首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 881 毫秒
1.
Recent theoretical and empirical work suggests that diversity enhances the temporal stability of a community. However, the effect of diversity on the stability of the individual populations within the community remains unclear. Some models predict a decrease of population stability with diversity, whereas others suggest that diversity has a stabilizing effect on populations. Empirical evidence for either relationship between population stability and diversity is weak. The few studies that directly assessed the stability of populations reported contradicting results. We used a six-year data-set from a plant diversity experiment to examine the relationships between diversity and temporal stability of plant biomass. Our results show that stability increased with diversity at the community-level, while the stability of populations, averaged over all species, decreased with diversity. However, when examining species separately we found positive, negative and neutral relationships between population stability and diversity. Our findings suggest that diversity may contribute to the stability of ecosystem services at the community level, but the effect of diversity on the stability of the individual populations within the community are generally negative. However, different species within the community may show strikingly different relationships between diversity and stability.  相似文献   

2.
While recent theoretical work has demonstrated several mechanisms whereby more diverse communities can exhibit greater temporal stability, empirical examinations have been few and the subject of much debate. We show that the temporal stability of natural summer and winter annual plant communities, at spatial scales of 0.25 m2 and 0.25 ha, tends to increase with community richness. Furthermore, more diverse communities exhibited greater stability because they contained a greater abundance of individuals (overyielding effect). Statistical averaging (the portfolio effect) and negative covariances between species (insurance and competition effects) did not enhance stability. Relationships between diversity and stability tended to be weak and were significant only at the smaller spatial scale. Because more diverse communities contained higher densities of individuals, the effect of diversity per se on stability was unclear and likely small. If overyielding is common in other ecological systems, the loss of individuals and biodiversity may often result in increased variation in ecological communities.  相似文献   

3.
The nature of the relationship between diversity and stability has become the subject of intense research effort over the last few decades as the role of diversity as a major driver of ecosystem functioning and stability has come to the forefront of ecological interest. Here, we present a meta‐analysis of the impact of twelve experimental design factors on the strength and direction of relations between biotic richness and temporal variability at both the aggregate community‐ and population‐level. Based on 35 studies that report 59 community‐level and 36 population‐level relations, our results show that biotic richness has a highly general stabilizing effect on community properties that are only marginally affected by the nuances of experimental design. In contrast, experimental design factors have a highly significant effect on mean effect sizes and the resulting interpretation of relations between richness and population‐level variability. The strongest dichotomous effect was observed based on the method of calculating the response variable, such that when population variability was calculated as the mean variability of populations across all replicates, biotic richness showed a negative (stabilizing) mean effect size. In contrast, when population variability was calculated on a per replicate basis, biotic richness showed a positive (destabilizing) mean effect size. This latter result suggests that a renewed focus on the mechanisms by which populations can be stabilized (and destabilized) by diversity is needed.  相似文献   

4.
Nutrient enrichment can reduce ecosystem stability, typically measured as temporal stability of a single function, e.g. plant productivity. Moreover, nutrient enrichment can alter plant–soil interactions (e.g. mycorrhizal symbiosis) that determine plant community composition and productivity. Thus, it is likely that nutrient enrichment and interactions between plants and their soil communities co-determine the stability in plant community composition and productivity. Yet our understanding as to how nutrient enrichment affects multiple facets of ecosystem stability, such as functional and compositional stability, and the role of above–belowground interactions are still lacking. We tested how mycorrhizal suppression and phosphorus (P) addition influenced multiple facets of ecosystem stability in a three-year field study in a temperate steppe. Here we focused on the functional and compositional stability of plant community; functional stability is the temporal community variance in primary productivity; compositional stability is represented by compositional resistance, turnover, species extinction and invasion. Community variance was partitioned into population variance defined as community productivity weighted average of the species temporal variance in performance, and species synchrony defined as the degree of temporal positive covariation among species. Compared to treatments with mycorrhizal suppression, the intact AM fungal communities reduced community variance in primary productivity by reducing species synchrony at high levels of P addition. Species synchrony and population variance were linearly associated with community variance with the intact AM fungal communities, while these relationships were decoupled or weakened by mycorrhizal suppression. The intact AM fungal communities promoted the compositional resistance of plant communities by reducing compositional turnover, but this effect was suppressed by P addition. P addition increased the number of species extinctions and thus promoted compositional turnover. Our study shows P addition and AM fungal communities can jointly and independently modify the various components of ecosystem stability in terms of plant community productivity and composition.  相似文献   

