首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Passive (papaverine induced) and active (spontaneous pressure induced) biomechanical properties of ischemic and nonischemic rat middle cerebral arteries (MCAs) were studied under pressurized conditions in vitro. Ischemic (1 h of occlusion), contralateral, and sham-operated control MCAs were isolated from male Wistar rats (n = 22) and pressurized using an arteriograph system that allowed control of transmural pressure (TMP) and measurement of lumen diameter and wall thickness. Three mechanical stiffness parameters were computed: overall passive stiffness (beta), pressure-dependent modulus changes (E(inc,p)), and smooth muscle cell (SMC) activity-dependent changes (E(inc,a)). The beta-value for ischemic vessels was increased compared with sham vessels (13.9 +/- 1.7 vs. 9.1 +/- 1.4, P < 0.05), indicating possible short-term remodeling due to ischemia. E(inc,p) increased with pressure in the passive vessels (P < 0.05) but remained relatively constant in the active vessels for all vessel types, indicating that pressure-induced SMC contractile activity (i.e., myogenic reactivity) in cerebral arteries leads to the maintenance of a constant elastic modulus within the autoregulatory pressure range. E(inc,a) increased with pressure for all conditions, signifying that changes in stiffness are influenced by SMC activity and vascular tone.  相似文献   

2.
The mechanisms of flow-induced vascular remodeling are poorly understood, especially in the coronary microcirculation. We hypothesized that application of flow in small coronary arteries in organoid culture would cause a nitric oxide (NO)-mediated dilation and inhibit inward remodeling. We developed an organoid culture setup to drive a flow through cannulated arterioles at constant luminal pressure via a pressure gradient between the pipettes. Subepicardial porcine coronary arterioles with diameter at full dilation and 60 mmHg (D0) of 168 +/- 10 (SE) microm were cannulated. Vessels treated with Nomega-nitro-L-arginine (L-NNA) to block NO production and untreated vessels were pressurized at 60 mmHg for 3 days with and without flow. Endothelium-dependent dilation to 10(-7) M bradykinin was preserved in all groups. Tone was significantly less in vessels cultured under flow conditions in the last half of the culture period. Untreated and L-NNA-treated vessels regulated their diameter to yield shear stresses of 10.3 +/- 2.1 and 14.0 +/- 2.4 (SE) dyn/cm2, respectively (not significantly different). Without L-NNA, passive pressure-diameter curves at the end of the culture period revealed inward remodeling in the control group [to 92.3 +/- 1.3% of D0 (SE)] and no remodeling in the vessels cultured under flow conditions (100.2 +/- 1.3% of D0); with L-NNA, the group subjected to flow showed inward remodeling (92.1 +/- 2.5% of D0). We conclude that pressurized coronary resistance arteries could be maintained in culture for several days with flow. Vessels cultured under flow conditions remained more dilated when NO synthesis was blocked. Inward remodeling occurred in vessels cultured under no-flow conditions and was inhibited by flow-dependent NO synthesis.  相似文献   

3.
Recent studies from our laboratory demonstrated the importance of mechanosensitive epithelial Na(+) channel (ENaC) proteins in pressure-induced constriction in renal and cerebral arteries. ENaC proteins are closely related to acid-sensing ion channel 2 (ASIC2), a protein known to be required for normal mechanotransduction in certain sensory neurons. However, the role of the ASIC2 protein in pressure-induced constriction has never been addressed. The goal of the current study was to investigate the role of ASIC2 proteins in pressure-induced, or myogenic, constriction in the mouse middle cerebral arteries (MCAs) from ASIC2 wild-type (+/+), heterozygous (+/-), and null (-/-) mice. Constrictor responses to KCl (20-80 mM) and phenylephrine (10(-7)-10(-4) M) were not different among groups. However, vasoconstrictor responses to increases in intraluminal pressure (15-90 mmHg) were impaired in MCAs from ASIC2(-/-) and (+/-) mice. At 60 and 90 mmHg, MCAs from ASIC2(+/+) mice generated 13.7 +/- 2.1% and 15.8 +/- 2.0% tone and ASIC2(-/-) mice generated 7.4 +/- 2.8% and 12.5 +/- 2.4% tone, respectively. Surprisingly, MCAs from ASIC2(+/-) mice generated 1.2 +/- 2.2% and 3.9 +/- 1.8% tone at 60 and 90 mmHg. The reason underlying the total loss of myogenic tone in the ASIC2(+/-) is not clear, although the loss of mechanosensitive beta- and gamma-ENaC proteins may be a contributing factor. These results demonstrate that normal ASIC2 expression is required for normal pressure-induced constriction in the MCA. Furthermore, ASIC2 may be involved in establishing the basal level of myogenic tone.  相似文献   

