首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyphosphate glucokinase (EC 2.7.1.63, polyphosphate glucose phosphotransferase) has been partially purified (960-fold) from Propionibacterium shermanii. Throughout the purification, the ratio of polyphosphate glucokinase activity to ATP glucokinase activity remained approximately constant at 4 to 1. It is considered that both activities are catalyzed by the same protein. The mechanism of utilization of polyphosphate by polyphosphate glucokinase was investigated using polyphosphates of limited sizes that were isolated following gel electrophoresis of commercial heterogeneous polyphosphates. The results show that with long chain polyphosphates, the reaction proceeds by a processive type mechanism, and with short polyphosphates, it is nonprocessive. The Km for polyphosphate of chain length 724 is 2 X 10(-3) microM and increases with a decrease in chain length to 3.7 X 10(-2) microM at chain length 138. Subsequently, there is a very rapid increase of Km and at chain length 30 the Km is 4.3 microM. The rapid change in Km coincides with the shift in mechanism from the processive type mechanism in which there apparently is successive phosphorylation prior to release from the enzyme to a nonprocessive process in which the polyphosphate is released from the enzyme after each transfer. During the nonprocessive process, there is preferential utilization of the longer species. The Vmax is relatively constant with shorter polyphosphates but decreases with chain lengths longer than 347. In the cell, as a consequence of the low Km, the long chain polyphosphates probably are used preferentially to phosphorylate glucose.  相似文献   

2.
The mechanism of synthesis of inorganic polyphosphate by polyphosphate kinase (EC 2.7.4.1) from Propionibacterium shermanii is shown to be processive. Analysis of the synthesized polyphosphate on polyacrylamide gels, which resolve on the basis of molecular weight, proves that the elongation reaction occurs without dissociation of intermediate sizes of the polymer from the enzyme. As a consequence, only high molecular weight polyphosphates are synthesized. The mechanism is processive both in the presence and absence of basic protein. It has been shown previously that basic proteins stimulate the synthesis of polyphosphate (Robinson, N.A., Goss, N.H., and Wood, H.G. (1984) Biochem. Int. 8, 757-769). In addition, using a similar method, it is shown that the reverse reaction, the utilization of polyphosphate to phosphorylate ADP, occurs by a processive mechanism. Accordingly, polyphosphates formed by polyphosphate kinase in the cell would be entirely high molecular weight.  相似文献   

3.
Polyphosphate kinase from Propionibacterium shermanii was purified to 70% homogeneity and shown to be a monomeric enzyme of molecular weight 83,000 +/- 3,000. It was demonstrated that short chains of polyphosphate serve as primers by using [32P]polyphosphate, 6-80 residues in length for synthesis of long-chain polyphosphate glucokinase, the radiolabel was found to be at the end of the polymer, proving that the mechanism of elongation of polyphosphate by polyphosphate kinase is strictly processive. Only 1 out of 3-8 of the polyphosphate chains contained the primer, indicating that there is a second unknown pathway of initiation which does not involve the polyphosphate primer. The termination of polyphosphate synthesis was investigated. With polyphosphate as a primer, the majority of the synthesized polyphosphate was 750 residues in length. With phosphate, in place of the polyphosphate primer, the major portion was about 2,000 residues in length but there was a large span of chain lengths down to 300. Termination is influenced by pH, temperature, and the concentration of the polyphosphate primer, with the chain length decreasing as either the temperature or the concentration of primer is increased.  相似文献   

4.
Polyphosphate glucokinase (EC 2.7.1.63, polyphosphate:glucose phosphotransferase) was covalently coupled to collagen-coated silica gel beads. The immobilized enzyme, as a packed-bed reactor, was used to determine glucose in serum and other samples. The method was based on a spectrophotometric measurement of NADPH produced by two consecutive reactions, similar to the hexokinase method. The described approach takes advantage of the greater stability of polyphosphate compared to that of ATP, the greater specificity of polyphosphate glucokinase versus that of hexokinase, and the reusability of the immobilized enzyme. Linearity, precision, and accuracy of the method were tested and found to be very good. The results were linear between 10 and 50 nmol of glucose in a 50-microliter sample and the coefficient of variation was less than 4% in five successive determinations. The recovery of glucose was about 100% after calibration of the method. The results of the measurements correlated well with those obtained with soluble polyphosphate glucokinase (r = 0.997, y = 1.036x - 0.016). The immobilized-enzyme reactor showed good operational stability during a month of use, losing about 12% of its initial activity.  相似文献   

