首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extraction of maize (Zea mays) leaves by progressive grinding under suitably protective conditions yields total carbonic anhydrase activities (4800 units per milligram chlorophyll) comparable to the activity in spinach (Spinacia oleracea) leaves. The total ribulose diphosphate carboxylase activity was also equal to or greater than the best literature values for maize. Of the total leaf carbonic anhydrase, 72.5% on a chlorophyll basis was present in the mesophyll cells and 14.2% in the bundle-sheath cells. The distribution of the total leaf ribulose diphosphate carboxylase between the mesophyll and bundle-sheath cells was 42.0 and 48.7% respectively. There was three times as much total chlorophyll in extracts of the mesophyll cells compared with the bundle-sheath cells of maize. Similar results for the above distribution of the two enzymes were found using a differential grinding technique. The possible function of carbonic anhydrase in photosynthesis is discussed. The equal distribution of ribulose diphosphate carboxylase activity between the mesophyll and bundle-sheath cells casts doubt upon the hypothesis that a rigid biochemical compartmentation exists between these cell types in maize.  相似文献   

2.
Leaves of dark-grown corn (Zea mays) were illuminated for periods ranging from 3 minutes to 12 hours. The changes in the activities of ribose-5-phosphate isomerase, ribulose-5-phosphate kinase, and ribulose-1,5-diphosphate carboxylase were followed.

The activity of ribose-5-phosphate isomerase did not change significantly until between 12 and 24 hours of illumination. An increase in ribulose-5-phosphate kinase activity occurred after a lag of about 6 hours. The increase in carboxylase activity began after 3 minutes of illumination and increased until after 3 to 6 hours in the light, after which it began to decline. The increases in these enzymes appear to be the result of protein synthesis.

  相似文献   

3.
The activities of certain enzymes related to the carbon assimilation pathway in whole leaves, mesophyll cell extracts, and bundle sheath extracts of the C4 plant Panicum miliaceum have been measured and compared on a chlorophyll basis. Enzymes of the C4 dicarboxylic acid pathway—phosphoenolpyruvate carboxylase and NADP-malic dehydrogenase—were localized in mesophyll cells. Carbonic anhydrase was also localized in mesophyll cell extracts. Ribose 5-phosphate isomerase, ribulose 5-phosphate kinase, and ribulose diphosphate carboxylase—enzymes of the reductive pentose phosphate pathway—were predominantly localized in bundle sheath extracts. High activities of aspartate and alanine transaminases and glyceraldehyde-3-P dehydrogenase were found about equally distributed between the photosynthetic cell types. P. miliaceum had low malic enzyme activity in both mesophyll and bundle sheath extracts.  相似文献   

4.
Filner B  Klein AO 《Plant physiology》1968,43(10):1587-1596
The phytochrome controlled increase in total protein in the primary leaf pair of etiolated bean (Phaseolus vulgaris var. Black Valentine) seedlings, which occurs during growth in the dark subsequent to a brief illumination, was investigated. Enzymes from the chloroplasts, the mitochondria, and the soluble cytoplasm all increase in total activity after the illumination.

The total protein and the ribulose carboxylase increases are not inhibited by FUdR, an inhibitor of DNA synthesis. Cycloheximide, an inhibitor of protein synthesis, applied at a time when the ribulose carboxylase activity increase has already commenced, blocks further increase. It was concluded that the total protein and the enzyme increases in the leaf are the result of increases in the per cell levels.

The initial brief illumination is saturating, but 40 minutes later the seedlings have acquired the ability to respond to a second brief illumination. The rate of increase in ribulose carboxylase activity in seedlings that have been illuminated twice is greater than the rate in seedlings that have been illuminated only once.

Far-red light prevents further increase in enzyme activity 48 hours after the initial illumination. There is a lag period interposed between the time of illumination with far-red light and the time at which the seedlings show the greatest effect of far-red light. It was concluded that the phytochrome influence on protein synthesis is not at the terminal steps.