4.
In the rat, the spleen is a major site of fluid efflux out of the blood. By contrast, the mesenteric vasculature serves as a blood reservoir. We proposed that the compliance and myogenic responses of these vascular beds would reflect their different functional demands. Mesenteric and splenic arterioles ( approximately 150-200 microm) and venules (<250 microm) from rats anesthetized with pentobarbital sodium were mounted in a pressurized myograph. Mesenteric arterial diameter decreased from 146 +/- 6 to 133 +/- 6 microm on raising intraluminal pressures from 80 to 120 mmHg. This response was enhanced in the presence of N(omega)-nitro-l-arginine methyl ester (l-NAME; 139 +/- 6 to 112 +/- 7 microm). There was no such myogenic response in the splenic arterioles, except in the presence of l-NAME (194 +/- 4 to 164 +/- 4.2 microm). We propose that, whereas mesenteric arterioles exhibit myogenic responses, this is normally masked by NO-mediated dilation in the splenic vessels. The mesenteric venules were highly distensible (active, 184 +/- 15 to 320 +/- 30.9 microm; passive in Ca(2+)-free media, 209 +/- 31 to 344 +/- 27 microm; 4-8 mmHg) compared with the splenic vessels (active, 169 +/- 11 to 184 +/- 16 microm; passive, 187 +/- 12 to 207 +/- 17 microm). We conclude that, in response to an increase in perfusion pressure, mesenteric arterial diameter would decrease to limit the changes in flow and microvascular pressure. In addition, mesenteric venous capacitance would increase. By contrast, splenic arterial diameter would increase, while there would be little change in venous diameter. This would enhance the increase in intrasplenic microvascular pressure and increase fluid extravasation.  相似文献   

5.
Endothelin-1 (ET-1) (10 pmol) microinjected into the superficial layer of superior colliculus induces decreases in blood pressure (control, 108 +/- 5 mmHg, n=6; ET-1, 71 +/- 4 mmHg, n=5). The effects on blood pressure induced by endothelin-1 were significantly (p<0.05) reduced by pre-administration into the superior colliculus of the alpha1-adrenoceptor agonist phenylephrine (1 nmol) (46 +/- 5%, n=5), beta1-adrenoceptor antagonist acebutolol (5 nmol) (51 +/- 6%, n=5) or beta1/beta2-adrenoceptor antagonist propranolol (3.4 nmol) (51 +/- 11%, n=5). In contrast, endothelin-1-induced effects were increased (p<0.05) by microinjections into the superior colliculus of prazosin (2.4 nmol) (49 +/- 7%, n=5), an alpha1-adrenoceptor antagonist; dobutamine (4 nmol) (51 +/- 9%, n=5), a beta1-adrenoceptor agonist or isoprenaline (1 nmol) (49 +/- 6%, n=5), a beta1/beta2-adrenoceptor agonist. No involvement of alpha2- or beta2-adrenoceptors has been detected. Therefore, ET-1 induces decreases in blood pressure with selective involvement of alpha1- and beta1-adrenoceptors.  相似文献   

