首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comprehensive analysis of interfacial water molecules in the structures of 109 unique protein-DNA complexes is presented together with a new view on their role in protein-DNA recognition. Location of interfacial water molecules as reported in the crystal structures and as emerging from a series of molecular dynamics studies on protein-DNA complexes with explicit solvent and counterions, was analyzed based on their acceptor, donor hydrogen bond relationships with the atoms and residues of the macromolecules, electrostatic field calculations and packing density considerations. Water molecules for the purpose of this study have been categorized into four classes: viz. (I) those that contact both the protein and the DNA simultaneously and thus mediate recognition directly; (II) those that contact either the protein or the DNA exclusively via hydrogen bonds solvating each solute separately; (III) those that contact the hydrophobic groups in either the protein or the DNA; and, lastly (IV) those that contact another water molecule. Of the 17,963 crystallographic water molecules under examination, about 6% belong to class I and 76% belong to class II. About three-fourths of class I and class II water molecules are exclusively associated with hydrogen bond acceptor atoms of both protein and DNA. Noting that DNA is polyanionic, it is significant that a majority of the crystallographically observed water molecules as well as those from molecular dynamics simulations should be involved in facilitating binding by screening unfavorable electrostatics. Less than 2% of the reported water molecules occur between hydrogen bond donor atoms of protein and acceptor atoms of DNA. These represent cases where protein atoms cannot reach out to DNA to make favorable hydrogen bond interactions due to packing/structural restrictions and interfacial water molecules provide an extension to side-chains to accomplish hydrogen bonding.  相似文献   

2.
The binding of galactose-specific lectins from Erythrina indica (EIL), Erythrina arborescens (EAL), Ricinus communis (agglutinin; RCA-I), Abrus precatorius (agglutinin; APA), and Bandeiraea simplicifolia (lectin I; BSL-I) to fluoro-, deoxy-, and thiogalactoses were studied in order to determine the strength of hydrogen bonds between the hydroxyl groups of galactose and the binding sites of the proteins. The results have allowed insight into the nature of the donor/acceptor groups in the lectins that are involved in hydrogen bonding with the sugar. The data indicate that the C-2 hydroxyl group of galactose is involved in weak interactions as a hydrogen-bond acceptor with uncharged groups of EIL and EAL. With RCA-I, the C-2 hydroxyl group forms two weak hydrogen bonds in the capacity of a hydrogen-bond acceptor and a donor. On the other hand, there is a strong hydrogen bond between the C-2 hydroxyl group of galactose, which acts as a donor, and a charged group on BSL-I. The C-2 hydroxyl group of the sugar is also a hydrogen-bond donor to APA. The lectins are involved in strong hydrogen bonds through charged groups with the C-3 and C-4 hydroxyl groups of galactose, with the latter serving as hydrogen-bond donors. The C-6 hydroxyl group of the sugar is weakly hydrogen bonded with neutral groups of EIL, EAL, and APA. With BSL-I, however, a strong hydrogen bond is formed at this position with a charged group of the lectin. The C-6 hydroxyl groups is a hydrogen-bond acceptor for EIL and EAL, a hydrogen-bond donor for APA and BSL-I, and appears not to be involved in binding to RCA-I. The data with the thiosugars indicate the involvement of the C-1 hydroxyl group of galactose in binding to EIL, EAL, and BSL-I, but not to RCA-I and APA. We have also performed a similar analysis of the binding data of fluoro- and deoxysugars to concanavalin A [Poretz, R. D. and Goldstein, I. J. (1970) Biochemistry 9, 2890-2896]. This has allowed comparison of the donor/acceptor properties and free energies of hydrogen bonding of the hydroxyl groups of methyl alpha-D-mannopyranoside to concanavalin A with the results in the present study. On the basis of this analysis, new assignments are suggested for amino acid residues of concanavalin A [corrected] that may be involved in hydrogen bonding to the sugar.  相似文献   

