首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cerebral ischemia induces a rapid and dramatic up-regulation of tumor necrosis factor (TNF) protein and mRNA, but the cellular sources of TNF in the ischemic brain have not been defined. The diverse activities of TNF are mediated via ligand interaction with two distinct receptors, p55 and p75, which activate separate intracellular signal transduction pathways, leading to distinct biological effects. Since the effects of cerebral ischemia on TNF receptor (TNFR) expression are unknown, we examined the cellular localization and protein expression of TNF and its two receptors in the rat cerebral cortex in response to permanent middle cerebral artery (MCA) occlusion. The results indicate that focal. cerebral ischemia up-regulates expression of TNF and both TNFRs within the ischemic cortex. The most abundant type of TNF immunoreactivity (IR) was a punctate and filamentous pattern of transected cellular processes; however, cell bodies of neurons, astrocytes, and microglia, as well as infiltrating polymorphonuclear (PMN) leukocytes also showed TNF IR. Brain vasculature displayed TNF IR not only within endothelial cells but also in the perivascular space. MCA occlusion induced significant up-regulation of TNF receptors, with p55 IR appearing within 6 hr, significantly before the appearance of p75 IR at 24 hr after the onset of ischemia. Since p55 has been implicated in transducing cytotoxic signalling of TNF, these results support the proposed injurious role of excessive TNF produced during the acute response to cerebral ischemia.  相似文献   

2.
Haptoglobin (Hp), TNF-alpha, and neutrophils are parts of a highly interactive ensemble participating in inflammatory processes. Hp is taken up by neutrophils, stored within a cytoplasmic granular compartment, and is secreted during phagocytosis by those cells. In the present study, the effects of TNF-alpha on the release of Hp from human neutrophils were investigated. Incubation of neutrophils with TNF-alpha induced the release of Hp from cells in a time- and concentration-dependent manner as revealed by Western blot analysis and immunofluorescence. The release of Hp induced by TNF-alpha was not due to nonspecific lysis of the cells. TNF-alpha is a highly pleiotropic cytokine that mediates its effects by binding to two distinct receptors (p55 and p75). Administration of TNF-alpha mutants binding specifically either to the p55 or to the p75 TNF receptors showed that there is a preference of TNF-alpha for the p55 receptor in the mediation of Hp release by neutrophils. A stimulated release of Hp was also induced by the chemotactic tripeptide fMLP. The TNF-alpha-induced release of Hp from neutrophils was inhibited by erbstatin, a tyrosine kinase inhibitor. These findings suggest that TNF-alpha may promptly increase the level of Hp at sites of infection or injury, leading to the modulation of the acute inflammatory response.  相似文献   

3.
Upon stimulation with tumor necrosis factor (TNF), the TNF receptor (TNFR55) mediates a multitude of effects both in normal and in tumor cells. Clustering of the intracellular domain of the receptor, the so-called death domain (DD), is responsible for both the initiation of cell killing and the activation of gene expression. To characterize this domain further, TNFR55 DD was expressed and purified as a thioredoxin fusion protein in Escherichia coli. Circular dichroism, steady-state and time-resolved fluorescence spectroscopy were used to compare TNFR55 DD with DDs of the Fas antigen (Fas), the Fas-associating protein with DD (FADD) and p75 nerve growth factor receptor, for which the 3-dimensional structure are already known. The structural information derived from the measurements strongly suggests that TNFR55 DD adopts a similar fold in solution. This prompted a homology modeling of the TNFR DD 3-D structure using FADD as a template. In vivo studies revealed a difference between the two lymphoproliferation (lpr) mutations. Biophysical techniques were used to analyze the effect of changing Leu351 to Ala and Leu351 to Asn on the global structure and its impact on the overall stability of TNFR55 DD. The results obtained from these experiments in combination with the modeled structure offer an explanation for the in vivo observed difference.  相似文献   