6.
The capacity for myocardial perfusion depends on the structure of the coronary microvascular bed. Coronary microvessels may adapt their structure to various stimuli. We tested whether the local pressure profile affects tone and remodeling of porcine coronary microvessels. Subendocardial vessels (approximately 160 microm, n=53) were cannulated and kept in organoid culture for 3 days under different transvascular pressure profiles: Osc 80: mean 80 mmHg, 60 mmHg peak-peak sine wave pulsation amplitude at 1.5 Hz; St 80: steady 80 mmHg; Osc 40: mean 40 mmHg, 30 mmHg amplitude; St 40: steady 40 mmHg. Under the Osc 80 profile, modest tone developed, reducing the diameter to 81+/-14% (mean+/-SE, n=6) of the maximal, passive diameter. No inward remodeling was found here, as determined from the passive pressure-diameter relation after 3 days of culture. Under all other profiles, much more tone developed (e.g., Osc 40: to 26+/-3%, n=7). In addition, these vessels showed eutrophic (i.e., without a change in wall cross-sectional area) inward remodeling (e.g., Osc 40: passive diameter reduction by 24+/-3%). The calcium blocker amlodipine induced maintained dilation in St 40 vessels and reversed the 22+/-3% (n=6) inward remodeling to 15+/-3% (n=8) outward remodeling toward day 3. Vessels required a functional endothelium to maintain structural integrity in culture. Our data indicate that reduction of either mean pressure or pulse pressure leads to microvascular constriction followed by inward remodeling. These effects could be reversed by amlodipine. Although microvascular pressure profiles distal to stenoses are poorly defined, these data suggest that vasodilator therapy could improve subendocardial microvascular function and structure in coronary artery disease.  相似文献   

7.
Changes in intrafollicular pressure and follicular diameter resulting from injecting or withdrawing fluid from the antrum were measured in preovulatory follicles and used as an assay for changes in tension in the follicular wall by applying the Laplace relationship for thin-walled spheres. Passive length-tension curves were constructed from pressure-volume measurements to establish baseline wall stiffness. Any subsequent change in pressure could then be compared to the length-tension curves to evaluate whether it arose from active tension development or from passive stretch. When intact follicles (1-2h before ovulation) were subjected to release of passive stretch, they exhibited a contractile response that lasted 15 sec-2 min and was characterized by cyclic increases and decreases in tension, with a period of 1 cycle every 2-3 sec. The probability of activating a response in the tissue was most strongly correlated with the rate of release of passive stretch. Intrafollicular pressures generated during active contractile responses sometimes reached 80 mmHg (10.64 mPa), corresponding to a wall tension of 5332 dynes/cm (5.332 N/m) (for a 1 mm follicle) and were clearly well above the passive length-tension curves. Passive stretching of the follicular wall during a contractile response to 5-hydroxytryptamine stimulation resulted in large reductions in active wall tension for the duration of the stretch. These results are consistent with a stretch-activated inhibition of contractile events.  相似文献   

8.
Angiotensin II is known to stimulate angiogenesis in the peripheral circulation through activation of the angiotensin II type 1 (AT1) receptor. This study investigated the effect of angiotensin receptor blockade on cerebral cortical microvessel density. Rats (6-7 wk old, n = 5-17) were instrumented with femoral arterial and venous indwelling catheters for arterial blood pressure measurement and drug administration. Rats were treated for 3 or 14 days with the AT1 receptor blocker losartan (50 mg/day in drinking water) or vehicle. Brains were sectioned and immunostained for CD31, and microvessel density was measured. Treatment with losartan for 3 or 14 days resulted in a slight decrease in mean arterial blood pressure (3 days, 92 +/- 1 mmHg; and 14 days, 99 +/- 2 mmHg) compared with vehicle (109 +/- 3 and 125 +/- 4 mmHg, respectively). A furosemide + captopril 14-day treatment group was added to control for the blood pressure change (96 +/- 3 mmHg). Microvessel density increased in groups treated with losartan for 14 days (429 +/- 13 vessels/mm2) compared with vehicle (383 +/- 11 vessels/mm2) but did not change with furosemide + captopril (364 +/- 7 vessels/mm2). Thus AT1 receptor blockade for 14 days resulted in increased cerebral microvessel density in a blood pressure-independent manner.  相似文献   