5.
A bacterium exhibiting activities of several inorganic polyphosphate [poly(P)]- and ATP-dependent kinases, including glucokinase, NAD kinase, mannokinase, and fructokinase, was isolated, determined to belong to the genus Arthrobacter, and designated Arthrobacter sp. strain KM. Among the kinases, a novel enzyme responsible for the poly(P)- and ATP-dependent mannokinase activities was purified 2,200-fold to homogeneity from a cell extract of the bacterium. The purified enzyme was a monomer with a molecular mass of 30 kDa. This enzyme phosphorylated glucose and mannose with a high affinity for glucose, utilizing poly(P) as well as ATP, and was designated poly(P)/ATP-glucomannokinase. The K(m) values of the enzyme for glucose, mannose, ATP, and hexametaphosphate were determined to be 0.50, 15, 0.20, and 0.02 mM, respectively. The catalytic sites for poly(P)-dependent phosphorylation and ATP-dependent phosphorylation of the enzyme were found to be shared, and the poly(P)-utilizing mechanism of the enzyme was shown to be nonprocessive. The gene encoding the poly(P)/ATP-glucomannokinase was cloned from Arthrobacter sp. strain KM, and its nucleotide sequence was determined. This gene contained an open reading frame consisting of 804 bp coding for a putative polypeptide with a calculated molecular mass of 29,480 Da. The deduced amino acid sequence of the polypeptide exhibited homology to the amino acid sequences of the poly(P)/ATP-glucokinase of Mycobacterium tuberculosis H37Rv (level of homology, 45%), ATP-dependent glucokinases of Corynebacterium glutamicum (45%), Renibacterium salmoninarum (45%), and Bacillus subtilis (35%), and proteins of bacteria belonging to the order Actinomyces whose functions are not known. Alignment of these homologous proteins revealed seven conserved regions. The mannose and poly(P) binding sites of poly(P)/ATP-glucomannokinase are discussed.  相似文献   

6.
BackgroundHexokinase and glucokinase enzymes are ubiquitously expressed and use ATP and ADP as substrates in mammalian systems and a variety of polyphosphate substrates and/or ATP in some eukaryotic and microbial systems. Polyphosphate synthesising or utilizing enzymes are widely expressed in microbial systems but have not been reported in mammalian systems, despite the presence of polyphosphate in mammalian cells. Only two micro-organisms have previously been shown to express an enzyme that uses polyphosphate exclusively.MethodsA variety of experimental approaches, including NMR and NAD-linked assay systems were used to conduct a biochemical investigation of polyphosphate dependent glucokinase activity in mammalian tissues.ResultsA novel mammalian glucokinase, highly responsive to hexametaphosphate (HMP) but not ATP or ADP as a phosphoryl donor is present in the nuclei of mammalian hepatocytes. The liver enzyme exhibited sigmoidal kinetics with respect to glucose with a S0.5 of 12 mM, similar to the known kinetics of mammalian ATP-glucokinase. The Km for HMP (0.5 mM) was also similar to that of phosphoryl donors for mammalian ATP-glucokinases. The new enzyme was inhibited by several nucleotide phosphates.ConclusionsWe report the discovery of a polyphosphate-dependent enzyme system in mammalian cells with kinetics similar to established ATP-dependent glucokinase, also known to have a nuclear location. The kinetics suggest possible regulatory or redox protective roles.General significanceThe role of polyphosphate in mammalian systems has remained an enigma for decades, and the present report describes progress on the significance of this compound in intracellular metabolism in mammals.  相似文献   

7.
The activity of ATP-glucokinase and of polyphosphate glucokinase was examined during growth of the actinomyceteStreptomyces aureofaciens 8425 under conditions of intense chlortetracycline (CTC) synthesis. ATP-glucokinase was active in the strain only during the logarithmic phase of culture growth; the activity of polyphosphate glucokinase appears only at the end of the logarithmic phase of growth and rises in parallel with the rate of CTC biosynthesis in the stationary phase. During the rise of activity of polyphosphate glucokinase and of CTC biosynthesis the cells accumulate sugar phosphates, mainly glucose-6-phosphate. It appears that the biosynthesis of CTC inStreptomyces aureofaciens takes place at the expense of glycolysis, using up the high-energy phosphate of high-molecular polyphosphates.  相似文献   