  相似文献   

5.
The transfer of dark-grown cultures of Euglena gracilis Klebs strain Z regreening in the light back into darkness resulted in a dramatic increase in ribulose diphosphate carboxylase activity. On a culture volume basis activity increased 4-fold over a 24-hour dark period, although on a protein basis activity declined because of rapid cell division. Mixed assays with light- and dark-growing cell extracts provided no evidence for the removal of an inhibitor of ribulose diphosphate carboxylase upon transferring regreening cells back to darkness. Although ribulose diphosphate carboxylase activity increased over a 24-hour dark period, there was no concomitant increase in the potential of the cells for photosynthetic carbon dioxide fixation.  相似文献   

6.
Activities of phosphoriboisomerase, phosphoribulokinase, and ribulose 1,5-diphosphate carboxylase, protein content, and chlorophyll accumulation in dark-grown barley seedlings were measured before and after illumination. Enzymatic activities, levels of soluble protein, and accumulation (upon illumination) of chlorophyll in leaves declined from tips toward the base. In response to increasing time of illumination, chlorophyll accumulation and activities of phosphoribulokinase and ribulose 1,5-diphosphate carboxylase (enzymes located in chloroplasts) increased most in tip portions whereas activity of phosphoriboisomerase and levels of soluble protein (constituents not confined to chloroplasts) increased similarly in all sections of the leaf. Maximum activity of phosphoribulokinase and maximum accumulation of chlorophyll shifted toward median portions of the leaf blade with increased age of seedling before illumination. Maximum activity of ribulose 1,5-diphosphate carboxylase and maximum level of soluble protein occurred in all leaf sections when the seedlings were 7 days of age before illumination.  相似文献   

7.
Kanai R  Edwards GE 《Plant physiology》1973,51(6):1133-1137
Mesophyll protoplasts and bundle sheath strands of maize (Zea mays L.) leaves have been isolated by enzymatic digestion with cellulase. Mesophyll protoplasts, enzymatically released from maize leaf segments, were further purified by use of a polyethylene glycol-dextran liquid-liquid two phase system. Bundle sheath strands released from the leaf segments were isolated using filtration techniques. Light and electron microscopy show separation of the mesophyll cell protoplasts from bundle sheath strands. Two varieties of maize isolated mesophyll protoplasts had chlorophyll a/b ratios of 3.1 and 3.3, whereas isolated bundle sheath strands had chlorophyll a/b ratios of 6.2 and 6.6. Based on the chlorophyll a/b ratios in mesophyll protoplasts, bundle sheath cells, and whole leaf extracts, approximately 60% of the chlorophyll in the maize leaves would be in mesophyll cells and 40% in bundle sheath cells. The purity of the preparations was also evident from the exclusive localization of phosphopyruvate carboxylase (EC 4.1.1.31) and NADP-dependent malate dehydrogenase (EC 1.1.1) in mesophyll cells and ribulose 1,5-diphosphate carboxylase (EC 4.1.1.39), phosphoribulokinase (EC 2.7.1.19), and “malic enzyme” (EC 1.1.1.40) in bundle sheath cells. NADP-glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.13) was found in both mesophyll and bundle sheath cells, while ribose 5-phosphate isomerase (EC 5.3.1.6) was primarily found in bundle sheath cells. In comparison to the enzyme activities in the whole leaf extract, there was about 90% recovery of the mesophyll enzymes and 65% recovery of the bundle sheath enzymes in the cellular preparations.  相似文献   

8.
The synthesis of chlorophyll and ribulose diphosphate carboxylase as well as the development of Hill reaction activity were followed in expanding Populus deltoides leaves and related to photosynthetic patterns. Total chlorophyll, which was not correlated with photosynthetic rate in expanding leaves, decreased slightly with age in very young leaves, due to a decrease in chlorophyll b, but then increased linearly. The ratio of chlorophyll a to b, which rose sharply in young leaves, was highly correlated with the onset of net photosynthesis. Hill reaction activity was very low in young leaves and did not increase significantly until leaves were about half expanded. Ribulose diphosphate carboxylase activity increased in a sigmoid fashion with leaf ontogenesis and closely paralleled development of the photosynthetic system. The study demonstrates the importance of chlorophyll a and Calvin cycle enzyme synthesis to photosynthetic development in expanding leaves.  相似文献   

9.
Makino A  Mae T  Ohira K 《Plant physiology》1983,73(4):1002-1007
Changes in photosynthesis and the ribulose 1,5-bisphosphate (RuBP) carboxylase level were examined in the 12th leaf blades of rice (Oryza sativa L.) grown under different N levels. Photosynthesis was determined using an open infrared gas analysis system. The level of RuBP carboxylase was measured by rocket immunoelectrophoresis. These changes were followed with respect to changes in the activities of RuBP carboxylase, ribulose 5-phosphate kinase, NADP-glyceraldehyde 3-phosphate dehydrogenase, and 3-phosphoglyceric acid kinase.