4.
There are two interleukin-2 receptor (IL-2R) subunits (p55 and p70/75) on human lymphocytes. Induction of the expressions of these IL-2R subunits was examined by the protein kinase-C (PK-C) activator (phorbol myristate acetate, PMA) and the calcium ionophore, ionomycine (IM). IM induced predominantly p70/75 expression on human T and B cells as indicated by the results of chemical crosslinking studies and binding assays. In contrast, PMA induced p55 expression significantly. These results suggest that the calcium-calmodulin and PK-C pathways regulate p70/75 and p55 expressions differently, and indicate that these intracellular signal messengers could control the responsiveness to IL-2, changing the affinity and number of receptors in vivo.  相似文献   

5.
After menopause, increased tumor necrosis factor-alpha (TNF-alpha) stimulates bone resorption while inhibiting differentiation of new bone-forming osteoblasts (OB). TNF receptors, p55 and p75, signal similar intracellular pathways, but only p55 activates apoptosis. To evaluate the relationship between the TNF receptor mediating inhibition of OB differentiation and the role of apoptosis, marrow stromal cells (MSC) were cultured from mice deficient in either or both receptors. Cells grown in ascorbate and beta-glycerophosphate produce alkaline phosphatase and osteocalcin and mineralize matrix. Treatment of wild-type or p55(+/+)/p75(-/-) MSC with murine TNF (binds p55 and p75) or human TNF (binds only p55) inhibited OB differentiation. TNF did not inhibit OB differentiation in p55(-/-) MSC. Expression of p75 modestly attenuated sensitivity to TNF. To determine the role of apoptosis, changes in total DNA, cell viability, caspase 3, and percentage of annexin V-positive cells were measured in MSC and preosteoblastic MC3T3 cells. TNF treatment that reduced differentiation by 50% did not decrease cell viability or increase apoptosis, as determined by alamar blue reduction, trypan blue exclusion, and percentage of annexin V-positive cells. TNF increased caspase 3 activity 1.5-fold in MC3T3 and insignificantly in MSC cells compared with > 4-fold after 4 h actinomycin D. Treatment of MSC or MC3T3 cells with three caspase inhibitors failed to reverse the inhibitory effect of TNF on OB differentiation despite inhibition of caspase activity. These results suggest that the p55 receptor is essential, and p75 dispensable, for TNF inhibition of OB differentiation through a mechanism that does not require apoptosis.  相似文献   

6.
Tumor necrosis factor (TNF)-alpha acts directly on adipocytes to increase production of the lipostatic factor, leptin. However, which TNF receptor (TNFR) mediates this response is not known. To answer this question, leptin was measured in plasma of wild-type (WT), p55, and p75 TNFR knockout (KO) mice injected intraperitoneally with murine TNF-alpha and in supernatants from cultured WT, p55, and p75 TNFR KO adipocytes incubated with TNF-alpha. Leptin also was measured in supernatants from C3H/HeOuJ mouse adipocytes cultured with blocking antibodies to each TNFR and TNF-alpha as well as in supernatants from adipocytes incubated with either human or murine TNF-alpha, which activate either one or both TNFR, respectively. The results using all four strategies show that the induction of leptin production by TNF-alpha requires activation of the p55 TNFR and that although activation of the p75 TNFR alone cannot cause leptin production, its presence affects the capability of TNF-alpha to induce leptin production through the p55 TNFR. These results provide new information on the interplay between cells of the immune system and adipocytes.  相似文献   

7.
8.
T cell activation requires a threshold amount of TCR-mediated signals, an amount that is reduced by signals mediated through costimulatory molecules expressed on the T cell surface. Here the role of TNFR2 (p75) as a putative costimulatory receptor for T cell activation was examined. It was found that p75 deficiency in CD8(+) T cells increased the requirements for TCR agonist approximately 5-fold. Furthermore, p75(-/-) T cells display a marked reduction in the proliferative response to TCR agonist. This hypoproliferative response was associated with delayed kinetics of induction of the acute activation markers CD25 and CD69 as well as a marked decrease in the production of IL-2 and IFN-gamma. The net result is that very few cells are recruited into the dividing population. Interestingly, CD28 costimulation was only partially effective in rescuing the proliferative defect of p75(-/-)CD8(+) T cells. Thus, p75 provides an important costimulatory signal in addition to that provided by CD28 toward optimal T cell proliferation.  相似文献   