5.
Much work in ecology has focused on understanding how changes in community diversity and composition will affect the temporal stability of communities (the degree of fluctuations in community abundance or biomass over time). While theory suggests diversity and dominant species can enhance temporal stability, empirical work has tended to focus on testing the effect of diversity, often using synthetic communities created with high species evenness. We use a complementary approach by studying the temporal stability of natural plant communities invaded by a dominant exotic, Erodium cicutarium. Invasion was associated with a significant decline in community diversity and change in the identity of the dominant species allowing us to evaluate predictions about how these changes might affect temporal stability. Community temporal stability was not correlated with community richness or diversity prior to invasion. Following invasion, community stability was again not correlated with community richness but was negatively correlated with community diversity. Before and after invasion, community stability was positively correlated with the stability of the most dominant species in the community, even though the identity of the dominant species changed from a native (prior to invasion) to an exotic species. Our results demonstrate that invasion by a dominant exotic species may reduce diversity without negatively affecting the temporal stability of natural communities. These findings add support to the idea that dominant species can strongly affect temporal stability, independent of community diversity.  相似文献   

6.
There is increasing evidence that mixed‐species forests can provide multiple ecosystem services at a higher level than their monospecific counterparts. However, most studies concerning tree diversity and ecosystem functioning relationships use data from forest inventories (under noncontrolled conditions) or from very young plantation experiments. Here, we investigated temporal dynamics of diversity–productivity relationships and diversity–stability relationships in the oldest tropical tree diversity experiment. Sardinilla was established in Panama in 2001, with 22 plots that form a gradient in native tree species richness of one‐, two‐, three‐ and five‐species communities. Using annual data describing tree diameters and heights, we calculated basal area increment as the proxy of tree productivity. We combined tree neighbourhood‐ and community‐level analyses and tested the effects of both species diversity and structural diversity on productivity and its temporal stability. General patterns were consistent across both scales indicating that tree–tree interactions in neighbourhoods drive observed diversity effects. From 2006 to 2016, mean overyielding (higher productivity in mixtures than in monocultures) was 25%–30% in two‐ and three‐species mixtures and 50% in five‐species stands. Tree neighbourhood diversity enhanced community productivity but the effect of species diversity was stronger and increased over time, whereas the effect of structural diversity declined. Temporal stability of community productivity increased with species diversity via two principle mechanisms: asynchronous responses of species to environmental variability and overyielding. Overyielding in mixtures was highest during a strong El Niño‐related drought. Overall, positive diversity–productivity and diversity–stability relationships predominated, with the highest productivity and stability at the highest levels of diversity. These results provide new insights into mixing effects in diverse, tropical plantations and highlight the importance of analyses of temporal dynamics for our understanding of the complex relationships between diversity, productivity and stability. Under climate change, mixed‐species forests may provide both high levels and high stability of production.  相似文献   

7.
Soil biota could have a significant impact on plant productivity and diversity through benefiting plants and mediating plant–plant interaction. However, it is poorly understood how soil biotic factors interaction with abiotic environments affect plant community diversity and composition. Here, we investigate the community‐level consequences of arbuscular mycorrhizal fungi (AMF) interactions with multiple nutrients and their ecological stoichiometry. We conducted a greenhouse experiment manipulating nitrogen (N) and phosphorus (P) to create soil nutrient availability and N:P gradients for microcosm communities with and without AMF. We found that AMF suppressed plant diversity at low P levels, whereas it did not alter the diversity at high P levels because of trade‐offs in the abundance of the dominant and subordinate species. AMF reduced plant diversity at the intermediate N:P ratios, while AMF did not affect the diversity at low and high N:P ratios. P addition decreased the mycorrhizal contribution to community productivity, whereas N addition reduced the negative effects of AMF on productivity at high P levels. AMF decreased community productivity at low N:P ratios but increased it at high N:P ratios. AMF increased the stoichiometric homoeostasis of plant communities, which was positively correlated with the stability of productivity under variations in soil N:P ratios. Our study demonstrates that both resource availability and stoichiometry influence the effect of AMF on plant community productivity and diversity and suggests that AMF may increase the stability of plant communities under variations in the soil nutrients by increasing the stoichiometric homoeostasis of the plant community.  相似文献   