8.
Polyphosphate:AMP phosphotransferase, an enzyme which catalyzes the phosphorylation of AMP to ADP at the expense of polyphosphate, was purified more than 1,500-fold from Acinetobacter strain 210A by streptomycin sulfate precipitation and by Mono-Q, Phenyl Superose, and Superose column chromatography. Streptomycin sulfate precipitation appeared to be an effective step in the purification procedure. During the following chromatographic steps, there was a 29-fold increase in specific activity but the yield was low (0.3%). Kinetic studies showed apparent Km values of 0.26 mM for AMP and 0.8 microM for polyphosphate with an average chain length of 35 phosphate groups. The highest activities were found with polyphosphate molecules of 18 to 44 phosphate residues. The polyphosphate chain was degraded completely to ADP. The mechanism of degradation is processive. No activity was obtained with ortho-, pyro-, tri-, and tetraphosphate. The enzyme was inhibited by pyro-, tri-, and tetraphosphate. The inhibition by tri- and tetraphosphate was mixed with polyphosphate as a substrate. The inhibition constants for the dissociation of the enzyme-inhibitor complex and for the enzyme-inhibitor-substrate complex were 0.9 and 6.5 mM, respectively, for triphosphate and 0.7 and 1.5 mM, respectively, for tetraphosphate.  相似文献   

9.
The isolation and characterization of inositol polyphosphate 4-phosphatase   总被引:3,自引:0,他引:3  
We previously identified an alternative pathway for the metabolism of inositol 1,3,4-trisphosphate (Ins(1,3,4)P3) in calf brain. The enzyme responsible for the degradation of Ins(1,3,4)P3 was designated as inositol polyphosphate 4-phosphatase (Bansal, V. S., Inhorn, R. C., and Majerus, P. W. (1987) J. Biol. Chem. 262, 9644-9647). We have now purified this enzyme 3390-fold from calf brain-soluble fraction. The isolated enzyme has an apparent molecular mass of 110 kDa as determined by gel filtration. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the enzyme migrates as a protein of 105 kDa, suggesting that it is monomeric. Among various 4-phosphate-containing inositol polyphosphates, the enzyme hydrolyzes only Ins(1,3,4)P3 and inositol 3,4-bisphosphate (Ins(3,4)P2), yielding inositol 1,3-bisphosphate and inositol 3-phosphate as products. The inositol polyphosphate 4-phosphatase has apparent Km values of 40 and 25 microM for Ins(1,3,4)P3 and Ins(3,4)P2, respectively. The maximum velocities for these two substrates are 15-20 mumol of product/min/mg protein. Ins(1,3,4)P3 is a competitive inhibitor of Ins(3,4)P2 hydrolysis with an apparent Ki of 27 microM implying that the same active site is involved in hydrolysis of both substrates. The final enzyme preparation retained a small inositol polyphosphate 3-phosphatase activity (less than 2% of rate of inositol polyphosphate 4-phosphatase activity) which most likely reflects a contaminant. The enzyme displays maximum activity between pH 6.5 and 7.5. It is not inhibited by Li+, Ca2+, or Mg2+ except at 10 mM divalent ions. Mn2+ inhibits enzyme at high concentrations IC50 = 1.5 mM.  相似文献   