9.
10.
Tumor necrosis factor (TNF) contributes to insulin resistance by binding to the 55kDa TNF receptor (TNF-R55), resulting in serine phosphorylation of proteins such as insulin receptor (IR) substrate (IRS)-1, followed by reduced tyrosine phosphorylation of IRS-1 through the IR and, thereby, diminished IR signal transduction. Through independent receptor domains, TNF-R55 activates a neutral (N-SMase) and an acid sphingomyelinase (A-SMase), that both generate the sphingolipid ceramide. Multiple candidate kinases have been identified that serine-phosphorylate IRS-1 in response to TNF or ceramide. However, due to the fact that the receptor domain of TNF-R55 mediating inhibition of the IR has not been mapped, it is currently unknown whether TNF exerts these effects with participation of N-SMase or A-SMase. Here, we identify the death domain of TNF-R55 as responsible for the inhibitory effects of TNF on tyrosine phosphorylation of IRS-1, implicating ceramide generated by A-SMase as a downstream mediator of inhibition of IR signaling.  相似文献   

11.
The elimination of lymphocytes within inflammatory lesions is a critical component in the resolution of disease once pathogens have been cleared. We report here that signaling through the TNF receptor p55 (TNFRp55) is required to eliminate lymphocytes from lesions associated with intracellular pathogens. Thus, TNFRp55-/- mice, but not Fas-deficient mice, maintained inflammatory lesions associated with either Leishmania major or Rhodococcus equi infection, although they developed a Th1 response and controlled the pathogens. Inflammatory cells from either L. major- or R. equi-infected C57BL/6 mice were sensitive to TNF-induced apoptosis, and conversely the number of apoptotic cells in the lesions from TNFRp55-/- mice was dramatically reduced compared with wild-type mice. Furthermore, in vivo depletion of TNF in wild-type mice blocked lesion regression following R. equi infection. Taken together, our results suggest that signaling through the TNFRp55, but not Fas, is required to induce apoptosis of T cells within inflammatory lesions once pathogens are eliminated, and that in its absence lesions fail to regress.  相似文献   

12.
Using purified human T lymphocytes stimulated in serum-free media with adhered anti-CD3 + exogenous IL-2, we have shown that elevated [cAMP]i (mimicked by CPT-cAMP or induced by the physiological agonist PGE2) directly inhibits mitogen-induced 1) [3H]thymidine incorporation by PBMC, purified T cells, and isolated CD4+ and CD8+ T cell subpopulations; 2) expression of both high- and low-affinity IL-2 receptors; 3) plasma membrane expression of both p55 and p75 subunits of the IL-2 receptor; and 4) expression of p55 mRNA, but not p75 mRNA. The decrease in p55 mRNA is not due to enhanced mRNA metabolism. We conclude that elevated [cAMP]i, acting directly on T cells, inhibits mitogenesis by decreasing IL-2 receptor expression. We discuss the possible physiological relevance for the multiple stages of T cell activation that are sensitive to elevated [cAMP]i.  相似文献   

13.
The present study was performed to examine whether residues 36-62 of TNFalpha contain the chemotactic domain of TNFalpha, and whether the p55 and p75 TNF receptors are involved in TNFalpha induced chemotaxis. The chemotactic effect of TNFalpha on PMN was inhibited by the mAbs Hrt-7b and Utr-1, against the p55 and p75 TNF receptors, respectively. Both receptors may therefore be required for mediating the chemotactic effect of TNFcz. The synthetic TNFalpha 36-62, similar to TNFalpha, had chemotactic effects on both PMN and monocytes. The chemotactic activity of the TNFalpha 36-62 peptide on PMN, was inhibited by Htr-7b, Utr-1 and soluble p55 receptor, which shows that the peptide possessed the ability to induce chemotaxis through the TNF receptors. In contrast to TNFalpha, the peptide did not show a cytotoxic activity against WEHI 164 flbrosarcoma cells. It is suggested that different domains of the TNFalpha molecule induce distinct biological effects.  相似文献   