3.
The hydrogen bonding arrangement in anhydrous β-chitin, a homopolymer of N-acetylglucosamine, was directly determined by neutron fiber diffraction. Data were collected from a sample prepared from the bathophilous tubeworm Lamellibrachia satsuma in which all labile hydrogen atoms had been replaced by deuterium. Initial positions of deuterium atoms on hydroxyl and acetamide groups were directly located in Fourier maps synthesized using phases calculated from the X-ray structure and amplitudes measured from the neutron data. The hydrogen bond arrangement in the refined structure is in general agreement with predictions based on the X-ray structure: O3 donates a hydrogen bond to the O5 ring oxygen atom of a neighboring residue in the same chain; N2 and O6 donate hydrogen bonds to the same carbonyl oxygen O7 of an adjacent chain. The intramolecular O3···O5 hydrogen bond has the most energetically favorable geometry with a hydrogen to acceptor distance of 1.77 ? and a hydrogen bond angle of 171°.  相似文献   

4.
Hydrogen bonds between polarized atoms play a crucial role in protein interactions and are often used in drug design, which usually neglects the potential of C-H...O hydrogen bonds. The 1.4 A resolution crystal structure of the ligand binding domain of the retinoic acid receptor RARgamma complexed with the retinoid SR11254 reveals several types of C-H...O hydrogen bonds. A striking example is the hydroxyl group of the ligand that acts as an H bond donor and acceptor, leading to a synergy between classical and C-H...O hydrogen bonds. This interaction introduces both specificity and affinity within the hydrophobic ligand pocket. The similarity of intraprotein and protein-ligand C-H...O interactions suggests that such bonds should be considered in rational drug design approaches.  相似文献   

5.
A total of 19 835 polar residues from a data set of 250 non-homologous and highly resolved protein crystal structures were used to identify side-chain main-chain (SC-MC) hydrogen bonds. The ratio of the number of SC-MC hydrogen bonds to the total number of polar residues is close to 1:2, indicating the ubiquitous nature of such hydrogen bonds. Close to 56% of the SC-MC hydrogen bonds are local involving side-chain acceptor/donor ('i') and a main-chain donor/acceptor within the window i-5 to i+5. These short-range hydrogen bonds form well defined conformational motifs characterized by specific combinations of backbone and side-chain torsion angles. (a) The Ser/Thr residues show the greatest preference in forming intra-helical hydrogen bonds between the atoms O(gamma)(i) and O(i-4). More than half the examples of such hydrogen bonds are found at the middle of alpha-helices rather than at their ends. The most favoured motif of these examples is alpha(R)alpha(R)alpha(R)alpha(R)(g(-)). (b) These residues also show great preference to form hydrogen bonds between O(gamma)(i) and O(i-3), which are closely related to the previous type and though intra-helical, these hydrogen bonds are more often found at the C-termini of helices than at the middle. The motif represented by alpha(R)alpha(R)alpha(R)alpha(R)(g(+)) is most preferred in these cases. (c) The Ser, Thr and Glu are the most frequently found residues participating in intra-residue hydrogen bonds (between the side-chain and main-chain of the same residue) which are characterized by specific motifs of the form beta(g(+)) for Ser/Thr residues and alpha(R)(g(-)g(+)t) for Glu/Gln. (d) The side-chain acceptor atoms of Asn/Asp and Ser/Thr residues show high preference to form hydrogen bonds with acceptors two residues ahead in the chain, which are characterized by the motifs beta (tt')alphaR and beta(t)alpha(R), respectively. These hydrogen bonded segments, referred to as Asx turns, are known to provide stability to type I and type I' beta-turns. (e) Ser/Thr residues often form a combination of SC-MC hydrogen bonds, with the side-chain donor hydrogen bonded to the carbonyl oxygen of its own peptide backbone and the side-chain acceptor hydrogen bonded to an amide hydrogen three residues ahead in the sequence. Such motifs are quite often seen at the beginning of alpha-helices, which are characterized by the beta(g(+))alpha(R)alpha(R) motif. A remarkable majority of all these hydrogen bonds are buried from the protein surface, away from the surrounding solvent. This strongly indicates the possibility of side-chains playing the role of the backbone, in the protein interiors, to satisfy the potential hydrogen bonding sites and maintaining the network of hydrogen bonds which is crucial to the structure of the protein.  相似文献   