9.
To determine the potential for mechanical stimulation of skeletal muscle to contribute to the reflex cardiovascular response to static contraction (exercise reflex), we examined the cardiovascular effects caused by either passive stretch or external pressure applied to the triceps surae muscles. First, the triceps surae were stretched to an average developed tension of 4.8 +/- 0.3 kg. This resulted in increases in mean arterial pressure (MAP) of 28 +/- 7 mmHg, dP/dt of 1,060 +/- 676 mmHg/s, and heart rate (HR) of 6 +/- 2 beats/min (P less than 0.05). Additionally, increments of 0.3, 0.5, 1.0, 2.0, 4.0, and 8.0 kg of tension produced by passive stretch elicited pressor responses of -6 +/- 1, 7 +/- 1, 16 +/- 3, 21 +/- 8, 28 +/- 6, and 54 +/- 9 mmHg, respectively. External pressure, applied with a cuff to the triceps surae to produce intramuscular pressures (125-300 mmHg) that were similar to those seen during static contraction, also elicited small increases in MAP (4 +/- 1 to 10 +/- 1 mmHg) but did not alter HR. Transection of dorsal roots L5-L7 and S1 abolished the responses to passive stretch and external pressure. Moreover, when the triceps surae were stretched passively to produce a pattern and amount of tension similar to that seen during static hindlimb contraction, a significant reflex cardiovascular response occurred. During this maneuver, the pressor response averaged 51% of that seen during contraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
11.
The prevalence of ischemic heart disease is lower in premenopausal females than in males of corresponding age. This should be related to gender differences in coronary functions. We tested whether biomechanical differences exist between intramural coronary resistance arteries of male and female rats. Intramural branches of the left anterior descending coronary artery (uniformly approximately 200microm in diameter) were isolated, cannulated and studied by microarteriography. Intraluminal pressure was increased from 2 to 90mmHg in steps and steady-state diameters were measured. Measurements were repeated in the presence of vasoconstrictor U46619 (10(-6)M) and the endothelial coronary vasodilator bradykinin (BK) (10(-6)M). Finally, passive diameters were recorded in calcium-free saline. A similar inner radius and a higher wall thickness (41.5+/-2.9microm vs. 31.4+/-2.7microm at 50mmHg in the passive condition, p<0.05) resulted in lower tangential wall stresses in male rats (18.9+/-1.9kPa vs. 24.9+/-2.5kPa at 50mmHg, p<0.05). Isobaric elastic modulus of vessels from male animals was significantly smaller at higher pressures. Vasoconstrictor response was significantly stronger in male than in female animals. Endothelial relaxations induced by BK were not different. This is the first demonstration that biomechanical characteristics of intramural coronary resistance arteries of a mammalian species are different in the male and female sexes. Higher wall thickness and higher vascular contractility in males are associated with similar endothelial function and larger high-pressure elasticity compared to females. These gender differences in biomechanics of coronary resistance arteries of rats may contribute to our better understanding the characteristic physiological and pathological differences in humans.  相似文献   

12.

Background

To elucidate further from the biomechanical aspect whether microgravity-induced cerebral vascular mal-adaptation might be a contributing factor to postflight orthostatic intolerance and the underlying mechanism accounting for the potential effectiveness of intermittent artificial gravity (IAG) in preventing this adverse effect.

Methodology/Principal Findings

Middle cerebral arteries (MCAs) were isolated from 28-day SUS (tail-suspended, head-down tilt rats to simulate microgravity effect), S+D (SUS plus 1-h/d −Gx gravitation by normal standing to simulate IAG), and CON (control) rats. Vascular myogenic reactivity and circumferential stress-strain and axial force-pressure relationships and overall stiffness were examined using pressure arteriography and calculated. Acellular matrix components were quantified by electron microscopy. The results demonstrate that myogenic reactivity is susceptible to previous pressure-induced, serial constrictions. During the first-run of pressure increments, active MCAs from SUS rats can strongly stiffen their wall and maintain the vessels at very low strains, which can be prevented by the simulated IAG countermeasure. The strains are 0.03 and 0.14 respectively for SUS and S+D, while circumferential stress being kept at 0.5 (106 dyn/cm2). During the second-run pressure steps, both the myogenic reactivity and active stiffness of the three groups declined. The distensibility of passive MCAs from S+D is significantly higher than CON and SUS, which may help to attenuate the vasodilatation impairment at low levels of pressure. Collagen and elastin percentages were increased and decreased, respectively, in MCAs from SUS and S+D as compared with CON; however, elastin was higher in S+D than SUS rats.

