首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell proliferation requires the coordinate synthesis and degradation of many proteins. In addition to the well‐characterized involvement of the proteasome in the degradation of several cell cycle‐regulated proteins, it has been established that cysteine proteinases are also involved in the control of cell proliferation, but their role is currently not understood. By using both synthetic cysteine proteinase inhibitors and overexpression of T‐kininogen (T‐KG), a physiologically relevant cysteine proteinase inhibitor, we show that inhibition of cysteine proteinases results in a severe inhibition of the ERK pathway of signal transduction. Mechanistically, this effect appears to be the result of stabilization of the ERK phosphatase MKP‐1, which leads to an enhanced dephosphorylation (and hence inactivation) of ERK molecules. These results are specific to cysteine proteinase inhibitors and are not observed when either serine proteinases or the proteasome are inhibited. We hypothesize that inhibition of cysteine proteinases in vivo leads to a dysregulation of the ERK pathway, which results in an inability of the cell to transmit to the nucleus the signals generated by the presence of growth factors, thus resulting in loss of cell proliferation. J. Cell. Biochem. 80:11–23, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

2.
Chondrocytes experience a dynamic extracellular osmotic environment during normal joint loading when fluid is forced from the matrix, increasing the local proteoglycan concentration and therefore the ionic strength and osmolarity. To exist in such a challenging environment, chondrocytes must possess mechanisms by which cell volume can be regulated. In this study, we investigated the ability of bovine articular chondrocytes (BAC) to regulate cell volume during a hypo-osmotic challenge. We also examined the effect of hypo-osmotic stress on early signaling events including [Ca2+](i) and membrane currents. Changes in cell volume were measured by monitoring the fluorescence of calcein-loaded cells. [Ca2+](i) was quantified using fura-2, and membrane currents were recorded using patch clamp. BAC exhibited regulated volume decrease (RVD) when exposed to hypo-osmotic saline which was inhibited by Gd3+. Swelling stimulated [Ca2+](i) transients in BAC which were dependent on swelling magnitude. Gd3+, zero [Ca2+](o), and thapsigargin all attenuated the [Ca2+](i) response, suggesting roles for Ca2+ influx through stretch activated channels, and Ca2+ release from intracellular stores. Inward and outward membrane currents significantly increased during cell swelling and were inhibited by Gd3+. These results indicate that RVD in BAC may involve [Ca2+](i) and ion channel activation, both of which play pivotal roles in RVD in other cell types. These signaling pathways are also similar to those activated in chondrocytes subjected to other biophysical signals. It is possible, then, that these signaling events may also be involved in a mechanism by which mechanical loads are transduced into appropriate cellular responses by chondrocytes.  相似文献   

3.
P13K-AKT—mTORCl信号途径在细胞生长增殖中起重要调控作用,P13K-Akt—mTORl信号途径能够调节细胞周期相关蛋白基因的表达来调控细胞的增殖;同时,P13K—Akt-mTORl信号途径也能够调控细胞的生长和大小;P13K-Akt-mTORCl信号途径的异常活化与肿瘤发生紧密相关。就P13K—AKT-mTORCl信号途径在细胞生长增殖中的作用作一综述。  相似文献   

4.
Recent work has demonstrated that brief application of insulin to hippocampal slices can induce a novel form of long-term depression (insulin-LTD) in the CA1 region of the hippocampus; however, the molecular details of how insulin triggers LTD remain unclear. Using electrophysiological and biochemical approaches in the hippocampal slices, we show here that insulin-LTD (i) is specific to 3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor- but not NMDA receptor-mediated synaptic transmission; (ii) is induced and expressed postsynaptically but does not require the activation of ionotropic and metabotropic glutamate receptors; (iii) requires a concomitant Ca(2+) influx through l-type voltage-activated Ca(2+) channels (VACCs) and the release of Ca(2+) from intracellular stores; (iv) requires the series of protein kinases, including protein tyrosine kinase (PTK), phosphatidylinositol 3-kinase (PI3K), and protein kinase C (PKC); (v) is mechanistically distinct from low-frequency stimulation-induced LTD (LFS-LTD) and independent on protein phosphatase 1/2 A (PP1/2 A) and PP2B activation; (vi) is dependent on a rapamycin-sensitive local translation of dendritic mRNA, and (vii) is associated with a persistent decrease in the surface expression of GluR2 subunit. These results suggest that a PI3K/PKC-dependent insulin signaling, which controls postsynaptic surface AMPA receptor numbers through PP-independent endocytosis, may be a major expression mechanism of insulin-LTD in hippocampal CA1 neurons.  相似文献   

