首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The paradigm for differential antigen expression in Borrelia burgdorferi, the agent of Lyme disease, is the reciprocal expression of its outer surface (lipo)proteins (Osp) A and C; as B. burgdorferi transitions from its arthropod vector into mammalian tissue, ospC is upregulated, and ospA is downregulated. In the current study, using B. burgdorferi cultivated under varying conditions in BSK-H medium, we found that a decrease in pH, in conjunction with increases in temperature (e.g. 34 degrees C or 37 degrees C) and cell density, acted interdependently for the reciprocal expression of ospC and ospA. The lower pH (6.8), which induced the reciprocal expression of ospC and ospA in BSK-H medium, correlated with a drop in pH from 7.4 to 6.8 of tick midgut contents during tick feeding. In addition to ospC and ospA, other genes were found to be regulated in reciprocal fashion. Such genes were either ospC-like (e.g. ospF, mlp-8 and rpoS) (group I) or ospA-like (lp6.6 and p22) (group II); changes in expression occurred at the mRNA level. That the expression of rpoS, encoding a putative stress-related alternative sigma factor (sigma(s)), was ospC-like suggested that the expression of some of the group I genes may be controlled through sigma(s). The combined results prompt a model that allows for predicting the regulation of other B. burgdorferi genes that may be involved in spirochaete transmission, virulence or mammalian host immune responses.  相似文献   

6.
7.
Timely expression of the outer surface protein C (OspC) is crucial for the pathogenic strategy of the Lyme disease spirochete Borrelia burgdorferi. The pathogen abundantly expresses OspC during initial infection when the antigen is required, but downregulates when its presence poses a threat to the spirochetes once the anti-OspC humoral response has developed. Here, we show that a large palindromic sequence immediately upstream of the ospC promoter is essential for the repression of ospC expression during murine infection and for the ability of B. burgdorferi to evade specific OspC humoral immunity. Deletion of the sequence completely diminished the ability of B. burgdorferi to avoid clearance by transferred OspC antibody in SCID mice. B. burgdorferi lacking the regulatory element was able to initiate infection but unable to persist in immunocompetent mice. Taken together, the regulatory element immediately upstream of the ospC promoter serves as an operator that may interact with an unidentified repressor(s) to negatively regulate ospC expression and is essential for the immune evasion of B. burgdorferi.  相似文献   

8.
9.
10.
The alternative sigma factor (RpoN-RpoS) pathway controls the expression of key virulence factors in Borrelia burgdorferi. However, evidence to support whether RpoN controls rpoS directly or, perhaps, indirectly via a transactivator has been lacking. Herein we provide biochemical and genetic evidence that RpoN directly controls rpoS in B. burgdorferi.  相似文献   

11.
The development of new genetic systems for studying the complex regulatory events that occur within Borrelia burgdorferi is an important goal of contemporary Lyme disease research. Although recent advancements have been made in the genetic manipulation of B. burgdorferi, there still remains a paucity of basic molecular systems for assessing differential gene expression in this pathogen. Herein, we describe the adaptation of two powerful genetic tools for use in B. burgdorferi. The first is a Photinus pyralis firefly luciferase gene reporter that was codon optimized to enhance translation in B. burgdorferi. Using this modified reporter, we demonstrated an increase in luciferase expression when B. burgdorferi transformed with a shuttle vector encoding the outer surface protein C (OspC) promoter fused to the luciferase reporter was cultivated in the presence of fresh rabbit blood. The second is a lac operator/repressor system that was optimized to achieve the tightest degree of regulation. Using the aforementioned luciferase reporter, we assessed the kinetics and maximal level of isopropyl-beta-D-thiogalactopyranoside (IPTG)-dependent gene expression. This lac-inducible expression system also was used to express the gene carried on lp25 required for borrelial persistence in ticks (bptA). These advancements should be generally applicable for assessing further the regulation of other genes potentially involved in virulence expression by B. burgdorferi.  相似文献   

12.
13.
14.
15.
16.
17.
18.
The 26 to 28 kb circular plasmid of B. burgdorferi sensu lato (cp26) is ubiquitous among bacteria of this group and contains loci implicated in the mouse–tick transmission cycle. Restriction mapping and Southern hybridization indicated that the structure of cp26 is conserved among isolates from different origins and culture passage histories. The cp26 ospC gene encodes an outer surface protein whose synthesis within infected ticks increases when the ticks feed, and whose synthesis in culture increases after a temperature upshift. Previous studies of ospC coding sequences showed them to have stretches of sequence apparently derived from the ospC genes of distantly related isolates by homologous recombination after DNA transfer. We found conservation of the promoter regions of the ospC and guaA genes, which are divergently transcribed. We also demonstrated that the increase in OspC protein after a temperature upshift parallels increases in mRNA levels, as expected if regulatory regions adjoin the conserved sequences in the promoter regions. Finally, we used directed insertion to inactivate the ospC gene of a non-infectious isolate. This first example of directed gene inactivation in B. burgdorferi shows that the OspC protein is not required for stable maintenance of cp26 or growth in culture.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号