Conclusions

Susceptibility to previous myogenic constrictions seems to be a self-limiting protective mechanism in cerebral small resistance arteries to prevent undue cerebral vasoconstriction during orthostasis at 1-G environment. Alleviating of active stiffening and increasing of distensibility of cerebral resistance arteries may underlie the countermeasure effectiveness of IAG.  相似文献   

13.
Carbon monoxide (CO) has been postulated to be a signaling molecule in many tissues, including the vasculature. We examined vasomotor responses of adult rat and mouse cerebral arteries to both exogenously applied and endogenously produced CO. The diameter of isolated, pressurized, and perfused rat middle cerebral arteries (MCAs) was not altered by authentic CO (10(-6) to 10(-4) M). Mouse MCAs, however, dilated by 21 +/- 10% at 10(-4) M CO. Authentic nitric oxide (NO., 10(-10) to 10(-7) M) dilated both rat and mouse MCAs. At 10(-8) M NO., rat vessels dilated by 84 +/- 4%, and at 10(-7) M NO., mouse vessels dilated by 59 +/- 9%. Stimulation of endogenous CO production through heme oxygenase (HO) with the heme precursor delta-aminolevulinic acid (10(-10) to 10(-4) M) did not dilate the MCAs of either species. The metalloporphyrin HO inhibitor chromium mesoporphyrin IX (CrMP) caused profound constriction of the rat MCA (44 +/- 2% at 3 x 10(-5) M). Importantly, this constriction was unaltered by exogenous CO (10(-4) M) or CO plus 10(-5) M biliverdine (both HO products). In contrast, exogenous CO (10(-4) M) reversed CrMP-induced constriction in rat gracilis arterioles. Control mouse MCAs constricted by only 3 +/- 1% in response to 10(-5) M CrMP. Magnesium protoporphyrin IX (10(-5) M), a weak HO inhibitor used to control for nonspecific effects of metalloporphyrins, also constricted the rat MCA to a similar extent as CrMP. We conclude that, at physiological concentrations, CO is not a dilator of adult rodent cerebral arteries and that metalloporphyrin HO inhibitors have nonspecific constrictor effects in rat cerebral arteries.  相似文献   

14.
The purpose of this study was to examine the hypothesis that the operating point of the cardiopulmonary baroreflex resets to the higher cardiac filling pressure of exercise associated with the increased cardiac filling volumes. Eight men (age 26 +/- 1 yr; height 180 +/- 3 cm; weight 86 +/- 6 kg; means +/- SE) participated in the present study. Lower body negative pressure (LBNP) was applied at 8 and 16 Torr to decrease central venous pressure (CVP) at rest and during steady-state leg cycling at 50% peak oxygen uptake (104 +/- 20 W). Subsequently, two discrete infusions of 25% human serum albumin solution were administered until CVP was increased by 1.8 +/- 0.6 and 2.4 +/- 0.4 mmHg at rest and 2.9 +/- 0.9 and 4.6 +/- 0.9 mmHg during exercise. During all protocols, heart rate, arterial blood pressure, and CVP were recorded continuously. At each stage of LBNP or albumin infusion, forearm blood flow and cardiac output were measured. During exercise, forearm vascular conductance increased from 7.5 +/- 0.5 to 8.7 +/- 0.6 U (P = 0.024) and total systemic vascular conductance from 7.2 +/- 0.2 to 13.5 +/- 0.9 l.min(-1).mmHg(-1) (P < 0.001). However, there was no significant difference in the responses of both forearm vascular conductance and total systemic vascular conductance to LBNP and the infusion of albumin between rest and exercise. These data indicate that the cardiopulmonary baroreflex had been reset during exercise to the new operating point associated with the exercise-induced change in cardiac filling volume.  相似文献   

