首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interactions of basement membrane components   总被引:23,自引:0,他引:23  
The binding of laminin, type IV collagen, and heparan sulfate proteoglycan to each other was assessed. Laminin binds preferentially to native type IV (basement membrane) collagen over other collagens. A fragment of laminin (Mr 600 000) containing the three short chains (Mr 200 000) but lacking the long chain (Mr 400 000) showed the same affinity for type IV collagen as the intact protein. The heparan sulfate proteoglycan binds well to laminin and to type IV collagen. These studies show that laminin, type IV collagen and heparan sulfate proteoglycan interact with each other. Such interactions in situ may determine the structure of basement membranes.  相似文献   

2.
The binding of laminin, type IV collagen, and heparan sulfate proteoglycan to each other was assessed. Laminin binds preferentially to native type IV (basement membrane) collagen over other collagens. A fragment of laminin (Mr 600 000) containing the three short chains (Mr 200 000) but lacking the long chain Mr 400 000) showed the same affinity for type IV collagen as the intact protein. The heparan sulfate proteoglycan binds well to laminin and to type IV collagen. These studies show that laminin, type IV collagen and heparan sulfate proteoglycan interact with each other. Such interactions in situ may determine the structure of basement membranes.  相似文献   

3.
Rotary shadowing electron microscopy was used to examine complexes formed by incubating combinations of the basement membrane components: type IV collagen, laminin, large heparan sulfate proteoglycan and fibronectin. Complexes were analyzed by length measurement from the globular (COOH) domain of type IV collagen, and by examination of the four arms of laminin and the two arms of fibronectin. Type IV collagen was found to contain binding sites for laminin, heparan sulfate proteoglycan and fibronectin. With laminin the most frequent site was centered approximately 81 nm from the carboxy end of type IV collagen. Less frequent sites appeared to be present at approximately 216 nm and approximately 291 nm, although this was not apparent when the sites were expressed as a fraction of the length of type IV collagen to which they were bound. For heparan sulfate proteoglycan the most frequent site occurred at approximately 206 nm with a less frequent site at approximately 82 nm. For fibronectin, a single site was present at approximately 205 nm. Laminin bound to type IV collagen through its short arms, particularly through the end of the lateral short arms and to heparan sulfate proteoglycan mainly through the end of its long arm. Fibronectin bound to type IV collagen through the free end region of its arms. Using a computer graphics program, the primary laminin binding sites of two adjacent type IV collagen molecules were found to align in the "polygonal" model of type IV collagen, whereas with the "open network" model, a wide meshed matrix is predicted. It is proposed that basement membrane may consist of a lattice of type IV collagen coated with laminin, heparan sulfate proteoglycan and fibronectin.  相似文献   

4.
A large, low-density form of heparan sulfate proteoglycan was isolated from the Engelbreth-Holm-Swarm (EHS) tumor and demonstrated to bind in immobilized-ligand assays to laminin fragment E3, collagen type IV, fibronectin and nidogen. The first three ligands mainly recognize the heparan sulfate chains, as shown by inhibition with heparin and heparan sulfate and by the failure to bind to the proteoglycan protein core. Nidogen, obtained from the EHS tumor or in recombinant form, binds exclusively to the protein core in a heparin-insensitive manner. Studies with other laminin fragments indicate that the fragment E3 possesses a unique binding site of laminin for the proteoglycan. A major binding site of nidogen was localized to its central globular domain G2 by using overlapping fragments. This allows for the formation of ternary complexes between laminin, nidogen and proteoglycan, suggesting a key role for nidogen in basement-membrane assembly. Evidence is provided for a second proteoglycan-binding site in the C-terminal globule G3 of nidogen, but this interaction prevents the formation of such ternary complexes. Therefore, the G3-mediated nidogen binding to laminin and proteoglycan are mutually exclusive.  相似文献   