5.
Exposure of arsenite can induce hyperproliferation of skin cells, which is believed to play important roles in arsenite-induced carcinogenesis by affecting both promotion and progression stages. However, the signal pathways and target genes activated by arsenite exposure responsible for the proliferation remain to be defined. In the present study, we found that: (1) exposure of human keratinocytic HaCat cells to arsenite caused an increase in cell proliferation, which was significantly inhibited by pretreatment of wortmannin, a specific chemical inhibitor of PI-3K/Akt signal pathway; (2) arsenite exposure was also able to activate PI-3K/Akt signal pathway, which thereby induced the elevation of cyclin D1 expression level in both HaCat cells and human primary keratinocytes based on that inhibition of PI-3K/Akt pathway by either pretreatment of wortmannin or the transfection of their dominant mutants, significantly inhibited cyclin D1 expression upon arsenite exposure; (3) PI-3K/Akt pathway is implicated in arsenite-induced proliferation of HaCat cells through the induction of cyclin D1 because either knockdown of cyclin D1 by its siRNA or inhibition of PI-3K/Akt signal pathway by their dominant mutants markedly impaired the proliferation of HaCat cells induced by arsenite exposure. Taken together, we provide the direct evidence that PI-3K/Akt pathway plays a role in the regulation of cell proliferation through the induction of cyclin D1 in human keratinocytes upon arsenite treatment. Given the importance of aberrant cell proliferation in cell transformation, we propose that the activation of PI-3K/Akt pathway and cyclin D1 induction may be the important mediators of human skin carcinogenic effect of arsenite.  相似文献   

6.
Brain edema and associated increased intracranial pressure are major consequences of traumatic brain injury (TBI). An important early component of the edema associated with TBI is astrocyte swelling (cytotoxic edema). Mechanisms for such swelling, however, are poorly understood. Ion channels/transporters/exchangers play a major role in cell volume regulation, and a disturbance in one or more of these systems may result in cell swelling. To examine potential mechanisms in TBI-mediated brain edema, we employed a fluid percussion model of in vitro barotrauma and examined the role of the ion transporter Na(+)-K(+)-2Cl(-)-cotransporter 1 (NKCC1) in trauma-induced astrocyte swelling as this transporter has been strongly implicated in the mechanism of cell swelling in various neurological conditions. Cultures exposed to trauma (3, 4, 5 atm pressure) caused a significant increase in NKCC1 activity (21%, 42%, 110%, respectively) at 3 h. At 5 atm pressure, trauma significantly increased NKCC1 activity at 1 h and it remained increased for up to 3 h. Trauma also increased the phosphorylation (activation) of NKCC1 at 1 and 3 h. Inhibition of MAPKs and oxidative/nitrosative stress diminished the trauma-induced NKCC1 phosphorylation as well as its activity. Bumetanide, an inhibitor of NKCC1, significantly reduced the trauma-induced astrocyte swelling (61%). Silencing NKCC1 with siRNA led to a reduction in trauma-induced NKCC1 activity as well as in cell swelling. These findings demonstrate the critical involvement of NKCC1 in the astrocyte swelling following in vitro trauma, and suggest that blocking NKCC1 activity may represent a useful therapeutic strategy for the cytotoxic brain edema associated with the early phase of TBI.  相似文献   

7.
The effect of hyposmotic and isosmotic cell swelling on the free intracellular calcium concentration ([Ca2+]i) in rat mammary acinar cells has been examined using the fura-2 dye technique. A hyposmotic shock (40% reduction) increased the [Ca2+]i in rat mammary acinar cells in a fashion which was transient; the [Ca2+]i returned to a value similar to that found under isomotic conditions within 180 sec. The increase in the [Ca2+]i was dependent upon the extent of the osmotic shock. The hyposmotically-activated increase in the [Ca2+]i could not be attributed to a reduction in extracellular Na+ or a change in the ionic strength of the incubation medium. Thapsigargin (1 M) enhanced the hyposmotically-activated increase in the [Ca2+]i. Isosmotic swelling of rat mammary acinar cells, using urea, had no significant effect on the [Ca2+]i. Similarly, a hyperosmotic shock did not affect the [Ca2+]i in rat mammary acinar cells. It appears that the effect of cell swelling on the [Ca2+]i in rat mammary acinar cells depends on how the cells are swollen (hyposmotic vs. isosmotic). This finding may have important physiological implications given that it is predicted that mammary cell volume will change in vivo under isomotic conditions.  相似文献   