6.
Kre2p/Mnt1p is a Golgi alpha1,2-mannosyltransferase involved in the biosynthesis of Saccharomyces cerevisiae cell wall glycoproteins. The protein belongs to glycosyltransferase family 15, a member of which has been implicated in virulence of Candida albicans. We present the 2.0 A crystal structures of the catalytic domain of Kre2p/Mnt1p and its binary and ternary complexes with GDP/Mn(2+) and GDP/Mn(2+)/acceptor methyl-alpha-mannoside. The protein has a mixed alpha/beta fold similar to the glycosyltransferase-A (GT-A) fold. Although the GDP-mannose donor was used in the crystallization experiments and the GDP moiety is bound tightly to the active site, the mannose is not visible in the electron density. The manganese is coordinated by a modified DXD motif (EPD), with only the first glutamate involved in a direct interaction. The position of the donor mannose was modeled using the binary and ternary complexes of other GT-A enzymes. The C1" of the modeled donor mannose is within hydrogen-bonding distance of both the hydroxyl of Tyr(220) and the O2 of the acceptor mannose. The O2 of the acceptor mannose is also within hydrogen bond distance of the hydroxyl of Tyr(220). The structures, modeling, site-directed mutagenesis, and kinetic analysis suggest two possible catalytic mechanisms. Either a double-displacement mechanism with the hydroxyl of Tyr(220) as the potential nucleophile or alternatively, an S(N)i-like mechanism with Tyr(220) positioning the substrates for catalysis. The importance of Tyr(220) in both mechanisms is highlighted by a 3000-fold reduction in k(cat) in the Y220F mutant.  相似文献   

7.
Manikandan K  Ramakumar S 《Proteins》2004,56(4):768-781
A comprehensive database analysis of C--H...O hydrogen bonds in 3124 alpha-helices and their corresponding helix termini has been carried out from a nonredundant data set of high-resolution globular protein structures resolved at better than 2.0 A in order to investigate their role in the helix, the important protein secondary structural element. The possible occurrence of 5 --> 1 C--H...O hydrogen bond between the ith residue CH group and (i - 4)th residue C==O with C...O < or = 3.8 A is studied, considering as potential donors the main-chain Calpha and the side-chain carbon atoms Cbeta, Cgamma, Cdelta and Cepsilon. Similar analysis has been carried out for 4 --> 1 C--H...O hydrogen bonds, since the C--H...O hydrogen bonds found in helices are predominantly of type 5 --> 1 or 4 --> 1. A total of 17,367 (9310 of type 5 --> 1 and 8057 of type 4 --> 1) C--H...O hydrogen bonds are found to satisfy the selected criteria. The average stereochemical parameters for the data set suggest that the observed C--H...O hydrogen bonds are attractive interactions. Our analysis reveals that the Cgamma and Cbeta hydrogen atom(s) are frequently involved in such hydrogen bonds. A marked preference is noticed for aliphatic beta-branched residue Ile to participate in 5 --> 1 C--H...O hydrogen bonds involving methylene Cgamma 1 atom as donor in alpha-helices. This may be an enthalpic compensation for the greater loss of side-chain conformational entropy for beta-branched amino acids due to the constraint on side-chain torsion angle, namely, chi1, when they occur in helices. The preference of amino acids for 4 --> 1 C--H...O hydrogen bonds is found to be more for Asp, Cys, and for aromatic residues Trp, Phe, and His. Interestingly, overall propensity for C--H...O hydrogen bonds shows that a majority of the helix favoring residues such as Met, Glu, Arg, Lys, Leu, and Gln, which also have large side-chains, prefer to be involved in such types of weak attractive interactions in helices. The amino acid side-chains that participate in C--H...O interactions are found to shield the acceptor carbonyl oxygen atom from the solvent. In addition, C--H...O hydrogen bonds are present along with helix stabilizing salt bridges. A novel helix terminating interaction motif, X-Gly with Gly at C(cap) position having 5 --> 1 Calpha--H...O, and a chain reversal structural motif having 1 --> 5 Calpha-H...O have been identified and discussed. Our analysis highlights that a multitude of local C--H...O hydrogen bonds formed by a variety of amino acid side-chains and Calpha hydrogen atoms occur in helices and more so at the helix termini. It may be surmised that the main-chain Calpha and the side-chain CH that participate in C--H...O hydrogen bonds collectively augment the cohesive energy and thereby contribute together with the classical N--H...O hydrogen bonds and other interactions to the overall stability of helix and therefore of proteins.  相似文献   