14.
The bioactivity of tumor necrosis factor (TNF) is mediated by two TNF receptors (TNF-Rs), more particularly TNF-RI and TNF-RII. Although human TNF (hTNF) and murine TNF (mTNF) are very homologous, hTNF binds only to mTNF-RI. By measuring the binding of a panel of mTNF/hTNF chimeras to both mTNF-R, we pinpointed the TNF region that mediates the interaction with mTNF-RII. Using site-specific mutagenesis, we identified amino acids 71-73 and 89 as the main interacting residues. Mutein hTNF-S71D/T72Y/H73 Delta/T89E interacts with both types of mTNF-R and is active in CT6 cell proliferation assays mediated by mTNF-RII. Mutein mTNF-D71S/Y72T/Delta 73H/E89T binds to mTNF-RI only and is no longer active on CT6 cells. However, the L929s cytotoxicity of this mutein (an effect mediated by mTNF-RI triggering) was also 100-fold lower than that of wild-type mTNF due to enhanced dissociation during incubation at subnanomolar concentrations. The additional mutation of amino acid 102, resulting in the mutein mTNF-D71S/Y72T/Delta 73H/E89T/P102Q, restored the trimer stability, which led to an enhanced specific activity on L929s cells. Hence the specific activity of a TNF species is governed not only by its receptor binding characteristics but also by its trimer stability after incubation at subnanomolar concentrations. In conclusion, the mutation of TNF amino acids 71-73, 89, and 102 is sufficient to obtain a mTNF mutein selective for mTNF-RI and a hTNF mutein that, unlike wild-type hTNF, also acts on mTNF-RII.  相似文献   

15.
Acute lung injury after hemorrhagic shock (HS) is associated with the expression of tumor necrosis factor (TNF)-alpha in the lung. However, the role of TNF-alpha and its receptors in this pulmonary disorder remains obscure. This study examined the temporal relationship of pulmonary TNF-alpha production to neutrophil accumulation during HS and determined the role of TNF-alpha in neutrophil accumulation and lung leak. HS was induced in mice by removal of 30% of total blood volume. Lung TNF-alpha was measured by ELISA. Neutrophil accumulation was detected by immunofluorescent staining, and microvascular permeability was assessed using Evans blue dye. Although HS induced a slight and transient increase in lung TNF-alpha, neutrophil accumulation preceded the increase in TNF-alpha. However, lung neutrophil accumulation and lung leak were abrogated in TNF-alpha knockout mice, and both were restored by administration of recombinant TNF-alpha to TNF-alpha knockout mice before HS. Neutrophil accumulation and lung leak were abrogated in mice lacking the p55 TNF-alpha receptor, but neither was influenced by p75 TNF-alpha receptor knockout. This study demonstrates that a low level of pulmonary TNF-alpha is sufficient to mediate HS-induced acute lung injury during HS and that the p55 TNF-alpha receptor plays a dominant role in regulating the pulmonary inflammatory response to HS.  相似文献   

16.
17.
The extracellular domain of the 55-kDa TNF receptor (rsTNFR beta) has been expressed as a secreted protein in baculovirus-infected insect cells and Chinese hamster ovary (CHO)/dhfr- cells. A chimeric fusion protein (rsTNFR beta-h gamma 3) constructed by inserting the extracellular part of the receptor in front of the hinge region of the human IgG C gamma 3 chain has been expressed in mouse myeloma cells. The recombinant receptor proteins were purified from transfected cell culture supernatants by TNF alpha- or protein G affinity chromatography and gel filtration. In a solid phase binding assay rsTNFR beta was found to bind TNF alpha with high affinity comparable with the membrane-bound full-length receptor. The affinity for TNF beta was slightly impaired. However, the bivalent rsTNFR beta-h gamma 3 fusion protein bound both ligands with a significantly higher affinity than monovalent rsTNFR beta reflecting most likely an increased avidity of the bivalent construct. A molecular mass of about 140 kDa for both rsTNFR beta.TNF alpha and rsTNFR beta.TNF beta complexes was determined in analytical ultracentrifugation studies strongly suggesting a stoichiometry of three rsTNFR beta molecules bound to one TNF alpha or TNF beta trimer. Sedimentation velocity and quasielastic light scattering measurements indicated an extended structure for rsTNFR beta and its TNF alpha and TNF beta complexes. Multiple receptor binding sites on TNF alpha trimers could also be demonstrated by a TNF alpha-induced agglutination of Latex beads coated with the rsTNFR beta-h gamma 3 fusion protein. Both rsTNFR beta and rsTNFR beta-h gamma 3 were found to inhibit binding of TNF alpha and TNF beta to native 55- and 75-kDa TNF receptors and to prevent TNF alpha and TNF beta bioactivity in a cellular cytotoxicity assay. Concentrations of rsTNFR beta-h gamma 3 equimolar to TNF alpha were sufficient to neutralize TNF activity almost completely, whereas a 10-100-fold excess of rsTNFR beta was needed for similar inhibitory effects. In view of their potent TNF antagonizing activity, recombinant soluble TNF receptor fragments might be useful as therapeutic agents in TNF-mediated disorders.  相似文献   