5.
Basement membrane macromolecules, including type IV collagen, laminin, and heparan sulfate proteoglycan, do not aggregate when incubated alone. Rather, precipitation occurs in the presence of equimolar amounts of laminin and type IV collagen but variable amounts of heparan sulfate proteoglycan. This interaction requires native laminin and type IV collagen. Heparan sulfate proteoglycan increases the precipitation of laminin particularly in the presence of type IV collagen. Fibronectin does not cause type IV collagen to precipitate. These studies show that the components of basement membrane interact in a highly specific manner and suggest that such interactions may be involved in the deposition of basement membrane in situ.  相似文献   

6.
We have studied the extractability of type IV collagen, laminin, and heparan sulfate proteoglycan from EHS tumor tissue growth in normal and lathyritic animals. Laminin and heparan sulfate proteoglycan were readily extracted with chaotropic solvents from both normal and lathyritic tissue. The collagenous component was only solubilized from lathyritic tissue in the presence of a reducing agent. These results indicate that lysine-derived cross-links and disulfide bonds stabilize the collagenous component in the matrix but not the laminin or the heparan sulfate proteoglycan. The majority of the collagen present in the extracts had a native triple helix based upon the pattern of peptides resistant to pepsin digestion and visualization in the electron microscope by the rotary shadow technique. This protein was composed of chains (Mr 185000 and 170000) identical in migration to the chains of newly synthesized type IV procollagen. This finding confirms earlier work that indicates that the biosynthetic form, type IV procollagen, is incorporated as such in the basement membrane matrix. Material with smaller chains (Mr 160000 and 140000) appeared on storage in acetic acid solutions. These results indicate that the lower molecular weight collagen in acid extracts of basement membrane arises artifactually due to an endogenous acid-active protease.  相似文献   

7.
Immunohistochemical methods were used to determine whether type IV collagen, laminin, fibronectin, and heparan sulfate proteoglycan were present in diverse basement membranes. Antisera or antibodies against each substance were prepared, tested by enzyme-linked immunosorbent assay, and exposed to frozen sections of duodenum, trachea, kidney, spinal cord, cerebrum, and incisor tooth from rats aged 20 days to 34 months. Bound antibodies were then localized by indirect or direct peroxidase methods for examination in the light microscope. Immunostaining for type IV collagen, laminin, fibronectin, and heparan sulfate proteoglycan was observed in all of the basement membranes encountered. Fibronectin was also found in connective tissue. In general, the intensity of immunostaining was strong for type IV collagen and laminin, moderate for heparan sulfate proteoglycan, and weak for fibronectin. The pattern was similar in the age groups under study. Very recently the sulfated glycoprotein, entactin, was also detected in the basement membranes of the listed tissues in 20-day-old rats. It is accordingly proposed that, at least in the organs examined, type IV collagen, laminin, fibronectin, heparan sulfate proteoglycan, and entactin are present together in basement membranes.  相似文献   

8.
A discontinuous basement membrane of variable width that surrounds spongiotrophoblast cells of rat placenta was examined for the presence of type IV collagen, laminin, a heparan sulfate proteoglycan, entactin, and fibronectin using monospecific antibodies or antisera and the indirect peroxidase technique. At the level of the light microscope, the basement membrane was immunostained for type IV collagen, laminin, entactin, and fibronectin. Heparan sulfate proteoglycan immunostaining, however, was virtually absent even after pretreatment of sections with 0.1 N acetic acid, pepsin (0.1 microgram/ml) or 0.13 M sodium borohydride. Examination in the electron microscope confirmed the lack of immunostaining for heparan sulfate proteoglycan, whereas the other substances were mainly localized to the lamina densa part of the basement membrane. The absence of heparan sulfate proteoglycan in this discontinuous and irregular basement membrane even though type IV collagen, laminin, entactin, and fibronectin are present, suggests that heparan sulfate proteoglycan may have a structural role in the formation of basement membrane.  相似文献   