8.
Maiti A  Roy S 《Nucleic acids research》2005,33(18):5896-5903
The specificity of protein–nucleic acid recognition is believed to originate largely from hydrogen bonding between protein polar atoms, primarily side-chain and polar atoms of nucleic acid bases. One way to design new nucleic acid binding proteins of novel specificity is by structure-guided alterations of the hydrogen bonding patterns of a nucleic acid–protein complex. We have used cI repressor of bacteriophage λ as a model system. In the λ-repressor–DNA complex, the -NH2 group (hydrogen bond donor) of lysine-4 of λ-repressor forms hydrogen bonds with the amide carbonyl atom of asparagine-55 (acceptor) and the O6 (acceptor) of CG6 of operator site OL1. Substitution of lysine-4 (two donors) by iso-steric S-(2-hydroxyethyl)-cysteine (one donor and one acceptor), by site-directed mutagenesis and chemical modification, leads to switch of binding specificity of λ-repressor from C:G to T:A at position 6 of OL1. This suggests that unnatural amino acid substitutions could be a simple way of generating nucleic acid binding proteins of altered specificity.  相似文献   

9.
The three-dimensional structure of the 131-residue rat intestinal fatty acid-binding protein, without bound ligand (apoI-FABP), has been refined with x-ray diffraction data to a nominal resolution of 1.19 A. The final model has a conventional crystallographic R-factor of 16.9% for 34,290 unique reflections [a root mean square (r.m.s.) deviation for bond length of 0.012 A and a r.m.s. deviation of 2.368 degrees for bond angles]. Ninety-two residues are present as components of the protein's 10 anti-parallel beta-strands while 14 residues are part of its two short alpha-helices. The beta-strands and alpha-helices are organized into two nearly orthogonal beta-sheets. Particular attention has been placed in defining solvent structure and the structures of discretely disordered groups in this protein. Two hundred thirty-seven solvent molecules have been identified; 24 are located within apoI-FABP. The refined model includes alternate conformers for 228 protein atoms (109 main-chain, 119 side-chain) and 63 solvent molecules. We have found several aromatic side-chains with multiple conformations located near, or in, the protein's ligand binding site. This observation, along with the fact that these side-chains have a temperature factor that is relatively higher than that of other aromatic residues, suggests that they may be involved in the process of noncovalent binding of fatty acid. The absence of a true hydrophobic core in I-FABP suggests that its structural integrity may be maintained primarily by a hydrogen bonding network involving protein and solvent atoms.  相似文献   

10.
A variety of powerful NMR experiments have been introduced over the last few years that allow for the direct identification of different combinations of donor and acceptor atoms involved in hydrogen bonds in biomolecules. This ability to directly observe tertiary structural hydrogen bonds in solution tremendously facilitates structural studies of nucleic acids. We show here that an adiabatic HNN-COSY pulse scheme permits observation and measurement of J(N,N) couplings for nitrogen sites that are separated by up to 140 ppm in a single experiment at a proton resonance frequency of 500 MHz. Crucial hydrogen bond acceptor sites in nucleic acids, such as cytidine N3 nitrogens, can be unambiguously identified even in the absence of detectable H41 and H42 amino protons using a novel triple-resonance two-dimensional experiment, denoted H5(C5C4)N3. The unambiguous identification of amino nitrogen donor and aromatic nitrogen acceptor sites associated with both major groove as well as minor groove triple base pairs reveal the details of hydrogen bonding networks that stabilize the complex architecture of frameshift-stimulating mRNA pseudoknots. Another key tertiary interaction involving a 2′-OH hydroxyl proton that donates a hydrogen bond to an aromatic nitrogen acceptor in a cis Watson–Crick/sugar edge interaction can also be directly detected using a quantitative J(H,N) 1H,15N-HSQC experiment.  相似文献   

11.
Aromatic rings act as hydrogen bond acceptors   总被引:24,自引:0,他引:24  
Simple energy calculations show that there is a significant interaction between a hydrogen bond donor (like the greater than NH group) and the centre of a benzene ring, which acts as a hydrogen bond acceptor. This interaction, which is about half as strong as a normal hydrogen bond, contributes approximately 3 kcal/mol (1 cal = 4.184 J) of stabilizing enthalpy and is expected to play a significant role in molecular associations. It is of interest that the aromatic hydrogen bond arises from small partial charges centred on the ring carbon and hydrogen atoms: there is no need to consider delocalized electrons. Although some energy calculations have included such partial charges, their role in forming such a strong interaction was not appreciated until after aromatic hydrogen bonds had been observed in protein-drug complexes.  相似文献   