10.
Properties of inositol polyphosphate 1-phosphatase   总被引:8,自引:0,他引:8  
We recently described inositol polyphosphate 1-phosphatase, an enzyme which cleaves the 1-phosphate from inositol 1,4-bisphosphate (Ins(1,4)P2) and inositol 1,3,4-trisphosphate (Ins(1,3,4)P3) (Inhorn, R. C., and Majerus, P. W. (1987) J. Biol. Chem. 262, 15946-15952). We have now purified the enzyme to homogeneity from calf brain. The enzyme hydrolyzes 50.3 mumol of Ins(1,4)P2/min/mg protein. The enzyme has an apparent mass of 44,000 daltons as determined both by gel filtration chromatography and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, suggesting that it is monomeric. Lithium ions inhibit Ins(1,3,4)P3 hydrolysis uncompetitively with an apparent Ki of approximately 0.3 mM LiCl. Calcium inhibits hydrolysis of Ins(1,4)P2 and Ins(1,3,4)P3 equally, with approximately 40% inhibition occurring at 1 microM free Ca2+. Rabbit polyclonal antiserum against purified inositol polyphosphate 1-phosphatase was prepared which immunoprecipitates approximately 0.3 milliunits of activity/microliter serum (1 unit = 1 mumol of Ins(1,4)P2 hydrolyzed per min). This antiserum was used to determine the enzyme content in several bovine tissues, all of which had a similar intrinsic specific activity (i.e. approximately 0.3 milliunits/microliter antiserum). Tissues studied included brain, heart, kidney, liver, lung, parotid, spleen, testis, and thymus. Approximately 10-15% of the total inositol polyphosphate 1-phosphatase activity in calf brain homogenates remains in a particulate fraction; antiserum also binds 0.3 milliunits of membrane-associated activity/microliter antiserum. Thus, a single enzyme can account for Ins(1,4)P2 hydrolytic activity in the bovine tissues. Ins(1,3,4)P3 metabolism was also investigated in bovine tissue homogenates. Inositol polyphosphate 1-phosphatase accounts for greater than 80% of the hydrolytic activity in all tissues studied except brain, where inositol polyphosphate 4-phosphatase is the major enzyme that hydrolyzes Ins(1,3,4)P3. The apparent Km of inositol polyphosphate 1-phosphatase for Ins(1,3,4)P3 varies approximately 3-4-fold among the bovine tissues.  相似文献   

11.
Linear polyphosphate chains have been found to play a key role in bacterial responses to stresses and nutritional depletion, and are necessary for host infection of various pathogens. Polyphosphate kinase (PPK) is a critical enzyme responsible for polyphosphate synthesis in bacteria. PPK knockout mutations in several Gram-negative pathogens identify PPK as an ideal drug target for the development of a new class of antibacterial drugs. To reveal the catalytic mechanism and provide a structural basis for drug discovery, we have purified and crystallized full-length Escherichia coli PPK and its complex with AMP-PNP. The crystals diffract to a resolution of 2.5A and belong to the space group P4(2)2(1)2 with unit-cell parameters a=152.0, b=152.0, and c=150.0 A. Crystal structure of PPK is being determined by the Se-Met MAD experiment.  相似文献   

12.
Alkaline phosphatase (from chicken intestinal sources) was shown to contain a considerable amount of polyanionic phosphorus which was released by basic digestion. The polyanionic phosphorus of alkaline phosphatase is not associated with protein or polyalcohols and does not exhibit a visible or ultraviolet absorption spectrum. Alkaline phosphatase and abiogenic inorganic polyphosphate were found to incorporate 32P-orthophosphate under similar experimental conditions. It has been previously reported that this enzyme will incorporate 32P-orthophosphate into its protein phosphoserine without the apparent concomitant utilization of an energy source. This reported phosphorylation was immediately reversible upon dilution of the phosphorylated enzyme with unlabelled orthophosphate, which indicates that the initial phosphorylation was an exchange reaction. These observations suggest that this polyanionic phosphorus from alkaline phosphatase may be inorganic polyphosphate.  相似文献   

13.
Determination of the size of polyphosphates with polyphosphate glucokinase   总被引:1,自引:0,他引:1  
A procedure for determining the size of inorganic polyphosphates of chain lengths up to about 750 is described. It involves reducing the size with polyphosphate glucokinase to a chain length that can be accurately determined by polyacrylamide gel electrophoresis. This measurement along with determination of the glucose-6-P formed and the total phosphate of the original polyphosphate permits calculation of the chain length. The accuracy of this method has been demonstrated by comparison with other reliable procedures. Thus far, it is the only method available for sizing long chain polyphosphates with nmol quantities.  相似文献   