18.
TU27, a mouse IgG1 mAb directed at the p75 chain of the human IL-2R, was analyzed for its ability to interact with IL-2 binding on isolated p75 chains (YT-2C2 cells) and high affinity p55/p75 receptors (human alloreactive T cell clone 4AS), to inhibit IL-2-induced proliferation (4AS cells) and to cooperate with an anti-p55 chain mAb (33B3.1) for inhibiting IL-2 binding and proliferation. TU27 and IL-2 bound to the isolated p75 chain expressed by YT-2C2 cells with respective dissociation constants (Kd) of 1.3 and 1 nM. They cross-inhibited each other for binding with inhibition constants (Ki) in agreement with their respective Kd values. The nature of the interaction was, however, not purely competitive and suggested nonidentical epitopes for the two ligands on the p75 chain. On 4AS cells, IL-2 bound with high affinity (Kd = 50 pM) and TU27 with an affinity similar to that found on YT-2C2 cells. The binding of TU27 and IL-2 were also mutually exclusive on 4AS cells. However, the mechanism of interaction of TU27 with IL-2 was complex since the inhibitory potency of the antibody depended on temperature, antibody preincubation and time of assay. Data obtained at 4 degrees C in the presence of suboptimal, tracer-like concentrations of IL-2 indicated that the intrinsic affinity of TU27 for the high affinity configuration was 15-fold lower than for the isolated p75 chain and argued in favor of the affinity-conversion model (as opposed to the preformed complex model) in which p55 and p75 are dissociated in the absence of IL-2. At 37 degrees C, TU27 inhibited IL-2 binding only on short time assays (6 min). Longer time (30 min) of IL-2 binding resulted in an almost complete disappearance of the effect of TU27, suggesting that internalization of the high affinity p55/p75/IL2 complex enables the cells to escape from the inhibitory effect of TU27. In the presence of the 33B3.1 mAb, the interaction of TU27 with IL-2 resembled the one observed on YT-2C2 cells, suggesting that 33B3.1 is able to inhibit the IL-2-induced association of p55 and p75. Both antibody were found to synergize on 4AS cells, as a result of a cooperative mechanism in which 33B3.1 blocks the formation of the high affinity complex hence allowing TU27 to bind with higher affinity, and TU27 blocks IL-2 binding to the p75 chain. Proliferation studies corroborated the binding experiments.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The mechanistic relationship between the signalling for the TNF effects by the human p55 TNF receptor (hu-p55-TNF-R) and the formation of a soluble form of the receptor, which is inhibitory to these effects, was explored by examining the function of C-terminally truncated mutants of the receptor, expressed in rodent cells. The 'wild-type' receptor signalled for a cytocidal effect when cross-linked with specific antibodies and exhibited spontaneous shedding. Shedding of the receptor was not affected by TNF but was markedly enhanced by 4 beta-phorbol-12-myristate-13-acetate (PMA). Receptor mutants with 53%, 83% and 96% C-terminal deletions could not signal for the cytocidal effect. Furthermore, they were found to associate with the endogenous rodent receptors, interfering with their signalling. Yet even the deletion of 96% of the intracellular domain did not abolish shedding of the receptor in response to PMA. These findings suggest that signalling and shedding of the p55 TNF-R are mechanistically distinct.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号