12.
To design a reliable 3D QSAR model of the intestinal Na(+)/bile acid cotransporter, we have used a training set of 17 inhibitors of the rabbit ileal Na(+)/bile acid cotransporter. The IC(50) values of the training set of compounds covered a range of four orders of magnitude for inhibition of [(3)H]cholyltaurine uptake by CHO cells expressing the rabbit ileal Na(+)/bile acid cotransporter allowing the generation of a pharmacophore using the CATALYST algorithm. After thorough conformational analysis of each molecule, CATALYST generated a pharmacophore model characterized by five chemical features: one hydrogen bond donor, one hydrogen bond acceptor, and three hydrophobic features. The 3D pharmacophore was enantiospecific and correctly estimated the activities of the members of the training set. The predicted interactions of natural bile acids with the pharmacophore model of the ileal Na(+)/bile acid cotransporter explain exactly the experimentally found structure;-activity relationships for the interaction of bile acids with the ileal Na(+)/bile acid cotransporter (Kramer et al. 1999. J. Lipid. Res. 40: 1604;-1617). The natural bile acid analogues cholyltaurine, chenodeoxycholyltaurine, or deoxycholyltaurine were able to map four of the five features of the pharmacophore model: a) the five-membered ring D and the methyl group at position 18 map one hydrophobic site and the 21-methyl group of the side chain maps a second hydrophobic site; b) one of the alpha-oriented hydroxyl groups at position 7 or 12 fits the hydrogen bond donor feature; c) the negatively charged side chain acts as hydrogen bond acceptor; and d) the hydroxy group at position 3 does not specifically map any of the five binding features of the pharmacophore model. The 3-hydroxy group of natural bile acids is not essential for interactions with ileal or hepatic Na(+)/bile acid cotransporters. A modification of the 3-position of a natural bile acid molecule is therefore the preferred position for drug targeting strategies using bile acid transport pathways.  相似文献   

13.
14.
IR spectra (1600-1800 and 3000-3650 cm-1) of lincomycin base solutions in inert (CCl4 and C2Cl4), proton acceptor (dioxane, dimethylsulfoxide and triethyl amine) and proton donor (CHCl3, CD3OD and D2O) solvents were studied. Analysis of the concentration and temperature changes in the spectra revealed that association in lincomycin in the inert solvents was due to intramolecular hydrogen linkage involving amide and hydroxyl groups. Disintegration of the associates after the solution dilution and temperature rise was accompanied by formation of intramolecular bonds stabilizing the stable conformation structure of the lincomycin molecule. The following hydrogen linkage in the conformation was realized: NH...N (band v NH...N at 3340 cm-1), OH...O involving the hydroxyl at C-7 and O atoms in the D-galactose ring (band v OH...O at 3548 cm-1), a chain of the hydrogen bonds OH...OH...OH in the lincomycin carbohydrate moiety (band v OH...O at 3593 cm-1 and v OH of the end hydroxyl group at 3625 cm-1). Bonds NH and C-O of the amide group were located in transconformation. Group C-O did not participate in the intramolecular hydrogen linkage.  相似文献   