15.
We sought to determine the relative contributions of cessation of skeletal muscle pumping and withdrawal of central command to the rapid decrease in arterial pressure during recovery from exercise. Twelve healthy volunteers underwent three exercise sessions, each consisting of a warm-up, 3 min of cycling at 60% of maximal heart rate, and 5 min of one of the following recovery modes: seated (inactive), loadless pedaling (active), and passive cycling. Mean arterial pressure (MAP), cardiac output, thoracic impedance, and heart rate were measured. When measured 15 s after exercise, MAP decreased less (P < 0.05) during the active (-3 +/- 1 mmHg) and passive (-6 +/- 1 mmHg) recovery modes than during inactive (-18 +/- 2 mmHg) recovery. These differences in MAP persisted for the first 4 min of recovery from exercise. Significant maintenance of central blood volume (thoracic impedance), stroke volume, and cardiac output paralleled the maintenance of MAP during active and passive conditions during 5 min of recovery. These data indicate that engaging the skeletal muscle pump by loadless or passive pedaling helps maintain MAP during recovery from submaximal exercise. The lack of differences between loadless and passive pedaling suggests that cessation of central command is not as important.  相似文献   

16.
The passive mechanical properties of blood vessel mainly stem from the interaction of collagen and elastin fibers, but vessel constriction is attributed to smooth muscle cell (SMC) contraction. Although the passive properties of coronary arteries have been well characterized, the active biaxial stress-strain relationship is not known. Here, we carry out biaxial (inflation and axial extension) mechanical tests in right coronary arteries that provide the active coronary stress-strain relationship in circumferential and axial directions. Based on the measurements, a biaxial active strain energy function is proposed to quantify the constitutive stress-strain relationship in the physiological range of loading. The strain energy is expressed as a Gauss error function in the physiological pressure range. In K(+)-induced vasoconstriction, the mean ± SE values of outer diameters at transmural pressure of 80 mmHg were 3.41 ± 0.17 and 3.28 ± 0.24 mm at axial stretch ratios of 1.3 and 1.5, respectively, which were significantly smaller than those in Ca(2+)-free-induced vasodilated state (i.e., 4.01 ± 0.16 and 3.75 ± 0.20 mm, respectively). The mean ± SE values of the inner and outer diameters in no-load state and the opening angles in zero-stress state were 1.69 ± 0.04 mm and 2.25 ± 0.08 mm and 126 ± 22°, respectively. The active stresses have a maximal value at the passive pressure of 80-100 mmHg and at the active pressure of 140-160 mmHg. Moreover, a mechanical analysis shows a significant reduction of mean stress and strain (averaged through the vessel wall). These findings have important implications for understanding SMC mechanics.  相似文献   

17.
Cerebral blood flow (CBF) is maintained constant despite changes in systemic blood pressure (BP) through multiple mechanisms of autoregulation such as vascular myogenic reactivity. Our aim was to determine myogenic characteristics of cannulated middle cerebral arteries (MCA) in male and female stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar-Kyoto rats (WKY) at 12 wk of age under pressurised no-flow conditions. MCA pressure-diameter relationships (20-200 mmHg) were constructed in active (with calcium) and passive (without calcium) conditions, and myogenic and mechanical properties were determined. Myogenic reactivity in WKY (P < 0.05) and SHRSP (P < 0.05) males was impaired compared with their female counterparts. Comparison of SHRSP with WKY in males revealed similar myogenic reactivity, but in females SHRSP exhibited augmented myogenic reactivity (P < 0.05). In both sexes, myogenic tone yielded at lower pressure in SHRSP compared with WKY vessels (120-140 vs. 140-180 mmHg). Stress-strain relationships and elastic moduli in WKY rats showed that vessels were stiffer in females than in males. Conversely, in SHRSP, male vessels were stiffer than female vessels. Comparison of strains in males indicated that stiffness was increased in SHRSP compared with WKY vessels, whereas the converse was observed in females. These findings demonstrate that MCA myogenic and distensibility characteristics exhibit significant sex- and strain-dependent differences. Inappropriate myogenic adaptation and augmented vascular stiffness, particularly in male SHRSP, are potential limiting factors in blood flow autoregulation and may increase the predisposition for stroke-related cerebrovascular events.  相似文献   