8.
Recent theoretical and experimental work suggests that species diversity enhances the temporal stability of communities. However, empirical support largely comes from experimental communities. The relationship between diversity and stability in natural communities, and the ones facing environmental changes in particular, has received less attention. We created a gradient of fertility in a natural alpine meadow community to test the effects of diversity and fertilization on the temporal variability of community cover and cover of component species and to determine the importance of asynchrony, portfolio effects, cover and dominance for diversity-stability relationships. Although fertilization strongly reduced species richness, the temporal stability in community cover increased with fertilization. Most species showed a decline of temporal stability in mean population cover with fertilization, but two grass species, which dominated fertilized communities after 10 years, showed an increase of stability. Detailed analysis revealed that the increased dominance of these two highly stable grass species was associated with increased community stability at high levels of fertilization. In contrast, we found little support for other mechanisms that have been proposed to contribute to community stability, such as changes in asynchrony and portfolio effects. We conclude that the presence of highly productive species that have stabilizing properties dominate fertilized assemblages and enhance ecosystem stability.  相似文献   

9.

Background

Over the past two decades many studies have demonstrated that plant species diversity promotes primary productivity and stability in grassland ecosystems. Additionally, soil community characteristics have also been shown to influence the productivity and composition of plant communities, yet little is known about whether soil communities also play a role in stabilizing the productivity of an ecosystem.

Methodology/Principal Findings

Here we use microcosms to assess the effects of the presence of soil communities on plant community dynamics and stability over a one-year time span. Microcosms were filled with sterilized soil and inoculated with either unaltered field soil or field soil sterilized to eliminate the naturally occurring soil biota. Eliminating the naturally occurring soil biota not only resulted in lower plant productivity, and reduced plant species diversity, and evenness, but also destabilized the net aboveground productivity of the plant communities over time, which was largely driven by changes in abundance of the dominant grass Lolium perenne. In contrast, the grass and legumes contributed more to net aboveground productivity of the plant communities in microcosms where soil biota had been inoculated. Additionally, the forbs exhibited compensatory dynamics with grasses and legumes, thus lowering temporal variation in productivity in microcosms that received the unaltered soil inocula. Overall, asynchrony among plant species was higher in microcosms where an unaltered soil community had been inoculated, which lead to higher temporal stability in community productivity.

Conclusions/Significance

Our results suggest that soil communities increase plant species asynchrony and stabilize plant community productivity by equalizing the performance among competing plant species through potential antagonistic and facilitative effects on individual plant species.  相似文献   

10.
火烧对羊草草原植物群落组成的影响   总被引:24,自引:2,他引:22  
在羊草草原正常能着火季节内,通过人为点烧的方法,对比研究了不同时间火烧对植物群落组成的影响.结果表明,羊草-杂类草草原早春火烧后,群落密度、种类丰富度和多样性提高,均匀性降低;羊草典型草原秋季火烧后,群落密度、多样性和均匀性降低,种类丰富度提高.连续2次火烧除羊草和几种1—2年生植物密度增加外,其它各种群密度降低,群落多样性也降低,一些种类退出群落.  相似文献   

11.
Plant diversity controls arthropod biomass and temporal stability   总被引:1,自引:0,他引:1  
Understanding the linkages among species diversity, biomass production and stability underlies effective predictions for conservation, agriculture and fisheries. Although these relationships have been well studied for plants and, to a lesser extent, consumers, relationships among plant and consumer diversity, productivity, and temporal stability remain relatively unexplored. We used structural equation models to examine these relationships in a long‐term experiment manipulating plant diversity and enumerating the arthropod community response. We found remarkably similar strength and direction of interrelationships among diversity, productivity and temporal stability of consumers and plants. Further, our results suggest that the frequently observed relationships between plant and consumer diversity occur primarily via changes in plant production leading to changed consumer production rather than via plant diversity directly controlling consumer diversity. Our results demonstrate that extinction or invasion of plant species can resonate via biomass and energy flux to control diversity, production and stability of both plant and consumer communities.  相似文献   

12.
Yang H  Jiang L  Li L  Li A  Wu M  Wan S 《Ecology letters》2012,15(6):619-626
Anthropogenic perturbations may affect biodiversity and ecological stability as well as their relationships. However, diversity-stability patterns and associated mechanisms under human disturbances have rarely been explored. We conducted a 7-year field experiment examining the effects of mowing and nutrient addition on the diversity and temporal stability of herbaceous plant communities in a temperate steppe in northern China. Mowing increased population and community stability, whereas nutrient addition had the opposite effects. Stability exhibited positive relationships with species richness at population, functional group and community levels. Treatments did not alter these positive diversity-stability relationships, which were associated with the stabilising effect of species richness on component populations, species asynchrony and portfolio effects. Despite the difficulty of pinpointing causal mechanisms of diversity-stability patterns observed in nature, our results suggest that diversity may still be a useful predictor of the stability of ecosystems confronted with anthropogenic disturbances.  相似文献   