15.
In order to describe the detailed conformation of the oxidized flavodoxin from a eukaryotic red alga, Chondrus crispus, the crystal structure has been refined by a restrained least-squares method. The crystallographic R factor is 0.168 for 13,899 reflections with F greater than 2 sigma F between 6.0 and 1.8 A resolution. The refined model includes 173 amino acid residues, flavin mononucleotide (FMN) and 110 water molecules. The root-mean-square deviation in bond lengths from ideal values is 0.015 A, and the mean co-ordinate error is estimated to be 0.2 A. The FMN is located at the periphery of the molecule. The orientation of the isoalloxazine ring is such that the C-7 and C-8 methyl groups are exposed to solvent and the pyrimidine moiety is buried in the protein. Three peptide segments, T8-T13, T55-T58 and D94-C103, are involved in FMN binding. The first segment of T8-T13 enfolds the phosphate group of the FMN. The three oxygen atoms in the phosphate group form extensive hydrogen bonds with amide groups of the main chain and the O gamma atoms of the side-chains in this segment. T55 O and W56 N epsilon 1 in the second segment form hydrogen bonds with O-2 in the ribityl moiety and one of the oxygen atoms in the phosphate group, respectively. The O gamma H of T58 forms a hydrogen bond with the N-5 atom in the isoalloxazine ring, which is expected to be protonated in the semiquinone form. The third segment is in contact with the isoalloxazine ring. It appears that the hydrogen bond acceptor of the NH of Asp94 in the third segment is O-2 rather than N-1 in the isoalloxazine ring. The isoalloxazine ring is flanked by the side-chains of Trp56 and Tyr98; it forms an angle of 38 degrees with the indole ring of Trp56 and is almost parallel to the benzene ring of Tyr98. The environment of the phosphate group is conserved as in other flavodoxins whereas that of the isoalloxazine ring differs. The relationship between the hydrogen bond to the N-5 in the ring and the redox potential for the oxidized/semiquinone couple is discussed.  相似文献   

16.
Anomalous NMR behavior of the hydroxyl proton resonance for Ser 31 has been reported for histidine-containing protein (HPr) from two microorganisms: Escherichia coli and Staphylococcus aureus. The unusual slow exchange and chemical shift exhibited by the resonance led to the proposal that the hydroxyl group is involved in a strong hydrogen bond. To test this hypothesis and to characterize the importance of such an interaction, a mutant in which Ser 31 is replaced by an alanine was generated in HPr from Escherichia coli. The activity, stability, and structure of the mutant HPr were assessed using a reconstituted assay system, analysis of solvent denaturation curves, and NMR, respectively. Substitution of Ser 31 yields a fully functional protein that is only slightly less stable (delta delta G(folding) = 0.46 +/- 0.15 kcal mol-1) than the wild type. The NMR results confirm the identity of the hydrogen bond acceptor as Asp 69 and reveal that it exists as the gauche- conformer in wild-type HPr in solution but exhibits conformational averaging in the mutant protein. The side chain of Asp 69 interacts with two main-chain amide proteins in addition to its interaction with the side chain of Ser 31 in the wild-type protein. These results indicate that removal of the serine has led to the loss of all three hydrogen bond interactions involving Asp 69, suggesting a cooperative network of interactions. A complete analysis of the thermodynamics was performed in which differences in side-chain hydrophobicity and conformational entropy between the two proteins are accounted for.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Crystal structures of p-xylene-crystallized deoxycholic acid (3alpha,12alpha-dihydroxy-5beta-cholan-24-oic acid) and its three epimers (3beta,12alpha-; 3alpha,12beta-; and 3beta,12beta-) have been solved. Deoxycholic acid forms a crystalline (P21) complex with the solvent with a 2:1 stoichiometry whereas crystals of the three epimers do not form inclusion compounds. Crystals of the 3beta,12beta-epimer are hexagonal, whereas the 3alpha,12beta-and 3beta,12alpha-epimers crystallize in the P2(1)2(1)2(1) orthorhombic space group. The three hydrogen bond sites (two hydroxy groups, i. e. O3-H, and O12-H, and the carboxylic acid group of the side chain, O24bO24a-H) simultaneously act as hydrogen bond donors and acceptors. The hydrogen bond network in the crystals was analyzed and the following sequences have been observed: two chains (abcabc... or acbacb... ) and two rings (abc or acb), which constitute a complete set of all the possible sequences which can be drawn for an intermolecular hydrogen bond network formed by three hydrogen bond donor/acceptor sites forming crossing hydrogen bonds. The orientation of O3-H (alpha or beta) determines the sequence of the acceptor and the donor groups involved in the pattern: O24a --> O12 --> O3 --> O24b when it is alpha and O24a --> O3 --> O12--> O24B when it is beta. These observations were used to predict the hydrogen bond network of p-xylene-crystallized 3-oxo,12alpha-hydroxy-5beta-cholan-24-oic acid. This compound has two hydrogen bond donor and three potential hydrogen bond acceptor sites. According to the previous sequence set, this compound should crystallize in the monoclinic P21 system, should form a complex with the solvent, O24b should not participate in the hydrogen bond network, and the chain sequence O24a --> O12 --> O3 would be followed. All predictions were confirmed experimentally.  相似文献   