RuBP carboxylase activity was highly correlated with the net rate of photosynthesis (r = 0.968). Although high correlations between the activities of other enzymes and photosynthesis were also found, the activity per leaf of RuBP carboxylase was much lower than those of other enzymes throughout the leaf life. The specific activity of RuBP carboxylase on a milligram of the enzyme protein basis remained fairly constant (1.16 ± 0.07 micromoles of CO2 per minute per milligram at 25°C) throughout the experimental period.

Kinetic parameters related to CO2 fixation were examined using the purified carboxylase. The Km(CO2) and Vmax values were 12 micromolar and 1.45 micromoles of CO2 per minute per milligram, respectively (pH 8.2 and 25°C). The in vitro specific activity calculated at the atomospheric CO2 level from the parameters was comparable to the in situ true photosynthetic rate per milligram of the carboxylase throughout the leaf life.

The results indicated that the level of RuBP carboxylase protein can be a limiting factor in photosynthesis throughout the life span of the leaf.

  相似文献   

10.
Effects of calcium on photosynthesis in sugar beets (Beta vulgaris L. cv. F58-554H1) were studied by inducing calcium deficiency and determining changes in CO2 uptake by attached leaves, electron transport, and photophosphorylation by isolated chloroplasts, and CO2 assimilation by ribulose diphosphate carboxylase extracts. Calcium deficiency had no significant effect on leaf CO2 uptake, photoreduction of ferricyanide, cyclic or noncyclic ATP formation of isolated chloroplasts, or on ribulose diphosphate carboxylase CO2 assimilation, when the rates were expressed per unit chlorophyll. When expressed per unit leaf area CO2 uptake increased by about 15% in low calcium leaves. The most noticeable effect of calcium deficiency was reduction in leaf area: low calcium had no effect on dark respiratory CO2 evolution, on leaf diffusion resistance, or on mesophyll resistance to CO2. We concluded that only small amounts of calcium are required for normal photosynthetic activity of sugar beet leaves.  相似文献   

11.
Zelitch I 《Plant physiology》1978,61(2):236-241
Under conditions where glycolate synthesis was inhibited at least 50% in tobacco (Nicotiana tabacum L.) leaf discs treated with glycidate (2,3-epoxypropionate), the ribulose diphosphate carboxylase activity in extracts and the inhibition of the activity by 100% oxygen were unaffected by the glycidate treatment. [1-14C]Glycidate was readily taken into leaf discs and was bound to leaf proteins, but the binding occurred preferentially with proteins of molecular weight lower than ribulose diphosphate carboxylase. Glycidate added to the isolated enzyme did not inhibit ribulose diphosphate carboxylase activity or affect its inhibition by 100% O2. Thus, glycidate did not inhibit glycolate synthesis by a direct effect on ribulose diphosphate carboxylase/oxygenase.  相似文献   

12.
The subcellular distribution of enzymes of the oxidative pentose phosphate pathway was studied in plants. Root and leaf tissues from several species were separated by differential centrifugation into plastidic and cytosolic fractions. In all tissues studied, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were found in both plastidic and cytosolic compartments. In maize and pea root, and spinach and pea leaf, the non-oxidative enzymes of the pentose phosphate pathway (transaldolase, transketolase, ribose 5-phosphate isomerase, ribulose 5-phosphate 3-epimerase) appear to be restricted to the plastid. In tobacco leaf and root, however, the non-oxidative enzymes were found in the cytosolic as well as the plastidic compartments. In the absence of ribose 5-phosphate isomerase and ribulose 5-phosphate 3-epimerase in the cytosol, the product of the oxidative limb of the pathway (ribulose 5-phosphate) must be transported into a compartment capable of utilizing it. Ribulose 5-phosphate was supplied to isolated intact pea root plastids and was shown to be capable of supporting nitrite reduction. The kinetics of ribulose 5-phosphate-driven nitrite reduction in isolated pea root plastids suggested that the metabolite was translocated across the plastid envelope in a carrier-mediated transport process, indicating the presence of a translocator capable of transporting pentose phosphates.Keywords: Pentose phosphate, subcellular, plastid, ribulose 5-phosphate, compartmentation   相似文献   