8.
9.
10.
11.
12.
Stimulation of neutrophils with chemotactic peptide induces actin reorganization, formation of actin-rich protrusions, and development of polarity. Shape changes and actin polymerization can also be induced by phorbol ester-mediated direct activation of protein kinase C (PKC). We have investigated the role of cholesterol in stimulus-dependent motile events and in activation of signaling pathways in neutrophil-like differentiated HL-60 cells. Depletion of plasma membrane cholesterol using methyl-beta-cyclodextrin (MbetaCD) prevented chemotactic peptide and phorbol ester-induced shape changes and increases in cytoskeletal actin. Cholesterol depletion almost completely suppressed chemotactic peptide-mediated activation of p42/44 mitogen-activated protein kinase (MAPK). Phosphorylation of protein kinase B on Thr-308, which is indicative of activation of phosphatidylinositol 3-kinase, was in contrast only partially inhibited. Stimulus-mediated membrane recruitment of different PKC isoforms was differentially affected by treatment of cells with MbetaCD. Membrane recruitment of PKCalpha induced by chemotactic peptide or phorbol ester was suppressed, whereas that of PKCbetaII was only partially affected. Membrane association of PKCdelta was almost insensitive to cholesterol depletion. In summary, our results implicate an important role of cholesterol-containing lipid microdomains (rafts) especially in chemotactic peptide-induced activation of MAPK pathways and in chemotactic peptide- and phorbol ester-mediated activation of PKCalpha.  相似文献   

13.
In rat parotid glands, the involvement of the microfilament system in the cellular signal transmission mechanism was tested by measuring the effect of cytochalasin D (which disturbs the microfilament system) on the production of intracellular second messengers. Cytochalasin D (CD) did not affect unstimulated calcium movements (measured by the 45Ca efflux technique) or inositol phosphate production or cAMP accumulation. Neither did it modify the generation of intracellular second messengers induced by activation of the cholinergic muscarinic receptor (calcium and inositol phosphates). CD dit not affect the cAMP accumulation induced by the activation of the beta-adrenergic receptor whereas it strongly inhibited the calcium movements induced by activation of the same receptor. These data suggest that, in rat parotid glands, calcium movements, induced by beta-adrenergic receptor stimulation need an intact microfilament system to occur, whereas the muscarinic pathway (via IP3) does not.  相似文献   

14.
The purpose of the present study was to examine mitochondrial function in differently transformed cells relative to their tumorigenic state and proliferative activity in vitro. An established two-step carcinogenesis model consisting of immortal and tumorigenic rat embryo fibroblasts that can be cultured as monolayers and multicellular spheroids was investigated. Flow cytometric measurements were carried out using the two mitochondrial-specific fluorochromes rhodamine 123 (Rh123) and 10-N-nonyl acridine orange (NAO), in combination with the DNA dye Hoechst 33342 for simultaneous cell cycle analysis. Since the accumulation of Rh123 depends on mitochondrial membrane potential, Rh123 fluorescence intensity gives an estimate of mitochondrial activity per cell, as determined by both overall mitochondrial function and mass. In contrast, NAO uptake reflects mitochondrial mass only, as it binds to cardiolipin in the inner mitochondrial membrane independently of membrane potential. Aliquots of cell suspensions derived from exponential monolayer, confluent monolayer, and a range of sizes of multicellular spheroids were stained with either Rh123 or NAO and Hoechst 33342, then mitochondrial mass and activity per unit cell volume and cellular DNA content were measured by flow cytometry. Differences in the average mitochondrial activity per cell in different cell lines and culture conditions were primarily due to alterations in cell volume. Importantly, tumorigenic conversion by ras-transfection did not consistently change mitochondrial activity per unit cell volume. The mitochondrial mass per unit cell volume increased for all cells when cellular quiescence was induced, either in monolayers or spheroids. However, mitochondrial function (activity/mass) decreased when cells became quiescent, resulting in a positive correlation between mitochondrial function and S-phase fraction, independent of transformation status or culture condition. We conclude that mitochondrial function reflects proliferative activity rather than tumorigenic conversion.  相似文献   