18.
The crystal structure of galactinol dihydrate has been determined by X-ray diffraction. The crystal belongs to the orthorhombic system, space group P2(1)2(1)2, a = 15.898(6), b = 19.357(5), c = 5.104(4) A, and Z = 4. The structure was refined to R = 0.044 for 1818 observed structure amplitudes. The primary hydroxyl group exhibits twofold orientational disorder. The linkage conformation is close to those of alpha-(1 --> 4) linkages in methyl alpha-maltotrioside tetrahydrate and erlose trihydrate. Although there is no interring hydrogen bond in galactinol, an indirect interring hydrogen bond including a water molecule is present. The observed conformation is additionally stabilized by the indirect interring hydrogen bond. The global minimum in the relaxed-residue energy map based on the MM3(92) force-field is close to the observed conformation in the crystal structure. All hydroxyl, ring and water oxygen atoms are involved in a complex three-dimensional hydrogen-bonding network.  相似文献   

19.
Sulfur atoms have been known to participate in hydrogen bonds (H‐bonds) and these sulfur‐containing H‐bonds (SCHBs) are suggested to play important roles in certain biological processes. This study aims to comprehensively characterize all the SCHBs in 500 high‐resolution protein structures (≤1.8 Å). We categorized SCHBs into six types according to donor/acceptor behaviors and used explicit hydrogen approach to distinguish SCHBs from those of nonhydrogen bonding interactions. It is revealed that sulfur atom is a very poor H‐bond acceptor, but a moderately good H‐bond donor. In α‐helix, considerable SCHBs were found between the sulphydryl group of cysteine residue i and the carbonyl oxygen of residue i‐4, and these SCHBs exert effects in stabilizing helices. Although for other SCHBs, they possess no specific secondary structural preference, their geometric characteristics in proteins and in free small compounds are significantly distinct, indicating the protein SCHBs are geometrically distorted. Interestingly, sulfur atom in the disulfide bond tends to form bifurcated H‐bond whereas in cysteine‐cysteine pairs prefer to form dual H‐bond. These special H‐bonds remarkably boost the interaction between H‐bond donor and acceptor. By oxidation/reduction manner, the mutual transformation between the dual H‐bonds and disulfide bonds for cysteine‐cysteine pairs can accurately adjust the structural stability and biological function of proteins in different environments. Furthermore, few loose H‐bonds were observed to form between the sulphydryl groups and aromatic rings, and in these cases the donor H is almost over against the rim rather than the center of the aromatic ring. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

20.
Hydroxylation of estrogens at C(2) or C(4) effects differentially their binding affinity to and dissociation rate from the estrogen receptor. The X-ray crystal structure of 4-hydroxyestradiol (4-OH-E2) is reported here and compared with that of 2-hydroxyestradiol (2-OH-E2), the 2- and 4-hydroxylated derivatives of estrone (E1) and with that of the parent estrogens, E1 and E2. The overall molecular shape and hydrogen bonding patterns of each were examined for their possible relevance to their binding to the estrogen receptor and their biological activity. A shift in the B-ring conformation away from the symmetrical 7 alpha,8 beta-half-chair form toward the 8 beta-sofa form is induced by both 2- and 4-hydroxy substitution. This shift appears to be larger in the case of E2 than E1 derivatives and to be correlated with an observed change in the hydrogen bonding potential of the C(3) hydroxyl. In 4-OH-E2, as in E2 and 4-OH-E1, the C(3) hydroxyl functions both as a hydrogen bond donor and acceptor. In contrast in 2-OH-E2 the hydroxyl functions only as a donor. The markedly reduced affinity of 2-hydroxylated estrogens for the estrogen receptor could be due to a combination of steric interactions, competition between O(2) and O(3) for hydrogen bonds for a common site on the receptor, and to general interference with hydrogen bond formation of O(3). The C(4) hydroxyl participates in the formation of a chain of hydrogen bonds in the solid state that is similar to a chain seen in single crystals of E2. The presence of a similar chain of hydrogen bonds involving O(3) in the receptor site could account for the decreased dissociation rate of the 4-OH-E2 receptor complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号