9.
The mouse teratocarcinoma-derived cell line, PYS-2, has been shown to produce laminin, a basement membrane-specific glycoprotein. In these studies we demonstrate that PYS-2 cells synthesize and secrete into the culture medium a proteoglycan which contains only heparan sulfate as its sulfated polysaccharide side chains, as well as type IV procollagen and laminin. The apparent molecular weights of the proteoglycan and its heparan sulfate side chain were estimated to be 400,000 and 25,000, respectively, by gel chromatography. A proteoheparan sulfate with properties closely similar, if not identical, to those of the proteoglycan in the medium, together with two heparan sulfate single chains of different molecular size, were extracted from the cell layer with 2% SDS in the presence of protease inhibitors. Ultrastructurally, a fine fibrillar intercellular matrix was recognized which contained discrete 100-200 A diameter ruthenium red-positive granules interspersed throughout the filamentous meshwork. The PYS-2 cultures were shown by immunofluorescence to react with antibodies against the heparan sulfate-containing proteoglycan isolated from the mouse EHS sarcoma (Hassell, J. R., P. G. Robey, H. J. Barrach, J. Wilczek, S. I. Rennard, and G. R. Martin. 1980. Proc. Natl. Acad. Sci. U. S. A. 77:4494-4498). Immunoelectron microscopic examination, using the same antibodies, revealed that the proteoheparan sulfate was located not only at the edges but also within the interstices of the matrix. These findings indicate that PYS-2 cells synthesize and secrete a proteoglycan with properties similar to those of basement membrane proteoglycan. These cells may therefore serve as a useful model system for the study of the biosynthesis and structure of basement membranes.  相似文献   

10.
Macromolecular organization of bovine lens capsule   总被引:3,自引:0,他引:3  
Rabbit antisera to type IV collagen, laminin, entactin, heparan sulfate proteoglycan and fibronectin were used to localize these proteins in cross-sections of bovine anterior lens capsule. The antisera were exposed to (a) 10-micron frozen-thawed sections of formaldehyde-fixed tissue for examination in the light microscope by the indirect immunofluorescence method and (b) formaldehyde-fixed and L. R. White plastic-embedded thin sections for electron microscopic examination by the protein A-gold technique. The intensity of immunofluorescence was both uniform and strong throughout for type IV collagen, laminin and entactin, but patchy and weak for fibronectin. Electron microscopic immunolabeling with protein A-gold showed that all five components were distributed throughout the full thickness of the membrane, albeit the density of gold particles was not identical for all basement membrane proteins. In general, the number of particles per micron2 was greatest for type IV collagen and entactin, moderate for laminin and heparan sulfate proteoglycan and low for fibronectin. The ultrastructure of the lens capsule as examined by the electron microscope revealed a relatively uniform parallel alignment of filaments, thought to be collagenous. Since the distribution of the filaments corresponds well with the observed immunocytochemical pattern it is concluded that type IV collagen, laminin, entactin, heparan sulfate proteoglycan and fibronectin co-localize throughout the cross-section of the anterior lens capsule.  相似文献   

11.
The distribution of laminin, type IV collagen, heparan sulfate proteoglycan, and fibronectin was investigated in the rat testicular lamina propria by electron microscopic immunocytochemistry. Distinct patterns were observed for each antigen within the extracellular matrix (ECM) layers of the lamina propria. Laminin, type IV collagen, and heparan sulfate proteoglycan all localized to the seminiferous tubule basement membrane. Type IV collagen and heparan sulfate proteoglycan, but not laminin, localized to the seminiferous tubule side of the peritubular myoid cells. All four of the antigens were localized between the peritubular and lymphatic endothelial cells. Failure to localize fibronectin in the ECM layer between the Sertoli and peritubular myoid cells tends to support the concept that adult Sertoli cells do not produce this protein in vivo. Intracellular immunostaining was insufficient to allow unambiguous identification of the cellular source of any of the ECM molecules.  相似文献   