13.
Lipid peroxidation and the degradation of cytochrome P-450 heme   总被引:8,自引:0,他引:8  
The enzyme content and functional capacities of mesophyll chloroplasts from Atriplex spongiosa and maize have been investigated. Accompanying evidence from graded sequential blending of leaves confirmed that mesophyll cells contain all of the leaf pyruvate, Pi dikinase, and PEP carboxylase activities and a major part of the adenylate kinase and pyrophosphatase. 3-Phosphoglycerate kinase, NADP glyceraldehyde-3-P-dehydrogenase, and triose-P isomerase activities were about equally distributed between mesophyll and bundle sheath cells but other Calvin cycle enzymes were very largely or solely located in bundle sheath cells. In A. spongiosa extracts of predominantly mesophyll origin the proportion of the released pyruvate, Pi dikinase, adenylate kinase, pyrophosphatase, 3-phosphoglycerate kinase, and NADP glyceraldehyde-3-P dehydrogenase retained in pelleted chloroplasts was similar but varied between 30 and 80% in different preparations. The proportion of these enzymes and NADP malate dehydrogenase recovered in maize chloroplast preparations varied between 15 and 35%. Washed chloroplasts retained most of the activity of these enzymes but ribulose diphosphate carboxylase and other Calvin cycle enzyme activities were undetectable. Among the evidence for the integrity of these chloroplasts was their capacity for light-dependent conversion of pyruvate to phosphoenolpyruvate and O2 evolution when 3-phosphoglycerate or oxaloacetate were added. These results support our previous conclusions about the function of mesophyll chloroplasts in C4-pathway photosynthesis and clearly demonstrate that they lack Calvin cycle activity.  相似文献   

14.
The stimulation or inhibition of ribulose diphosphate oxygenase by a variety of compounds is compared with the reported effects on these compounds on the ribulose diphosphate carboxylase activity. A possible transition state analog of ribulose diphosphate, 2-carboxyribitol 1, 5-diphosphate, at a molar ratio of inhibitor to enzyme of 10 to 1, irreversibly inactivates the oxygenase and carboxylase activities. This is consistent with the hypothesis that there may be a single active site for both the carboxylase and oxygenase activities. Several compounds of the reductive pentose photosynthetic carbon cycle act as effectors of the ribulose diphosphate oxygenase in a manner complementary to their reported effect upon the carboxylase. Ribose 5-phosphate inhibits the oxygenase with an apparent Ki of 1.8 mM, but it is reported to activate the carboxylase; fructose 6-phosphate and glucose 6-phosphate act similarly but are less effective than ribose 5-phosphate. Fructose 1. 6-diphosphate stimulates the oxygenase at low magnesium ion concentrations. The stimulatory effect of 6-phosphogluconate on the oxygenase is associated with a 3-fold reduction of the Km (Mg2+). ATP inhibits the oxygenase but has been reported to stimulate the carboxylase; pyrophosphate acts in an opposite manner. From these results it appears that the ratio of carboxylase to oxygenase activity may be a variable factor with predictable subsequent alteration in the ratio between photosynthetic CO2 fixation and photorespiration.  相似文献   

15.
Gas exchange and protein metabolism were studied in expanding, mature, and near-senescent leaves of young clonal Populus × euramericana cv. Wisconsin-5 plants. Dark respiration, CO2 evolution in the light, and CO2 compensation concentrations were highest in unexpanded leaves but declined markedly as leaves matured and aged. Net photosynthesis was highest in nearly mature leaves. Fresh weight continued to increase after leaf expansion was complete, whereas soluble protein levels declined. Changes in the distribution of photosynthetically incorporated 14C indicated that a high level of protein synthesis and rapid formation of structural components occurred only in expanding leaves. Protein turnover was slight in expanding leaves but was substantial after leaves were mature. Expanding leaves synthesized predominantly fraction I protein (ribulose diphosphate carboxylase). However, formation of this protein from photosynthate was slight once leaves matured.  相似文献   

16.
Well nodulated, field-grown soybeans (Glycine max [L.] Merr. var Williams) were depodded just prior to seed development and near mid pod-fill. Both treatments caused a considerable increase in leaf dry weight, suggesting continued photosynthate production following pod removal. Moreover, depodding had a marked effect on leaf soluble protein without affecting total proteolytic activity. Early depodding caused a 50% increase in leaf protein, and both early and late depodding caused the retention of protein for several weeks following the decline in control leaves. But despite this retention of protein, leaves of depodded plants showed no difference in the onset of the irreversible decline in photosynthesis. Therefore, although depodding delayed the loss of leaf chlorophyll and protein, it did not delay the onset of functional leaf senescence and in fact, actually appeared to enhance the rate of decline in photosynthesis. There was a good correlation between the irreversible decline in ribulose bisphosphate carboxylase (activity and amount) and that of photosynthesis. In contrast, the correlation did not seem as good between stomatal closure and the onset of the irreversible decline in photosynthesis. The reason total soluble protein remained high following depodding while carboxylase, which normally comprised 40% of the soluble protein, declined was because several polypeptides increased in amounts sufficient to offset the loss of carboxylase. This change in leaf protein composition indicates a change in leaf function; this is discussed in terms of other recent findings.  相似文献   