15.
Neurogenesis in the retina requires the concerted action of three different cellular processes: proliferation, differentiation, and apoptosis. Class IA phosphoinositide 3-kinase (PI3K) is a heterodimer composed of a p85 regulatory and a p110 catalytic subunit. p110alpha has been shown to regulate cell division and survival. Little is known of its function in development, however, as p110alpha knockout mice exhibit CNS defects, but death at early embryonic stages impairs further study. Here, we examine the role of PI3K in mouse retina development by expressing an activating form of PI3K regulatory subunit, p65(PI3K), as a transgene in the retina. Mice expressing p65(PI3K) showed severely disrupted retina morphogenesis, with ectopic cell masses in the neuroepithelium that evolved into infoldings of adult retinal cell layers. These changes correlated with an altered cell proliferation/cell death balance at early developmental stages. Nonetheless, the most affected cell layer in adult retina was that of photoreceptors, which correlated with selectively increased survival of these cells at developmental stages at which cell division has ceased. These results demonstrate the relevance of accurate PI3K regulation for normal retinal development, supporting class IA PI3K involvement in induction of cell division at early stages of neurogenesis. These data also show that, even after cell division decline, PI3K activation mediates survival of differentiated neurons in vivo.  相似文献   

16.
Metastatic disease is the leading cause of death in children suffering from medulloblastoma and a major treatment challenge. The evidence of leptomeningeal dissemination defines the most aggressive tumours and is associated with increased mortality; thus, inhibition of migration as a factor involved in the process of metastatic disease is fundamental for the treatment and prevention of metastatic dissemination. Targeting the small Rho GTPases Rac1 has been shown to effectively impair medulloblastoma cell migration in vitro. Yet clinically applicable selective Rac1 inhibitors are still lacking. In view of the pertinent oncogenic role of the PI3K signalling cascade and tyrosine kinase‐mediated signalling pathways in medulloblastoma, we explored clinically available targeted therapeutics to this effect. Here, we show that Rac1 is expressed in both the cytoplasm and nucleus in the medulloblastoma cell lines Daoy and MEB‐Med‐8A representative of two high risk medulloblastoma entities. We demonstrate that activated Rac1 is subject to substantial downmodulation following administration of the clinically available inhibitor of the PI3K pathway Pictilisib (GDC‐0941) and the multityrosine kinase inhibitors Pazopanib and Sorafenib. The application of those drugs was associated with reduced mobility of the medulloblastoma cells and alterations of the actin skeleton. Of note, PI3K inhibition reveals the strongest anti‐migratory effect in Daoy cells. Thus, our in vitro observations provide new insights into different strategies of blocking Rac1 and inhibiting migration in medulloblastoma employing clinically available agents paving the way for confirmatory studies in in vivo models.  相似文献   