13.
Ecologists have rarely explored the potential influence of local (alpha) biodiversity on the stability and local extinction of spatially isolated populations. Twenty years of annual counts of a small, grazing rodent (Utah prairie dogs, Cynomys parvidens ) from 20 different isolated local populations (colonies) in southern Utah, U.S.A. were analysed. These prairie dogs exhibited large fluctuations and repeated extinctions at individual colonies during the census period. Frequency of extinction at a colony declined dramatically as the number of locally occurring plant species increased. This pattern was not explained by differences among colonies in plant productivity, plant species composition, colony size, or variability in annual counts. Thus, lower extinction risk of consumer populations may be associated with greater resource diversity, and maintaining high local plant diversity may help sustain spatially isolated herbivore populations in fragmented habitats.  相似文献   

14.
Andrew Wilby  Moshe Shachak 《Oikos》2004,106(2):209-216
Compensatory population dynamics among species stabilise aggregate community variables. Inter-specific competition is thought to be stabilising as it promotes asynchrony among populations. However, we know little about other inter-specific interactions, such as facilitation and granivory. Such interactions are also likely to influence population synchrony and community stability, especially in harsh environments where they are thought to have relatively strong effects in plant communities. We use a manipulative experiment to test the effects of granivores (harvester ants) and nurse plants (dwarf shrubs) on annual plant community dynamics in the Negev desert, Israel. We present evidence for weak and inconsistent effects of harvester ants on plant abundance and on population and community stability. By contrast, we show that annual communities under shrubs were more species rich, had higher plant density and were temporally less variable than communities in the inter-shrub matrix. Species richness and plant abundance were also more resistant to drought in the shrub under-storey compared with the inter-shrub matrix, although population dynamics in both patch types were synchronised. Hence, we show that inter-specific interactions other than competition affect community stability, and that hypothesised mechanisms linking compensatory dynamics and community stability may not operate to the same extent in arid plant communities.  相似文献   

15.
Explaining how heterogeneous spatial patterns of species diversity emerge is one of the most fascinating questions of biogeography. One of the great challenges is revealing the mechanistic effect of environmental variables on diversity. Correlative analyses indicate that productivity is associated with taxonomic, phylogenetic, and functional diversity of communities. Surprisingly, no unifying body of theory have been developed to understand the mechanism by which spatial variation of productivity affects the fundamental processes of biodiversity. Based on widely discussed verbal models in ecology about the effect of productivity on species diversity, we developed a spatially explicit neutral model that incorporates the effect of primary productivity on community size and confronted our model's predictions with observed patterns of species richness and evolutionary history of Australian terrestrial mammals. The imposed restrictions on community size create larger populations in areas of high productivity, which increases community turnover and local speciation, and reduces extinction. The effect of productivity on community size modeled in our study causes higher accumulation of species diversity in productive regions even in the absence of niche‐based processes. However, such a simple model is not capable of reproducing spatial patterns of mammal evolutionary history in Australia, implying that more complex evolutionary mechanisms are involved. Our study demonstrates that the overall patterns of species richness can be directly explained by changes in community sizes along productivity gradients, supporting a major role of processes associated with energetic constraints in shaping diversity patterns.  相似文献   

16.
Vertebrate herbivores can be key determinants of grassland plant species richness, although the magnitude of their effects can largely depend on ecosystem and herbivore characteristics. It has been demonstrated that the combined effect of primary productivity and body size is critical when assessing the impact of herbivores on plant richness of perennial-dominated grasslands; however, the interaction of site productivity and herbivore size as determinants of plant richness in annual-dominated pastures remains unknown. We experimentally partitioned primary productivity and herbivore body size (sheep and wild rabbits) to study the effect of herbivores on the plant species richness of a Mediterranean semiarid annual plant community in central Spain over six years. We also analyzed the effect of grazing and productivity on the evenness and species composition of the plant community, and green cover, litter, and plant height. We found that plant richness was higher where the large herbivore was present at high-productivity sites but barely changed at low productivity. The small herbivore did not affect species richness at either productivity site despite its large effects on species composition. We propose that adaptations to resource scarcity and herbivory prevented plant richness changes at low-productivity sites, whereas litter accumulation in the absence of herbivores decreased plant richness at high productivity. Our results are consistent with predictions arising from a long history of grazing and highlight the importance of both large and small herbivores to the maintenance of plant diversity of Mediterranean annual-dominated pastures.  相似文献   