14.
Lipolysis in adipocytes governs the release of fatty acids for the supply of energy to various tissues of the body. This reaction is mediated by hormone-sensitive lipase (HSL), a cytosolic enzyme, and perilipin, which coats the lipid droplet surface in adipocytes. Both HSL and perilipin are substrates for polyphosphorylation by protein kinase A (PKA), and phosphorylation of perilipin is required to induce HSL to translocate from the cytosol to the surface of the lipid droplet, a critical step in the lipolytic reaction (Sztalryd C., Xu, G., Dorward, H., Tansey, J. T., Contreras, J.A, Kimmel, A. R., and Londos, C. (2003) J. Cell Biol. 161, 1093-1103). In the present paper we demonstrate that phosphorylation at one of the two more recently discovered PKA sites within HSL, serines 659 and 660, is also required to effect the translocation reaction. Translocation does not occur when these serines residues are mutated simultaneously to alanines. Also, mutation of the catalytic Ser-423 eliminates HSL translocation, showing that the inactive enzyme does not migrate to the lipid droplet upon PKA activation. Thus, HSL translocation requires the phosphorylation of both HSL and perilipin.  相似文献   

15.
We recently identified an enzyme which we have designated inositol polyphosphate 1-phosphatase that hydrolyzes both inositol 1,3,4-trisphosphate (Ins-1,3,4-P3) and inositol 1,4-bisphosphate (Ins-1,4-P2), yielding inositol 3,4-bisphosphate and inositol 4-phosphate, respectively, as products (Inhorn, R. C., Bansal, V.S., and Majerus, P.W. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 2170-2174). We have now purified the inositol polyphosphate 1-phosphatase 3600-fold from calf brain supernatant. The purified enzyme has an apparent molecular mass of 44,000 daltons as determined by gel filtration and is free of other inositol phosphate phosphatase activities. The enzyme hydrolyzes Ins-1,4-P2 with an apparent Km of approximately 4-5 microM, while it degrades Ins-1,3,4-P3 with an apparent Km of approximately 20 microM. The enzyme hydrolyzes these substrates at approximately the same maximal velocity. Inositol polyphosphate 1-phosphatase shows a sigmoidal dependence upon magnesium ion, with 0.3 mM Mg2+ causing half-maximal stimulation. A Hill plot of the data is linear with a value of n = 1.9, suggesting that the enzyme binds magnesium cooperatively. Calcium and manganese inhibit enzyme activity, with 50% inhibition at approximately 6 microM. Lithium inhibits Ins-1,4-P2 hydrolysis uncompetitively with a Ki of approximately 6 mM. This mechanism of lithium inhibition is similar to that observed for the inositol monophosphate phosphatase (originally designated myo-inositol-1-phosphatase; Hallcher, L.M., and Sherman, W.R. (1980) J. Biol. Chem. 255, 10896-10901), suggesting that these two enzymes are related. Lithium also inhibits Ins-1,3,4-P3 hydrolysis with an estimated Ki of 0.5-1 mM.  相似文献   

16.
The proposed pH buffering and phosphagenic functions of polyphosphate were investigated by subjecting chemostat-cultivated Saccharomyces cerevisiae to alkalinization (NaOH addition) and anaerobiosis. The subsequent changes in intracellular phosphate-containing species were observed in situ by nuclear magnetic resonance (NMR) spectroscopy by using the NMR cultivator we developed. For the alkalinization experiments, changes in catabolite secretion were also measured in parallel experiments. Additionally, a range of potential neutralization capacity was investigated: a dilute culture and concentrated cultures with low or high polyphosphate content. The concentrated cultures displayed increased cytosolic pH and rapid polyphosphate degradation to small chains. The pH changes and extent of polyphosphate degradation depended inversely on initial polyphosphate content. The dilute culture restored extracellular pH rapidly and secreted acetate. The concentrated culture with low polyphosphate reserves also secreted acetate. In contrast to the alkalinization-induced polyphosphate dynamics, anaerobiosis resulted in the complete hydrolysis of polyphosphate to P(i), as opposed to small chains, and reduced cytosolic pH. The results and calculations suggest that the bulk of NMR-observable polyphosphate (vacuolar) degradation to short polymers conceivably contributes to neutralizing added alkalinity. In other circumstances, such as anaerobiosis, degradation serves other functions, such as phosphorylation potential regulation.  相似文献   

17.
Inorganic pyrophosphate and polyphosphates have acted as potent inhibitors of purified AMP deaminase (EC 3.5.4.6) from yeast: the activity fell to a definite limit with the increase in the concentration of the inhibitor. The effect of polyphosphate was largely on the maximal velocity of the enzyme with some decrease in affinity. The cooperative effect of AMP, analyzed in terms of a Hill coefficient, remained at 2 in the absence and presence of polyphosphate. Binding of polyphosphate to the enzyme showed no cooperativity. The inhibition of AMP deaminase by polyphosphate can be qualitatively and quantitatively accounted for by the partial mixed-type inhibition mechanism. Both the Ki value for the inhibitor and the breakdown rate of the enzyme-substrate-inhibitor complex are dependent on the chain length of polyphosphate, suggesting that the breakdown rate of the enzyme-substrate-inhibitor complex is regulated by binding of polyphosphate to a specific inhibitory site.  相似文献   