17.
A spectrophotometric procedure for assay of initial and totalactivity of ribulose 1,5-bisphosphate carboxylase in maize leaveswas established. The extraction of the crude enzyme from maizeleaf tissue, which was prefrozen in liquid nitrogen, desaltingof the extract, and assay of the enzyme was completed within3 min. From experiments adding deactivated ribulose 1,5-bisphosphatecarboxylase to the leaf tissue prior to extraction it was estimatedthat the maximum extent of activation during extraction, desaltingand assay was 8%. In predarkened leaves the enzyme showed 67to 84% of maximal activation while in preilluminated leavesthe enzyme showed 89 to 98% of maximal activation. These resultsindicate that deactivation of the enzyme in the dark is nota reason for the previous finding of a transient peak of ribulose1,5-bisphosphate in maize leaves during induction of photosynthesis[Usuda (1985) Plant Physiol. 78: 859–864]. This transientincrease in the substrate level upon illumination might be explainedby the presence of an unknown negative effector for ribulose1,5-bisphosphate carboxylase in vivo in leaf tissue in the dark,or limiting CO2 supply to the enzyme during the induction period. (Received May 30, 1985; Accepted August 16, 1985)  相似文献   

18.
The effects of various light intensities on in vivo increases in activities of phosphoriboisomerase, phosphoribulokinase and ribulose-1, 5-diP carboxylase and on synthesis of chlorophyll were studied in greening leaves of Hordeum vulgare L.

Each enzyme was already present in dark-grown plants, but further increases in activities required both a light treatment of the intact plant and a favorable temperature. The amount of enzymatic activity and chlorophyll developed was governed by light intensity.

Measured activities of phosphoriboisomerase and ribulose 1,5-diP carboxylase were highly correlated with synthesis of chlorophyll at all intensities studied. Measured activity of phosphoribulokinase was correlated with synthesis of chlorophyll only at saturating or near saturating light intensities. At decreasing light intensities the response curves of this enzyme differed from those of chlorophyll and of phosphoriboisomerase and ribulose-1, 5-diP carboxylase. A lag period of phosphoribulokinase increased with decreasing light intensity. After the lag period a rapid rate of increase occurred which did not level off during 48 hours of illumination. Thus, a different control mechanism may be operative in inducing increased activity of this enzyme.

  相似文献   

19.
Influence of nitrogen sources on chloroplast development in wheat seedlings   总被引:1,自引:0,他引:1  
The effect of different nitrogen sources (ammonium, nitrate or both ions together) on plastid development in dark-grown and illuminated seedlings of wheat ( Triticum vulgare L. cv. Yecora) has been investigated. Plastids of plants grown in ammonium showed even in the dark a larger internal membrane length, higher ribulose bisphos-phate carboxylase activity and greater content of soluble proteins than plastids of plants grown in nitrate. After the first hour of illumination rudimentary thylakoids showing some joining points were observed in the ammonium plastids. After 10 h no prolamellar bodies were seen in the ammonium plastids, and the internal plastid membrane length was greater than in the other treatments. There was no light-induced increase in protein synthesis after illumination for 1 h. After 10 h the increase observed in protein synthesis was not followed by a response in the enzyme activity in any of the treatments. After 20 h the lag in the induction of ribulose bisphosphate carboxylase ceased, the enzyme activity and soluble proteins being higher in the leaves of ammonium seedlings than in those from nitrate. From the correlation obtained between the ultrastructural electron microscope observations and the enzymatic studies, it appears that ammonium nutrition has a positive influence on the formation of the plastid membrane system and on the onset of photosynthesis and, consequently, on the development of chloroplasts.  相似文献   

20.
Preparations of heterocysts of Anabaena cylindrica Lemm. had 7- to 8-fold higher activities of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase, 2-fold more hexokinase activity, and 0.02 to 0.06 times as much ribulose diphosphate carboxylase and glyceraldehyde 3-phosphate dehydrogenase activities as did whole filaments per milligram soluble protein in cell-free extracts. Time courses of solubilization of glucose 6-phosphate dehydrogenase activity indicated that heterocysts contain 74 to 80% of the total activity of this enzyme in filaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号