17.
? Premise of the Study: Effective population size (N(e)) is a critical index of the evolutionary capacity of populations. Low N(e) indicates that standing genetic diversity is susceptible to loss via stochastic processes (and inbreeding) and is, therefore, unavailable for natural selection to act upon. Reported N(e) in plant populations is often quite low. What biological and ecological factors might produce such low N(e) ? Methods: We conducted a simulation model to test the effect of randomly assigned and autocorrelated growth rates of annual plants on plant-size distributions at the end of the growing season. Because plant size is directly correlated with reproductive output in annual plants, variation in plant size reflects variation in reproduction, and thus our modeled size distributions can be used to estimate N(e). ? Key Results: Randomly assigned growth rates had a negligble effect on N(e)/N. Autocorrelated growth rates decreased N(e)/N as the length of the growing season increased. This was the case even when the variance in growth rates was as low as 0.1% of the mean. ? Conclusions: While intrinsic plant biology can affect the degree of growth autocorrelation, ecological factors such as competition, herbivory, and abiotic stress can increase or decrease levels of growth autocorrelation. Ecological factors that increase growth autocorrelation can have significant effects on genetic drift within populations.  相似文献   

18.
Theory and empirical results suggest that high biodiversity should often cause lower temporal variability in aggregate community properties such as total community biomass. We assembled microbial communities containing 2 to 8 species of competitors in aquatic microcosms and found that the temporal change in total community biomass was positively but insignificantly associated with diversity in a constant temperature environment. There was no evidence of any trend in variable temperature environments. Three non-exclusive mechanisms might explain the lack of a net stabilising effect of species richness on temporal change. (1) A direct destabilising effect of diversity on population level variances caused some populations to vary more when embedded in more diverse communities. (2) Similar responses of the different species to environmental variability might have limited any insurance effect of increased species richness. (3) Large differences in the population level variability of different species (i.e., unevenness) could weaken the relation between species richness and community level stability. These three mechanisms may outweigh the stabilising effects of increases in total community biomass with diversity, statistical averaging, and slightly more negative covariance in more diverse communities. Our experiment and analyses advocate for further experimental investigations of diversity-variability relations.  相似文献   

19.
In an experiment on artificial plant communities, the effects of three components of plant diversity—plant species diversity, plant functional group diversity and plant functional diversity—on community productivity and soil water content were compared. We found that simple regression analysis showed a positive diversity effect on ecosystem processes (productivity and soil water content). However, when three components of diversity were included in the multiple regression analyses, the results showed that functional group diversity and functional diversity had more important effects on productivity and resource use efficiency. These results suggested that, compared with species number, functional differences among species and the range of functional traits carried by plants are the basis of biodiversity effects on ecosystem functioning. These diversity effects of increasing functional group diversity or functional diversity were likely because species differing greatly in size, life form, phenology and capacity to capture and use resources efficiently in diverse communities realize complementary resource use in temporal, spatial, and biological ways.  相似文献   

20.
Understanding stability across ecological hierarchies is critical for landscape management in a changing world. Recent studies showed that synchrony among lower‐level components is key to scaling temporal stability across two hierarchical levels, whether spatial or organizational. But an extended framework that integrates both spatial scale and organizational level simultaneously is required to clarify the sources of ecosystem stability at large scales. However, such an extension is far from trivial when taking into account the spatial heterogeneities in real‐world ecosystems. In this paper, we develop a partitioning framework that bridges variability and synchrony measures across spatial scales and organizational levels in heterogeneous metacommunities. In this framework, metacommunity variability is expressed as the product of local‐scale population variability and two synchrony indices that capture the temporal coherence across species and space, respectively. We develop an R function ‘var.partition’ and apply it to five types of desert plant communities to illustrate our framework and test how diversity shapes synchrony and variability at different hierarchical levels. As the observation scale increased from local populations to metacommunities, the temporal variability of plant productivity was reduced mainly by factors that decreased species synchrony. Species synchrony decreased from local to regional scales, and spatial synchrony decreased from species to community levels. Local and regional species diversity were key factors that reduced species synchrony at the two scales. Moreover, beta diversity contributed to decreasing spatial synchrony among communities. We conclude that our new framework offers a valuable toolbox for future empirical studies to disentangle the mechanisms and pathways by which ecological factors influence stability at large scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号