18.
When the ‘dihydroxyacetone-fermentation’ was carried out in a steady state by the cells of Br. fuscum, it was suggested that the consumption rate of glucose in the medium might be regulated at the initial stages of glucose degradation such as; (a) glucose isomerization, (b) glucose dehydrogenation, and (c) glucose phosphorylation. Of these three enzymatic reactions, the isomerization and the dehydrogenation were proved to be unable to occur or negligible in vivo. So, in consideration of the pool sizes of Mg+ +, Pi, H+, glucose, G6P*, ATP, ADP, etc., the intracellular glucokinase** activity was calculated. Results indicate that glucokinase reaction may be the limiting factor for direct glucose metabolism in Br. fuscum.  相似文献   

19.
We previously developed peptides that bind to G protein betagamma subunits and selectively block interactions between betagamma subunits and a subset of effectors in vitro (Scott, J. K., Huang, S. F., Gangadhar, B. P., Samoriski, G. M., Clapp, P., Gross, R. A., Taussig, R., and Smrcka, A. V. (2001) EMBO J. 20, 767-776). Here, we created cell-permeating versions of some of these peptides by N-terminal modification with either myristate or the cell permeation sequence from human immunodeficiency virus TAT protein. The myristoylated betagamma-binding peptide (mSIRK) applied to primary rat arterial smooth muscle cells caused rapid activation of extracellular signal-regulated kinase 1/2 in the absence of an agonist. This activation did not occur if the peptide lacked a myristate at the N terminus, if the peptide had a single point mutation to eliminate betagamma subunit binding, or if the cells stably expressed the C terminus of betaARK1. A human immunodeficiency virus TAT-modified peptide (TAT-SIRK) and a myristoylated version of a second peptide (mSCAR) that binds to the same site on betagamma subunits as mSIRK, also caused extracellular signal-regulated kinase activation. mSIRK also stimulated Jun N-terminal kinase phosphorylation, p38 mitogen-activated protein kinase phosphorylation, and phospholipase C activity and caused Ca2+ release from internal stores. When tested with purified G protein subunits in vitro, SIRK promoted alpha subunit dissociation from betagamma subunits without stimulating nucleotide exchange. These data suggest a novel mechanism by which selective betagamma-binding peptides can release G protein betagamma subunits from heterotrimers to stimulate G protein pathways in cells.  相似文献   

20.
Processes for the biological removal of phosphate from wastewater rely on temporary manipulation of bacterial polyphosphate levels by phased environmental stimuli. In E. coli polyphosphate levels are controlled via the polyphosphate‐synthesizing enzyme polyphosphate kinase (PPK1) and exopolyphosphatases (PPX and GPPA), and are temporarily enhanced by PPK1 overexpression and reduced by PPX overexpression. We hypothesised that partitioning PPK1 from cytoplasmic exopolyphosphatases would increase and stabilise E. coli polyphosphate levels. Partitioning was achieved by co‐expression of E. coli PPK1 fused with a microcompartment‐targeting sequence and an artificial operon of Citrobacter freundii bacterial microcompartment genes. Encapsulation of targeted PPK1 resulted in persistent phosphate uptake and stably increased cellular polyphosphate levels throughout cell growth and into the stationary phase, while PPK1 overexpression alone produced temporary polyphosphate increase and phosphate uptake. Targeted PPK1 increased polyphosphate in microcompartments 8‐fold compared with non‐targeted PPK1. Co‐expression of PPX polyphosphatase with targeted PPK1 had little effect on elevated cellular polyphosphate levels because microcompartments retained polyphosphate. Co‐expression of PPX with non‐targeted PPK1 reduced cellular polyphosphate levels. Thus, subcellular compartmentalisation of a polymerising enzyme sequesters metabolic products from competing catabolism by preventing catabolic enzyme access. Specific application of this process to polyphosphate is of potential application for biological phosphate removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号