cell division cycle. Human p34cdc2 shows a typical phosphorylation sequence motif site for CKII at Ser39 (ES39EEE). In our experiments, either p34cdc2 expressed and purified from bacteria or p34cdc2 immunoprecipitated from HeLa cells enriched in G1 by elutriation were substrates for in vitro phosphorylation by CKII. Phosphoamino acid analysis, N-chlorosuccinimide mapping, and two-dimensional tryptic mapping of p34cdc2 phosphorylated in vitro were performed to determine the phosphorylation site. A synthetic peptide spanning residues 33-50 of human p34cdc2, including the CKII site, was used to map the site. In addition, phosphorylation at Ser39 also occurs in vivo, since p34cdc2 is phosphorylated during G1 on serine, and its two-dimensional tryptic map shows two phosphopeptides that comigrate exactly with the synthetic peptides used as standard.  相似文献   

19.
I Hoffmann  G Draetta    E Karsenti 《The EMBO journal》1994,13(18):4302-4310
Progression through the cell cycle is monitored at two major points: during the G1/S and the G2/M transitions. In most cells, the G2/M transition is regulated by the timing of p34cdc2 dephosphorylation which results in the activation of the kinase activity of the cdc2-cyclin B complex. The timing of p34cdc2 dephosphorylation is determined by the balance between the activity of the kinase that phosphorylates p34cdc2 (wee1 in human cells) and the opposing phosphatase (cdc25C). Both enzymes are regulated and it has been shown that cdc25C is phosphorylated and activated by the cdc2-cyclin B complex. This creates a positive feed-back loop providing a switch used to control the onset of mitosis. Here, we show that another member of the human cdc25 family, cdc25A, undergoes phosphorylation during S phase, resulting in an increase of its phosphatase activity. The phosphorylation of cdc25A is dependent on the activity of the cdc2-cyclin E kinase. Microinjection of anti-cdc25A antibodies into G1 cells blocks entry into S phase. These results indicate that the cdc25A phosphatase is required to enter S phase in human cells and suggest that this enzyme is part of an auto-amplification loop analogous to that described at the G2/M transition. We discuss the nature of the in vivo substrate of the cdc25A phosphatase in S phase and the possible implications for the regulation of S phase entry.  相似文献   

20.
The mouse FT210 cell line is a temperature-sensitive cdc2 mutant. FT210 cells are found to arrest specifically in G2 phase and unlike many alleles of cdc2 and cdc28 mutants of yeasts, loss of p34cdc2 at the nonpermissive temperature has no apparent effect on cell cycle progression through the G1 and S phases of the division cycle. FT210 cells and the parent wild-type FM3A cell line each possess at least three distinct histone H1 kinases. H1 kinase activities in chromatography fractions were identified using a synthetic peptide substrate containing the consensus phosphorylation site of histone H1 and the kinase subunit compositions were determined immunochemically with antisera prepared against the "PSTAIR" peptide, the COOH-terminus of mammalian p34cdc2 and the human cyclins A and B1. The results show that p34cdc2 forms two separate complexes with cyclin A and with cyclin B1, both of which exhibit thermal lability at the non-permissive temperature in vitro and in vivo. A third H1 kinase with stable activity at the nonpermissive temperature is comprised of cyclin A and a cdc2-like 34-kD subunit, which is immunoreactive with anti-"PSTAIR" antiserum but is not recognized with antiserum specific for the COOH-terminus of p34cdc2. The cyclin A-associated kinases are active during S and G2 phases and earlier in the division cycle than the p34cdc2-cyclin B1 kinase. We show that mouse cells possess at least two cdc2-related gene products which form cell cycle regulated histone H1 kinases and we propose that the murine homolog of yeast p34cdc/CDC28 is essential only during the G2-to-M transition in FT210 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号