18.
Our aim was to define normal esophagogastric junction (EGJ) morphology and relaxation characteristics using high-resolution manometry (HRM). To this end, 75 asymptomatic controls underwent HRM with a solid-state manometric assembly incorporating 36 circumferential sensors spaced at 1-cm intervals positioned to record from the hypopharynx to the stomach. Ten 5-ml water swallows were obtained. EGJ relaxation was quantified by 1) nadir pressure, 2) the lowest 3-s mean residual pressure after swallow (E-sleeve), and 3) the transsphincteric gradient 2-6 s after swallowing measured from 2 cm above to 2 cm below the EGJ. A new parameter, integrated relaxation resistance (IRR), was also calculated. The IRR calculation accounted for both the duration of EGJ relaxation and instantaneous E-sleeve-type relaxation pressures during the entire interval of relaxation. The means and ranges (5-95th percentile) for nadir lower esophageal sphincter relaxation pressure (mean: 3.9 mmHg, range: 0-10.1 mmHg) and E-sleeve relaxation pressure (mean: 8.1 mmHg, range: 4.1-15.1 mmHg) were consistent with previously reported values. The mean relaxation interval was 7.95 +/- 0.2 s (mean +/- SE), whereas the median relaxation pressure during that interval was 10.7 +/- 0.5 mmHg (mean +/- SE). Mean IRR was 1.3 mmHg/s (95th percentile: 3.0 mmHg/s). Mean EGJ length was 3.7 cm. In conclusion, HRM provides a seamless dynamic representation of pressure within and across the EGJ. In addition to providing conventional EGJ relaxation parameters, this technology also creates opportunities to quantify more precise measures of EGJ relaxation and morphology.  相似文献   

19.
Exercise training and hypertension induced cardiac hypertrophy but modulate differently left ventricle (LV) function. This study set out to evaluate cardiac adaptations induced by moderate exercise training in normotensive and untreated severe hypertensive rats. Four groups of animals were studied: normotensive (Ctl) and severe hypertensive (HT) Wistar rats were assigned to be sedentary (Sed) or perform a moderate exercise training (Ex) over a 10-wk period. Severe hypertension was induced in rat by a two-kidney, one-clip model. At the end of the training period, hemodynamic parameters and LV morphology and function were assessed using catheterism and conventional pulsed Doppler echocardiography. LV histology was performed to study fibrosis infiltrations. Severe hypertension increased systolic blood pressure to 202 +/- 9 mmHg and induced pathological hypertrophy (LV hypertrophy index was 0.34 +/- 0.02 vs. 0.44 +/- 0.02 in Ctl-Sed and HT-Sed groups, respectively) with LV relaxation alteration (early-to-atrial wave ratio = 2.02 +/- 0.11 vs. 1.63 +/- 0.12). Blood pressure was not altered by exercise training, but arterial stiffness was reduced in trained hypertensive rats (pulse pressure was 75 +/- 7 vs. 62 +/- 3 mmHg in HT-Sed and HT-Ex groups, respectively). Exercise training induced eccentric hypertrophy in both Ex groups by increasing LV cavity without alteration of LV systolic function. However, LV hypertrophy index was significantly decreased in normotensive rats only (0.34 +/- 0.02 vs. 0.30 +/- 0.02 in Ctl-Sed and Ctl-Ex groups, respectively). Moreover, exercise training improved LV passive filling in Ctl-Ex rats but not in Ht-Ex rats. In this study, exercise training did not reduce blood pressure and induced an additional physiological hypertrophy in untreated HT rats, which was slightly blunted when compared with Ctl rats. However, cardiac function was not worsened by exercise training.  相似文献   

20.
The compliance of the canine trachea under positive and negative transmural pressures was measured in an in-vivo preparation. The average compliance values found in eight animals were 11.7 X 10(-6) (dynes/cm2)-1 at zero transmural pressure and 4.9 and 6.9 X 10(-6) (dynes/cm2)-1 at -20 and +20 X 10(3) dynes/cm2 transmural pressure, respectively. These compliances were significantly lower than those measured by others in excised preparations. Stress relaxation was noted at all pressure levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号