12.
Basement membrane complexes with biological activity   总被引:123,自引:0,他引:123  
We have studied the reconstitution of basement membrane molecules from extracts prepared from the basement membrane of the EHS tumor. Under physiological conditions and in the presence of added type IV collagen and heparan sulfate proteoglycan, gellike structures form whose ultrastructure appears as interconnected thin sheets resembling the lamina dense zone of basement membrane. The major components of the reconstituted structures include laminin, type IV collagen, heparan sulfate proteoglycan, entactin, and nidogen. These components polymerize in constant proportions on reconstitution, suggesting that they interact in defined proportions. Molecular sieve studies on the soluble extract demonstrate that laminin, entactin, and nidogen are associated in large but dissociable complexes which may be a necessary intermediate in the deposition of basement membrane. The reconstituted matrix was biologically active and stimulated the growth and differentiation of certain cells.  相似文献   

13.
Type IV collagen, laminin, heparan sulfate proteoglycan, and fibronectin were localized in the basement membrane (BM) of chick retinal pigment epithelium (RPE) during various stages of eye development. At different times over a 4-17 day period after fertilization, chick embryo eyes were dissected, fixed in periodate-lysine-paraformaldehyde, and 6 micron frozen sections through the central regions of the eye were prepared. Sections were postfixed in -20 degrees C methanol and stained immediately by indirect immunofluorescence using sheep anti-mouse laminin, sheep antimouse type IV collagen, rabbit anti-mouse heparan sulfate proteoglycan, and mouse monoclonal anti-porcine plasma fibronectin. Fluorescein-labeled F(ab')2 fragments of the appropriate immunoglobulins (IgGs) were used as secondary antibodies. Laminin could be readily demonstrated in the BM of the RPE during all stages of development. The staining for type IV collagen, fibronectin, and heparan sulfate proteoglycan HSPG) was less intense than that for laminin, but was also localized in the BM along the basal side of the RPE. In addition to staining the BM, antiserum to HSPG, gave a diffuse labeling from day 9 onward, above the RPE extending into the region of the photoreceptors. Whereas the intensity of staining generally increased between day 4 and day 17 of development, the distribution of the different BM components did not change. Hence the presence of type IV collagen, laminin, fibronectin, and HSPG in the BM of RPE in vivo during all the stages of development investigated supports the concept that these macromolecules are important basic components of this, and other, BMs. Furthermore, these results indicate that the composition of the BM of RPE cells in vivo is similar to the BM material deposited by RPE cells in vitro (Turksen K, Aubin JE, Sodek JE, Kalnins VI: Collagen Rel Res, 4:413-426, 1984) and that the in vitro cultures can therefore serve as a useful model for studying BM formation.  相似文献   

14.
T Fahrig  C Landa  P Pesheva  K Kühn    M Schachner 《The EMBO journal》1987,6(10):2875-2883
The myelin-associated glycoprotein (MAG) can be obtained from adult mouse brain from detergent-lysates of a crude membrane fraction as a 96-100 kd form (detergent solubilized MAG), and from 100,000 g supernatants of homogenates as a 90-96 kd form (soluble MAG). The soluble form distributes into the Triton X-114-poor aqueous phase, while detergent-solubilized MAG predominantly enters the Triton X-114-rich phase. Both molecular forms bind to heparin in hypo- and isotonic buffers. Soluble MAG binds to several collagens (type G, I, II, III, IV, V, VI, IX) with a kd of 5.7 X 10(-8) M for collagen type IX and 2.0 X 10(-7) for collagen type IV. Binding of 125I-labeled MAG to collagen G can be completely inhibited by unlabeled MAG and collagen G, but not by heat-denatured collagen. MAG does not bind to itself, laminin, fibronectin, or the neural cell adhesion molecules L1 and N-CAM. Binding of MAG to collagen G is most effectively blocked by a high molecular weight dextran sulfate, heparan sulfate and heparin, with chondroitin sulfate and a low molecular weight dextran sulfate being less potent blockers. These findings are in agreement with previous observations on the localization of MAG in basal lamina and interstitial collagens of the sciatic nerve in situ.  相似文献   