17.
It is well known that variation in the concentration of estrogens affects insulin action. In this study we examine the impact of estradiol (E2) on insulin signaling in the rat heart. Ovariectomized female rats were treated with E2 6 h prior to analysis of basal protein and mRNA content of insulin signaling molecules, and additionally with insulin 30 min before the experiment to delineate E2 effects on phosphorylations and molecular associations relevant for insulin signaling. The results show that E2 decreased insulin receptor (IR) tyrosine phosphorylation, while it did not alter IR protein and mRNA content. E2 administration did not change IR substrate 1 (IRS‐1) protein content and tyrosine phosphorylation, while decreased mRNA content and increased its association with the p85 subunit of phosphatidylinositol 3‐kinase (PI3K). E2 decreased protein and mRNA content of IR substrate 2 (IRS‐2), while did not change IRS‐2 tyrosine phosphorylation and IRS‐2 association with p85. The increase of IRS‐1/p85 is accompanied by increase of p85 protein and mRNA levels, and by stimulation of protein kinase B (Akt) Ser473 phosphorylation. In contrast, Akt protein and mRNA content were not changed. In summary, although in some aspects cardiac insulin signaling is obviously improved by E2 treatment (increase of p85 mRNA and protein levels, enhancement of IRS‐1/p85 association and Ser473Akt phosphorylation), the observed decrease of IR tyrosine phosphorylation, IRS‐2 protein content, and IRSs mRNA contents, suggest very complex interplay of beneficial and suppressive effects of E2, both genomic and non‐genomic, in regulation of heart insulin signaling. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
We have previously demonstrated that the exposure of mouse microvascular endothelium (MME) to tumor necrosis factor-alpha (TNF) led to the increased binding of mouse mastocytoma cells (P815) to endothelial monolayers (Bereta et al., in press). In the current study we examined the possible involvement of protein kinases in TNF signal transduction in the endothelial cells. PKA does not appear to play a role in the potentiation of binding by TNF. We found that the TNF-generated signal is inhibited by H-7 and sangivamycin, but not by staurosporine. TNF did not cause translocation of PKC to the cell membrane and its effect could not be completely mimicked by PMA nor by PMA in the presence of calcium-raising agents. Thus, we concluded that the "classical" PKC pathway is not completely responsible for TNF signalling in this system. We also found that staurosporine itself strongly enhanced adhesion of tumor cells to endothelium, utilizing a mechanism distinct from that of TNF. Although the data provide evidence for the role of kinases in the effect of TNF on binding of tumor cells to MME, this role appears to be a complex one.  相似文献   

19.
We studied the PI3K/Akt signaling pathway modulation and its involvement in the stimulation of ROS 17/2.8 osteoblast-like cell proliferation by extracellular ATP. A dose- and time-dependent increase in Akt-Ser 473 phosphorylation (p-Akt) was observed. p-Akt was increased by ATPγS and UTP, but not by ADPβS. Akt activation was abolished by PI3K inhibitors and reduced by inhibitors of PI-PLC, Src, calmodulin (CaM) but not of CaMK. p-Akt was diminished by cell incubation in a Ca2+-free medium but not by the use of L-type calcium channel blockers. The rise in intracellular Ca2+ induced by ATP was potentiated in the presence of Ro318220, a PKC inhibitor, and attenuated by the TPA, a known activator of PKC. ATP-dependent p-Akt was diminished by TPA and augmented by Ro318220 treatment in a Ca2+-containing but not in a Ca2+-free medium. ATP stimulated the proliferation of both ROS 17/2.8 cells and rat osteoblasts through PI3K/Akt. In the primary osteoblasts, ATP induces alkaline phosphatase activity via PI3K, suggesting that the nucleotide promotes osteoblast differentiation. These results suggest that ATP stimulates osteoblast proliferation through PI-PLC linked-P2Y2 receptors and PI3K/Akt pathway activation involving Ca2+, CaM and Src. PKC seems to regulate Akt activation through Src and the Ca2+ influx/CaM pathway.  相似文献   

20.
Strategies to promote bone repair have included exposure of cells to growth factor (GF) preparations from blood that generally include proteins as part of a complex mixture. This study aimed to evaluate the effects of such a mixture on different parameters of the development of the osteogenic phenotype in vitro. Osteoblastic cells were obtained by enzymatic digestion of human alveolar bone and cultured under standard osteogenic conditions until subconfluence. They were subcultured on Thermanox coverslips up to 14 days. Treated cultures were exposed during the first 7 days to osteogenic medium supplemented with a GFs + proteins mixture containing the major components found in platelet extracts [platelet-derived growth factor-BB, transforming growth factor (TGF)-beta1, TGF-beta2, albumin, fibronectin, and thrombospondin] and to osteogenic medium alone thereafter. Control cultures were exposed only to the osteogenic medium. Treated cultures exhibited a significantly higher number of adherent cells from day 4 onward and of cycling cells at days 1 and 4, weak alkaline phosphatase (ALP) labeling, and significantly decreased levels of ALP activity and mRNA expression. At day 14, no Alizarin red-stained nodular areas were detected in cultures treated with GFs + proteins. Results were confirmed in the rat calvaria-derived osteogenic cell culture model. The addition of bone morphogenetic protein 7 or growth and differentiation factor 5 to treated cultures upregulated Runx2 and ALP mRNA expression, but surprisingly, ALP activity was not restored. These results showed that a mixture of GFs + proteins affects the development of the osteogenic phenotype both in human and rat cultures, leading to an increase in the number of cells, but expressed a less differentiated state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号