15.
Structure, composition, and assembly of basement membrane   总被引:3,自引:0,他引:3  
Basement membranes are thin layers of matrix separating parenchymal cells from connective tissue. Their ultrastructure consists of a three-dimensional network of irregular, fuzzy strands referred to as "cords"; the cord thickness averages 3-4 nm. Immunostaining reveals that the cords are composed of at least five substances: collagen IV, laminin, heparan sulfate proteoglycan, entactin, and fibronectin. Collagen IV has been identified as a filament of variable thickness persisting after the other components have been removed by plasmin digestion or salt extraction. Heparan sulfate proteoglycan appears as sets of two parallel lines, referred to as "double tracks," which run at the surface of the cords. Laminin is detected in the cords as diffuse material within which thin wavy lines may be distinguished. The entactin and fibronectin present within the cords have not been identified as visible structures. The ability of laminin, heparan sulfate proteoglycan, fibronectin, and entactin to bind to collagen IV has been demonstrated by visualization with rotary shadowing and/or biochemical studies. Incubation of three of these substances-collagen IV, laminin (with small entactin contamination), and proteoglycan-at 35 degrees C for 1 hr resulted in a precipitate that was sectioned for electron microscopic examination and processed for gold immunolabeling for each of the three incubated substances. Three structures are present in the precipitate: 1) a lacework, exclusively composed of heparan sulfate proteoglycan in the form of two parallel lines, similar to double tracks; 2) semi-solid, irregular accumulations, composed of the three initial substances distributed on a cord network; and 3) convoluted sheets, which are also composed of the three initial substances distributed on a cord network but which, in addition, have the uniform appearance and thickness of the lamina densa of basement membrane. Hence these sheets are closely similar to the main component of authentic basement membranes.  相似文献   

16.
The major macromolecules of basement membranes-collagen IV, laminin-1, and heparan sulfate proteoglycan (HSPG)-have been analyzed by atomic force microscopy (AFM), both individually and in combination with each other. The positions of laminin binding to collagen IV were mapped and compared with the positions of imperfections in the amino acid sequence of collagen IV; the apparent molecular volumes of the HSPG proteoglycans were measured and used to estimate the corresponding molecular weights. Even the thin, thread-like strands of the polyanion heparan sulfate can be visualized with AFM without staining, coating, or fixation. These strands are single polysaccharide chains and are thus thinner than single-stranded DNA. The heparan sulfate strands in HSPG are necessary for protein filtration in kidney basement membranes. We propose that these thin strands filter proteins by functioning as an entropic brush-i.e., that they filter proteins by their constant thermally driven motion in the basement membrane. These AFM analyses in air are a step toward AFM analyses under fluid of basement membrane macromolecules interacting with each other.  相似文献   

17.
The presence of six substances--laminin, type IV collagen, heparan sulfate proteoglycan, entactin, fibronectin, and the amyloid P component--was investigated immunohistochemically in the matrix of the Engelbreth-Holm-Swarm (EHS) mouse tumor after it had been fixed in formaldehyde (with or without a brief preliminary glutaraldehyde fixation), embedded in Lowicryl K4M, and sectioned for processing through the protein A-gold sequence. Enumeration of the number of gold particles per square micrometer of matrix sections demonstrated that the six substances were present in distinct amounts. The results for each substance were fairly consistent throughout the matrix in three experiments. Furthermore, the available evidence indicated that, with the exception of the amyloid P component, the substances were associated with the cord network of the tumor matrix. Finally, the use of a reconstituted basement membrane containing known amounts of laminin, type IV collagen, and heparan sulfate proteoglycan as a standard, led to the conclusion that, in the tumor matrix, the relative content of laminin to type IV collagen to the proteoglycan was in a ratio of 1:0.6:0.03, suggesting molar ratios of approximately 1:1:0.2, respectively.  相似文献   

18.
Three distinctive heparin-binding sites were observed in type IV collagen by the use of rotary shadowing: in the NC1 domain and at distances 100 and 300 nm from the NC1 domain. Scatchard analysis indicated different affinities for these sites. Electron microscopic analysis of heparin-type IV collagen interaction with increasing salt concentrations showed the different affinities to be NC1 greater than 100 nm greater than 300 nm. The NC1 domain bound specifically to chondroitin/dermatan sulfate side chains as well. This binding was observed at the electron microscope and in solid-phase binding assays (where chondroitin sulfate could compete for the binding of [3H]heparin to NC1-coated substrata). The triple helix-rich, rod-like domain of type IV collagen did not bind to chondroitin/dermatan sulfate side chains. In solid-phase binding assays only heparin could compete for the binding of [3H]heparin to this domain. In order to more precisely map potential heparin-binding sites in type IV collagen, we chemically synthesized 17 arginine- and lysine-containing peptides from the alpha 1(IV) and alpha 2(IV) chains. Three peptides from the known sequence of the alpha 1(IV) and alpha 2(IV) chains were shown to specifically bind heparin: peptide Hep-I (TAGSCLRKFSTM), from the alpha 1(NC1) chain, peptide Hep-II (LAGSCLARFSTM), a peptide corresponding to the same sequence in peptide Hep-I from the alpha 2 (NC1) chain, and peptide Hep-III (GEFYFDLRLKGDK) which contained an interruption of the triple helical sequence of the alpha 1(IV) chain at about 300 nm from the NC1 domain, were demonstrated to bind heparin in solid-phase binding assays and compete for the binding of [3H]heparin to type IV collagen-coated substrata. Therefore, each of these peptides may represent a potential heparin-binding site in type IV collagen. The mapping of the binding of heparin or related structures, such as heparan sulfate proteoglycan, to specific sequences of type IV collagen could help the understanding of several structural and functional properties of this basement membrane protein as well as interactions with other basement membrane and/or cell surface-associated macromolecules.  相似文献   

19.
Mouse mammary epithelial cells (NMuMG cells) deposit at their basal surfaces an extracellular heparan sulfate-rich proteoglycan that binds to type I collagen. The binding of the purified proteoglycan to collagen was studied by (i) a solid phase assay, (ii) a suspension assay using preformed collagen fibrils, and (iii) a collagen fibril affinity column. The binding interaction occurs at physiological pH and ionic strength and can be inhibited only by salt concentrations that greatly exceed those found physiologically. Binding requires the intact proteoglycan since the protein-free glycosaminoglycan chains will not bind under the conditions of these assays. However, binding is mediated through the heparan sulfate chains as it can be inhibited by block-sulfated polysaccharides, including heparin. Binding requires native collagen structure which may be optimal when the collagen is in a fibrillar configuration. Binding sites on collagen fibrils are saturable, high affinity (Kd approximately 10(-10) M), and selective for heparin-like glycosaminoglycans. Because a culture substratum of type I collagen fibrils causes NMuMG cells to accumulate heparan sulfate proteoglycan into a basal lamina-like layer, binding of heparan sulfate proteoglycans to type I collagen may lead to the formation of a basal lamina and may link the basal lamina to the connective tissue matrix, an association found in basement membranes.  相似文献   

20.
PRELP (proline arginine-rich end leucine-rich repeat protein) is a heparin-binding leucine-rich repeat protein in connective tissue extracellular matrix. In search of natural ligands and biological functions of this molecule, we found that PRELP binds the basement membrane heparan sulfate proteoglycan perlecan. Also, recombinant perlecan domains I and V carrying heparan sulfate bound PRELP, whereas other domains without glycosaminoglycan substitution did not. Heparin, but not chondroitin sulfate, inhibited the interactions. Glycosaminoglycan-free recombinant perlecan domain V and mutated domain I did not bind PRELP. The dissociation constants of the PRELP-perlecan interactions were in the range of 3-18 nm as determined by surface plasmon resonance. As expected, truncated PRELP, without the heparin-binding domain, did not bind perlecan. Confocal immunohistochemistry showed that PRELP outlines basement membranes with a location adjacent to perlecan. We also found that PRELP binds collagen type I and type II through its leucine-rich repeat domain. Electron microscopy visualized a complex with PRELP binding simultaneously to the triple helical region of procollagen I and the heparan sulfate chains of perlecan. Based on the location of PRELP and its interaction with perlecan heparan sulfate chains and collagen, we propose a function of PRELP as a molecule anchoring basement membranes to the underlying connective tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号